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Preface

It is well known that many phenomena in biology, chemistry, engineering, physics
can be described by boundary value problems associated with various types of par-
tial differential equations or systems. When we associate a mathematical model
with a phenomenon, we generally try to capture what is essential, retaining the
important quantities and omitting the negligible ones which involve small param-
eters. The model that would be obtained by maintaining the small parameters is
called the perturbed model, whereas the simplified model (the one that does not
include the small parameters) is called unperturbed (or reduced model). Of course,
the unperturbed model is to be preferred, because it is simpler. What matters is
that it should describe faithfully enough the respective phenomenon, which means
that its solution must be “close enough” to the solution of the corresponding
perturbed model. This fact holds in the case of regular perturbations (which are
defined later). On the other hand, in the case of singular perturbations, things get
more complicated. If we refer to an initial-boundary value problem, the solution of
the unperturbed problem does not satisfy in general all the original boundary con-
ditions and/or initial conditions (because some of the derivatives may disappear
by neglecting the small parameters). Thus, some discrepancy may appear between
the solution of the perturbed model and that of the corresponding reduced model.
Therefore, to fill in this gap, in the asymptotic expansion of the solution of the
perturbed problem with respect to the small parameter (considering, for the sake
of simplicity, that we have a single parameter), we must introduce corrections (or
boundary layer functions).

More than half a century ago, A.N. Tikhonov [43]–[45] began to systematical-
ly study singular perturbations, although there had been some previous attempts
in this direction. In 1957, in a fundamental paper [50], M.I. Vishik and L.A. Lyu-
sternik studied linear partial differential equations with singular perturbations, in-
troducing the famous method which is today called the Vishik-Lyusternik method.
From that moment on, an entire literature has been devoted to this subject.

This book offers a detailed asymptotic analysis of some important
classes of singularly perturbed boundary value problems which are
mathematical models for various phenomena in biology, chemistry,
engineering.



xii Preface

We are particularly interested in nonlinear problems, which have
hardly been examined so far in the literature dedicated to singular per-
turbations. This book proposes to fill in this gap, since most applica-
tions are described by nonlinear models. Their asymptotic analysis is
very interesting, but requires special methods and tools. Our treatment
combines some of the most successful results from different parts of
mathematics, including functional analysis, singular perturbation the-
ory, partial differential equations, evolution equations. So we are able
to offer the reader a complete justification for the replacement of var-
ious perturbed models with corresponding reduced models, which are
simpler but in general have a different character. From a mathematical
point of view, a change of character modifies dramatically the model,
so a deep analysis is required.

Although we address specific applications, our methods are appli-
cable to other mathematical models.

We continue with a few words about the structure of the book. The material
is divided into four parts. Each part is divided into chapters, which, in turn,
are subdivided into sections (see the Contents). The main definitions, theorems,
propositions, lemmas, corollaries, remarks are labelled by three digits: the first
digit indicates the chapter, the second the corresponding section, and the third
the respective item in the chapter.

Now, let us briefly describe the material covered by the book.
The first part, titled Preliminaries, has an introductory character. In Chapter

1 we recall the definitions of the regular and singular perturbations and present
the Vishik-Lyusternik method. In Chapter 2, some results concerning existence,
uniqueness and regularity of the solutions for evolution equations in Hilbert spaces
are brought to attention.

In Part II, some nonlinear boundary value problems associated with the tele-
graph system are investigated. In Chapter 3 (which is the first chapter of Part II)
we present the classes of problems we intend to study and indicate the main fields
of their applications. In Chapters 4 and 5 we discuss in detail the case of algebraic
boundary conditions and that of dynamic boundary conditions, respectively. We
determine formally some asymptotic expansions of the solutions of the problems
under discussion and find out the corresponding boundary layer functions. Also, we
establish results of existence, uniqueness and high regularity for the other terms of
our asymptotic expansions. Moreover, we establish estimates for the components
of the remainders in the asymptotic expansions previously deducted in a formal
way, with respect to the uniform convergence topology, or with respect to some
weaker topologies. Thus, the asymptotic expansions are validated.

