




TECHNISCHE UNIVERSITÄT MÜNCHEN

Dr. Theo Schöller-Stiftungslehrstuhl für Technologie-
und Innovationsmanagement

IP Modularity in Software Products
and Software Platform Ecosystems

Josef Waltl

Books on Demand



Vollständiger Abdruck der von der Fakultät für
Wirtschaftswissenschaften der Technischen Universität
München zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
genehmigten Dissertation.

Vorsitzender:
- Univ.-Prof. Dr. Stefan Minner
Prüfer der Dissertation:
1. Univ.-Prof. Dr. Joachim Henkel
2. Univ.-Prof. Dr. Oliver Alexy

Die Dissertation wurde am 24.01.2013 bei der Technischen
Universität München eingereicht und durch die Fakultät für
Wirtschaftswissenschaften am 12.02.2013 angenommen.



Life is like riding a bicycle. To keep your balance you
must keep moving.

Albert Einstein (1879 – 1955)



Acknowledgements

First of all, I would like to thank Prof. Dr. Joachim Henkel
for his outstanding support as a thoughtful supervisor. His
enthusiasm and energy for the research on IP modularity
were always inspiring to me and guided me throughout my
whole dissertation.

This research project would never have been successful
without the support from the researched software
companies. For SugarCRM I would like to thank Elena
Annuzzi, Nick Halsey, John Mertic and Clint Oram. For
Salesforce.com the credits go to Kimia Poursaleh and for
SAP special thanks goes to Dr. Karl-Michael Popp for his
excellent support and all the effort he put into our joint
research. I would also like to acknowledge the interview
partners in a company whose name has to be kept
undisclosed for the excellent support and the willingness to
share their insights, despite the additional effort to control
each statement for non-disclosure of confidential company
information.

Furthermore sincere thanks are due to the team of the
Dr. Theo Schöller Chair of Technology and Innovation
Management for the inspiring time and the pleasant
cooperation.

Special credits go to Christoph Krauß and Kristina
Schreiner for their help in data collection and their valuable
comments on my analysis results.

Finally, this dissertation would not have been possible
without the never-ending support from Marianne, Josef,
Martin and Claudia.

http://salesforce.com/


Table of Contents

1 Introduction
2 The concept of IP modularity

2.1 The basics of design
2.2 Modularity in technical systems
2.3 IP modularity

3 Research methodology
3.1 Selection of a hybrid research approach
3.2 Case study research

3.2.1 Case design
3.2.2 Case interviews
3.2.3 Case analysis

3.3 Quantitative research
3.3.1 Orientation
3.3.2 Study design and execution
3.3.3 Analysis

3.4 Conclusion
4 IP modularity in software products

4.1 Software products – design and business models
4.2 Outgoing IP modularity in software products
4.3 Incoming IP modularity in software products
4.4 The effects of outgoing and incoming IP
modularity in software products
4.5 Conclusion

5 IP modularity in software platform ecosystems
5.1 Software platform ecosystems
5.2 IP modularity in an open source software
platform ecosystem
5.3 IP modularity in a proprietary software platform
ecosystem
5.4 Effects of IP modularity in open and proprietary
software ecosystems
5.5 Conclusion

6 The impact of IP modularity on platform attractiveness



6.1 Platform attractiveness for ecosystem partners
6.2 The impact of IP modularity on platform
attractiveness – analysis results
6.3 Conclusion

7 Conclusion
Appendices
Bibliography



List of Appendices

Appendix A – Final coding scheme (Case 2)
Appendix B – Final coding scheme (Case 4)
Appendix C – Approval process for third-party software
(Case 4)
Appendix D – Final coding scheme (Case 11)
Appendix E – Final coding scheme (Case 9)
Appendix F – 1. Platform provider setting
Appendix G – 2. Complementor setting
Appendix H – 3. Platfrom attractiveness variables
Appendix I – Factor analysis
Appendix J – Correlation analysis
Appendix K – Extended hypotheses tests



List of Figures

Figure 1 – Design structure (based on Baldwin and Clark,
2000)

Figure 2 – Design structure matrix of a mug (based on
Baldwin and Clark, 2000)

Figure 3 – DSM-partitioning example (based on Eppinger et
al., 1994, p. 3)

Figure 4 – Rationales for modular design (based on Henkel,
2011)

Figure 5 – Optimized value appropriation as rationale for
modularization

Figure 6 – IP incompatibility
Figure 7 – Methodological fit (based on Edmondson and

McManus, 2007)
Figure 8 – Hybrid research process
Figure 9 – Qualitative research process (based on Yin, 2009)
Figure 10 – Research framework
Figure 11 – Case study research design (based on Yin, 2009,

p. 46)
Figure 12 – Generic case selection matrix
Figure 13 – Final case selection matrix
Figure 14 – Interview guideline for software product and

platform providers
Figure 15 – Interview guideline for ecosystem partners
Figure 16 – Case pairs for cross-case analysis
Figure 17 – Quantitative research process
Figure 18 – Platform attractiveness model
Figure 19 – Sample description
Figure 20 – Software requirements
Figure 21 – Business model types (Popp, 2011, p. 27)
Figure 22 – IP lessor compatible software licenses



Figure 23 – Schematic structure of the engineering software
(Case 2)

Figure 24 – IP modular engineering software (Case 2)
Figure 25 – Adapted research framework
Figure 26 – Intended effects (Case 2)
Figure 27 – Intended effects checklist matrix (Case 2)
Figure 28 – Comparison of intended and real effects (Case 2)
Figure 29 – Checklist matrix of real effects (Case 2)
Figure 30 – Data management software (Case 4)
Figure 31 – Intended effects (Case 4)
Figure 32 – Intended effects checklist matrix (Case 4)
Figure 33 – Comparison of intended and real effects (Case 4)
Figure 34 – Extended software requirements model
Figure 35 – Real effects of outgoing and incoming IP

modularity (Case 2 and 4)
Figure 36 – Holdup risk from incoming and outgoing IP

modularity
Figure 37 – Platform architecture (based on Baldwin and

Woodard, 2009)
Figure 38 – Platform-mediated network (based on

Eisenmann et al., 2009)
Figure 39 – Schematic architecture overview (Case 11)
Figure 40 – Build process to separate IP (Case 11)
Figure 41 – Intra- and inter-platform effects (Case 11)
Figure 42 – Intended effects checklist matrix (Case 11)
Figure 43 – IP modularity in SAP NetWeaver PI (Case 9)
Figure 44 – Intra- and inter-platform effects (Case 9)
Figure 45 – Intra- and inter-platform effects checklist matrix

(Case 9)
Figure 46 – Platform attractiveness model (identical with

Figure 18)
Figure 47 – Sample description (identical with Figure 19)
Figure 48 – Platform attractiveness calculation



List of Tables