Part III, titled Singularly perturbed coupled problems, is concerned with the
coupling of some boundary value problems, considered in two subdomains of a
given domain, with transmission conditions at the interface.



Preface xiii

In the first chapter of Part III (Chapter 6) we introduce the problems we
are going to investigate in the next chapters of this part. They are mathematical
models for diffusion-convection-reaction processes in which a small parameter is
present. We consider both the stationary case (see Chapter 7) and the evolutionary
one (see Chapter 8). We develop an asymptotic analysis which in particular allows
us to determine appropriate transmission conditions for the reduced models.

What we do in Part III may also be considered as a first step towards the
study of more complex coupled problems in Fluid Mechanics.

While in Parts II and III the possibility to replace singular perturbation
problems with the corresponding reduced models is discussed, in Part IV we aim
at reversing the process in the sense that we replace given parabolic problems
with singularly perturbed, higher order (with respect to t) problems, admitting
solutions which are more regular and approximate the solutions of the original
problems. More precisely, we consider the classical heat equation with homoge-
neous Dirichlet boundary conditions and initial conditions. We add to the heat
equation the term ±εutt, thus obtaining either an elliptic equation or a hyperbolic
one. If we associate with each of the resulting equations the original boundary and
initial conditions we obtain new problems, which are incomplete, since the new
equations are of a higher order with respect to t. For each problem we need to add
one additional condition to get a complete problem. We prefer to add a condition
at t = T for the elliptic equation, either for u or for ut, and an initial condition at
t = 0 for ut for the hyperbolic equation. So, depending on the case, we obtain an
elliptic or hyperbolic regularization of the original problem. In fact, we have to do
with singularly perturbed problems, which can be treated in an abstract setting. In
the final chapter of the book (Chapter 11), elliptic and hyperbolic regularizations
associated with the nonlinear heat equation are investigated.

Note that, with the exception of Part I, the book includes original material
mainly due to the authors, as considerably revised or expanded versions of previous
works, including in particular the 2000 authors’ Romanian book [6].

The present book is designed for researchers and graduate students and can
be used as a two-semester text.

The authors December 2006



Part I

Preliminaries



Chapter 1

Regular and Singular
Perturbations

In this chapter we recall and discuss some general concepts of singular perturbation
theory which will be needed later. Our presentation is mainly concerned with
singular perturbation problems of the boundary layer type, which are particularly
relevant for applications.

In order to start our discussion, we are going to set up an adequate framework.
Let D ⊂ R

n be a nonempty open bounded set with a smooth boundary S. Denote
its closure by D. Consider the following equation, denoted Eε,

Lεu = f(x, ε), x ∈ D,

where ε is a small parameter, 0 < ε � 1, Lε is a differential operator, and f is a
given real-valued smooth function. If we associate with Eε some condition(s) for
the unknown u on the boundary S, we obtain a boundary value problem Pε. We
assume that, for each ε, Pε has a unique smooth solution u = uε(x). Our goal is
to construct approximations of uε for small values of ε. The usual norm we are
going to use for approximations is the sup norm (or max norm), i.e.,

‖g‖C(D) = sup{|g(x)|; x ∈ D} ,

for every continuous function g : D −→ R (in other words, g ∈ C(D)). We will
also use the weaker Lp-norm

‖g‖Lp(D) =
(∫

D

|g|p dx

)1/p

,

where 1 ≤ p < ∞. For information about Lp-spaces, see the next chapter.



4 Chapter 1. Regular and Singular Perturbations

In many applications, operator Lε is of the form

Lε = L0 + εL1,

where L0 and L1 are differential operators which do not depend on ε. If L0 does
not include some of the highest order derivatives of Lε, then we should associate
with L0 fewer boundary conditions. So, Pε becomes

L0u + εL1u = f(x, ε), x ∈ D,

with the corresponding boundary conditions. Let us also consider the equation,
denoted E0,

L0u = f0, x ∈ D,

where f0(x) := f(x, 0), with some boundary conditions, which usually come from
the original problem Pε. Let us denote this problem by P0. Some of the original
boundary conditions are no longer necessary for P0. Problem Pε is said to be a
perturbed problem (perturbed model), while problem P0 is called unperturbed (or
reduced model).

Definition 1.0.1. Problem Pε is called regularly perturbed with respect to some
norm ‖ · ‖ if there exists a solution u0 of problem P0 such that

‖uε − u0‖ −→ 0 as ε → 0.

Otherwise, Pε is said to be singularly perturbed with respect to the same norm.

In a more general setting, we may consider time t as an additional indepen-
dent variable for problem Pε as well as initial conditions at t = 0 (sometimes t is
the only independent variable). Moreover, we may consider systems of differential
equations instead of a single equation. Note also that the small parameter may also
occur in the conditions associated with the corresponding system of differential
equations. For example, we will discuss later some coupled problems in which the
small parameter is also present in transmission conditions. Basically, the definition
above also applies to these more general cases.

In order to illustrate this definition we are going to consider some examples.
Note that the problem of determining P0 will be clarified later. Here, we use just
heuristic arguments.

Example 1. Consider the following simple Cauchy problem Pε :

du

dt
+ εu = f0(t), 0 < t < T ; u(0) = θ,

where T ∈ (0, +∞), θ ∈ R, and f0 : R −→ R is a given smooth function. The
solution of Pε is given by

uε(t) = e−εt
(
θ +

∫ t

0

eεsf0(s) ds
)
, 0 ≤ t ≤ T.
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Obviously, uε converges uniformly on [0, T ], as ε tends to 0, to the function

u0(t) = θ +
∫ t

0

f0(s) ds,

which is the solution of the reduced problem

du

dt
= f0(t), 0 < x < T ; u(0) = θ.

Therefore, Pε is regularly perturbed with respect to the sup norm.

Example 2. Let Pε be the boundary value problem

ε
d2u

dx2
+

du

dx
= 2x, 0 < x < 1; u(0) = 0 = u(1).

Its solution is
uε(x) = x(x − 2ε) +

2ε− 1
1 − e−1/ε

(
1 − e−x/ε

)
.

Note that
uε(x) = (x2 − 1) + e−x/ε + rε(x),

where rε(x) converges uniformly to the null function, as ε tends to 0. Therefore,
uε converges uniformly to the function u0(x) = x2 − 1 on every interval [δ, 1],
0 < δ < 1, but not on the whole interval [0, 1]. Obviously, u0(x) = x2 − 1 satisfies
the reduced problem

du

dx
= 2x, 0 < x < 1; u(1) = 0,

but ‖uε − u0‖C[0,1] does not approach 0. Therefore, Pε is singularly perturbed with
respect to the sup norm. For a small δ, u0 is an approximation of uε in [δ, 1], but
it fails to be an approximation of uε in [0, δ]. This small interval [0, δ] is called
a boundary layer . Here we notice a fast change of uε from its value uε(0) = 0
to values close to u0. This behavior of uε is called a boundary layer phenomenon
and Pε is said to be a singular perturbation problem of the boundary layer type.
In this simple example, we can see that a uniform approximation for uε(x) is
given by u0(x) + e−x/ε. The function e−x/ε is a so-called boundary layer function
(correction). It fills the gap between uε and u0 in the boundary layer [0, δ].

Let us remark that Pε is a regular perturbation problem with respect to the
Lp-norm for all 1 ≤ p < ∞, since ‖uε − u0‖Lp(0,1) tends to zero. The boundary
layer which we have just identified is not visible in this weaker norm.

Example 3. Let Pε be the following Cauchy problem

ε
du

dt
+ ru = f0(t), 0 < t < T ; u(0) = θ,
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where r is a positive constant, θ ∈ R and f0 : [0, T ] → R is a given Lipschitzian
function. The solution of this problem is given by

uε(t) = θe−rt/ε +
1
ε

∫ t

0

f0(s)e−r(t−s)/εds, 0 ≤ t ≤ T,

which can be written as

uε(t) =
1
r
f0(t) +

(
θ − 1

r
f0(0)

)
e−rt/ε + rε(t), 0 ≤ t ≤ T,

where

rε(t) = −1
r

∫ t

0

f ′
0(s)e

−r(t−s)/εds.

We have

| rε(t) |≤ L

r

∫ t

0

e−r(t−s)/εds ≤ L

r2
ε,

where L is the Lipschitz constant of f0. Therefore, rε converges uniformly to zero
on [0, T ] as ε tends to 0. Thus uε converges uniformly to u0(t) = (1/r)f0(t) on
every interval [δ, T ], 0 < δ < T , but not on the whole interval [0, T ] if f0(0) 	= rθ.
Note also that u0 is the solution of the (algebraic) equation

ru = f0(t), 0 < t < T,

which represents our reduced problem. Therefore, if f0(0) 	= rθ, this Pε is a sin-
gular perturbation problem of the boundary layer type with respect to the sup
norm. The boundary layer is a small right vicinity of the point t = 0. A uniform ap-
proximation of uε(t) on [0, T ] is the sum u0(t)+

(
θ − 1

r f0(0)
)
e−rt/ε. The function(

θ − 1
r f0(0)

)
e−rt/ε is a boundary layer function, which corrects the discrepancy

between uε and u0 within the boundary layer.

Example 4. Let Pε be the following initial-boundary value problem

εut − uxx = t sinx, 0 < x < π, 0 < t < T,

u(x, 0) = sin x, x ∈ [0, π]; u(0, t) = 0 = u(π, t), t ∈ [0, T ],

where T is a given positive number. The solution of this problem is

uε(x, t) = t sinx + e−t/ε sin x + ε
(
e−t/ε − 1

)
sin x,

which converges uniformly, as ε tends to zero, to the function u0(x, t) = t sin x, on
every rectangle Rδ = {(x, t) : 0 ≤ x ≤ π, δ ≤ t ≤ T }, 0 < δ < T . Note that u0

is the solution of the reduced problem P0,

−uxx = t sinx, u(0, t) = 0 = u(π, t).
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However, u0 fails to be a uniform approximation of uε in the strip Bδ = {(x, t) :
0 ≤ x ≤ π, 0 ≤ t ≤ δ}. Therefore, Pε is a singular perturbation problem of
the boundary layer type with respect to the sup norm on the rectangle [0, π] ×
[0, T ]. The boundary layer is a thin strip Bδ, where δ is a small positive number.
Obviously, a boundary layer function (correction) is given by

c(x, t/ε) = e−t/ε sin x,

which fills the gap between uε and u0. Indeed, u0(x, t) + c(x, t/ε) is a uniform
approximation of uε.

It is interesting to note that Pε is regularly perturbed with respect to the
usual norm of the space C

(
[0, π]; Lp(0, T )

)
for all 1 ≤ p < ∞. The boundary layer

phenomenon is not visible in this space, but it is visible in C([0, π] × [0, T ]), as
noticed above. In fact, we can see that Pε is singularly perturbed with respect to
the weaker norm ‖ · ‖L1(0,π; C[0,T ]).

Example 5. Let D ⊂ R
2 be a bounded domain with smooth boundary ∂D. Let Pε

be the following typical Dirichlet boundary value problem (see, e.g., [48], p. 83):{
−εΔu + u = f(x, y, ε) in D,

u = 0 on ∂D,

where Δ is the Laplace operator, i.e., Δu := uxx + uyy and f is a given smooth
function defined on D × [0, ε0], for some ε0 > 0, such that f(x, y, 0) 	= 0 for all
(x, y) ∈ ∂D. It is well known that problem Pε has a unique classical solution
uε(x, y). Obviously, P0 is an algebraic equation, for which the boundary condition
is no longer necessary. Its solution is

u0(x, y) = f(x, y, 0), (x, y) ∈ D.

Clearly, in a neighborhood of ∂D, uε and u0 are not close enough with respect
to the sup norm, since uε|∂D = 0, whereas u0 does not satisfy this condition.
Therefore, ‖uε − u0‖C(D) does not converge to 0, as ε → 0. According to our
definition, problem Pε is singularly perturbed with respect to ‖ · ‖C(D). Moreover,
this problem is of the boundary layer type. In this example, the boundary layer
is a vicinity of the whole boundary ∂D. The existence of the boundary layer
phenomenon is not as obvious as in the previous examples, since there is no explicit
form of uε. Following, e.g., [48] we will perform a complete analysis of this issue
below. On the other hand, it is worth mentioning that this Pε is regularly perturbed
with respect to ‖ · ‖Lp(D) for all 1 ≤ p < ∞, as explained later.

Example 6. In DT = {(x, t); 0 < x < 1, 0 < t < T} we consider the telegraph
system {

εut + vx + ru = f1(x, t),
vt + ux + gv = f2(x, t),

(S)ε
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with initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), 0 < x < 1, (IC)ε

and boundary conditions of the form{
r0u(0, t) + v(0, t) = 0,

−u(1, t) + f0(v(1, t)) = 0, 0 < t < T,
(BC)ε

where f1, f2 : DT → R, f0 : R → R, u0, v0 : [0, 1] → R are given smooth functions,
and r0, r, g are constants, r0 > 0, r > 0, g ≥ 0. If in the model formulated above
and denoted by Pε we take ε = 0, we obtain the following reduced problem P0:{

u = r−1(f1 − vx),
vt − r−1vxx + gv = f2 − r−1f1x in DT ,

(S)0

v(x, 0) = v0(x), 0 < x < 1, (IC)0{
rv(0, t) − r0vx(0, t) + r0f1(0, t) = 0,

rf0(v(1, t)) + vx(1, t) − f1(1, t) = 0, 0 < t < T.
(BC)0

In this case, the reduced system (S)0 consists of an algebraic equation and a
differential equation of the parabolic type, whereas system (S)ε is of the hyperbolic
type. The initial condition for u is no longer necessary. We will derive P0 later in
a justified manner.

Let us remark that if the solution of Pε, say Uε(x, t) = (uε(x, t), vε(x, t)),
would converge uniformly in DT to the solution of P0, then necessarily

v′0(x) + ru0(x) = f1(x, 0), ∀x ∈ [0, 1].

If this condition is not satisfied then that uniform convergence is not true and,
as we will show later, Uε has a boundary layer behavior in a neighborhood of the
segment {(x, 0); 0 ≤ x ≤ 1}. Therefore, this Pε is a singular perturbation problem
of the boundary layer type with respect to the sup norm ‖ · ‖C(DT )2 . However,
using the form of the boundary layer functions which we are going to determine
later, we will see that the boundary layer is not visible in weaker norms, like for
instance ‖ · ‖C([0,1];Lp(0,T ))2 , 1 ≤ p < ∞, and Pε is regularly perturbed in such
norms.

Example 7. Let Pε be the following simple initial value problem⎧⎪⎨⎪⎩
εdu1

dx − u2 = εf1(x),

ε du2
dx + u1 = εf2(x), 0 < x < 1,

u1(0) = 1, u2(0) = 0,
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where f1, f2 ∈ C[0, 1] are given functions. It is easily seen that this Pε is singularly
perturbed with respect to the sup norm, but not of the boundary layer type. This
conclusion is trivial in the case f1 = 0, f2 = 0, when the solution of Pε is

uε =
(
cos(x/ε),− sin(x/ε)

)
.

Definition 1.0.2. Let uε be the solution of some perturbed problem Pε defined in
a domain D. Consider a function U(x, ε), x ∈ D1, where D1 is a subdomain of D.
The function U(x, ε) is called an asymptotic approximation in D1 of the solution
uε(x) with respect to the sup norm if

sup
x∈D1

‖uε(x) − U(x, ε)‖ → 0 as ε → 0.

Moreover, if
sup

x∈D1

‖uε(x) − U(x, ε)‖ = O(εk),

then we say that U(x, ε) is an asymptotic approximation of uε(x) in D1 with an
accuracy of the order εk. We have similar definitions with respect to other norms.
In the above definition we have assumed that U and uε take values in R

n, and ‖ ·‖
denotes one of the norms of this space.

For a real-valued function E(ε), the notation E(ε) = O(εk) means that
|E(ε)| ≤ Mεk for some positive constant M and for all ε small enough.

In Example 4 above u0 is an asymptotic approximation of uε with respect
to the sup norm in the rectangle Rδ, with an accuracy of the order ε. Function
u0 is not an asymptotic approximation of uε in [0, π] × [0, T ] with respect to the
sup norm, but it has this property with respect to the norm of C

(
[0, π]; Lp(0, T )

)
,

with an accuracy of the order ε1/p, for all 1 ≤ p < ∞. Note also that the function
t sinx + e−t/ε sin x is an asymptotic approximation in [0, π] × [0, T ] of uε with
respect to the sup norm, with an accuracy of the order ε.

In the following we are going to discuss the celebrated Vishik-Lyusternik
method [50] for the construction of asymptotic approximations for the solutions of
singular perturbation problems of the boundary layer type. To explain this method
we consider the problem used in Example 5 above, where ε will be replaced by ε2

for our convenience, i.e.,{
−ε2Δu + u = f(x, y, ε) in D,

u = 0 on ∂D.

We will seek the solution of Pε in the form

uε = u + c, (1.1)

where u and c are two series: u =
∑∞

j=0 εjuj(x, y) is the so-called regular series
and does not in general satisfy the boundary condition; the discrepancy in the
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boundary condition is removed by the so-called boundary layer series c, which will
be introduced in the following. Let the equations of the boundary ∂D have the
following parametric form:

x = ϕ(p), y = ψ(p), 0 ≤ p ≤ p0.

More precisely, when p increases from 0 to p0, the point (ϕ(p), ψ(p)) moves on ∂D
in such a way that D remains to the left. Consider an internal δ-vicinity of ∂D,
δ > 0 small, which turns out to be our boundary layer. Any point (x, y) of the
boundary layer is uniquely determined by a pair (ρ, p) ∈ [0, δ] × [0, p0]. Indeed,
let p ∈ [0, p0] be the value of the parameter for which the normal at (ϕ(p), ψ(p))
to ∂D contains the point (x, y). Then ρ is defined as the distance from (x, y) to
(ϕ(p), ψ(p)). It is obvious that (x, y) and (ρ, p) are connected by the following
equations

x = ϕ(p) − ρψ′(p)/
(
ϕ′(p)2 + ψ′(p)2

)1/2
,

y = ψ(p) + ρϕ′(p)/
(
ϕ′(p)2 + ψ′(p)2

)1/2
.

We have the following expression for the operator Lεu = −ε2Δu + u with respect
to the new coordinates (ρ, p)

Lεu = −ε2
(
uρρ + (p2

x + p2
y)upp + (ρxx + ρyy)uρ + (pxx + pyy)up

)
+ u.

We stretch the variable ρ by the transformation τ = ρ/ε. The new variable τ ,
called fast indexfast variable or rapid variable, helps us to describe the behavior
of the solution uε inside the boundary layer. The construction of the fast variable
depends on the problem Pε under investigation (see, e.g., [18] and [29]). It turns
out that for the present problem τ = ρ/ε is the right fast variable. If we expand
the coefficients of Lε in power series in ε, we get the following expression for Lε

with respect to (τ, p)

Lεu =
(− uττ + u

)
+

∞∑
j=1

εjLju,

where Lj are differential operators containing the partial derivatives uτ , up and
upp. We will seek the solution of problem Pε in the form of the following expansion,
which is called asymptotic expansion,

uε(x, y) = u + c =
∞∑

j=0

εj
(
uj(x, y) + cj(τ, p)

)
. (1.2)

Now, expanding f(x, y, ε) into a power series in ε and substituting (1.2) in Pε, we
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get

∞∑
j=0

εj
(
− ε2Δuj(x, y) + uj(x, y)

)
+

∞∑
j=0

εj
(
− cjττ (τ, p) + cj(τ, p)

)
+

∞∑
j=0

εj
( ∞∑

i=1

εiLicj(τ, p)
)

=
∞∑

j=0

εjfj(x, y),

(1.3)

∞∑
j=0

εj
(
uj(ϕ(p), ψ(p)) + cj(0, p)

)
= 0. (1.4)

We are going to equate coefficients of the like powers of ε in the above equations,
separately for terms depending on (x, y) and (τ, p). This distinction can be ex-
plained as follows: the boundary layer part is sizeable within the boundary layer
and negligible outside this layer, so in the interior of the domain we have to take
into account only regular terms, thus deriving the equations satisfied by uj(x, y);
then we continue with boundary layer terms. For our present example we obtain

uj(x, y) = fj(x, y), j = 0, 1,

uj(x, y) = fj(x, y) + Δuj−2(x, y), j = 2, 3, . . . .

For the boundary layer functions we obtain the following ordinary differential
equations in τ

cjττ (τ, p) − cj(τ, p) = gj(τ, p), τ ≥ 0, (1.5)

where g0(τ, p) = 0, gj(τ, p) =
∑j

i=1Licj−i(τ, p) for all j = 1, 2, . . . , together with
the conditions

cj(0, p) = −uj(ϕ(p), ψ(p)). (1.6)

In addition, having in mind that the boundary layer functions should be negligible
outside the boundary layer, we require that

lim
τ→∞ cj(τ, p) = 0, ∀p ∈ [0, p0]. (1.7)

We can solve successively the above problems and find

c0(τ, p) = −u0(ϕ(p), ψ(p))e−τ ,

while the other cj ’s are products of some polynomials (in τ) and e−τ . Therefore,

|cj(τ, p)| ≤ Kje
−τ/2, j = 0, 1, . . . ,

where Kj are some positive constants. In fact, these corrections cj should act
only inside the boundary layer, i.e., for 0 ≤ τ ≤ δ/ε. Let α(ρ) be an infinitely
differentiable function, which equals 0 for ρ ≥ 2δ/3, equals 1 for ρ ≤ δ/3, and
0 ≤ α(ρ) ≤ 1 for δ/3 < ρ < 2δ/3. So, we can consider the functions α(ετ)cj(τ, p) as
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our new boundary layer functions, which are defined in the whole D and still satisfy
the estimates above. This smooth continuation procedure will be used whenever
we need it, without any special mention.

So, we have constructed an asymptotic expansion for uε. It is easily seen (see
also [48], p. 86) that the partial sum

Un(x, y, ε) =
∑n

j=0
εj
(
uj(x, y) + cj(τ, p)

)
is an asymptotic approximation in D of uε with respect to the sup norm, with an
accuracy of the order of εn+1. Indeed, for a given n, wε = uε − Un(·, ·, ε) satisfies
an equation of the form

−ε2Δwε(x, y) + wε(x, y) = hε(x, y),

with a homogeneous Dirichlet boundary condition, where hε = O(εn+1). Now, the
assertion follows from the fact that Δwε ≤ 0 (≥ 0) at any maximum (respectively,
minimum) point of wε.

On the other hand, since

‖ c0 ‖Lp(D)= O(ε1/p) ∀ 1 ≤ p < ∞,

we infer that u0 is an asymptotic approximation in D of uε with respect to the
norm ‖ · ‖Lp(D), with an accuracy of the order of ε1/p, ∀ 1 ≤ p < ∞. In fact, c0 is
not important if we use this weaker norm.

We may ask ourselves what would happen if the data of a given Pε were not
very regular. For example, let us consider the same Dirichlet Pε problem above, in
a domain D with a smooth boundary ∂D, but in which f = f(x, y, ε) is no longer
a series expansion with respect to ε. To be more specific, we consider the case in
which f admits a finite expansion of the form

f(x, y, ε) =
∑n

j=0
εjfj(x, y) + εn+1gε(x, y),

for some given n ∈ N, where fj , gε(·, ·) are smooth functions defined on D, and
‖gε(·, ·)‖C(D) ≤ M , for some constant M . In this case, we seek the solution of Pε

in the form

uε(x, y) =
∑n

j=0
εj
(
uj(x, y) + cj(τ, p)

)
+ rε(x, y),

where uj and cj are defined as before, and rε is given by

rε(x, y) = uε(x, y) −
∑n

j=0
εj
(
uj(x, y) + cj(τ, p)

)
,

and is called remainder of the order n. Using exactly the same argument as before,
one can prove that

‖rε‖C(D) = O(εn+1).


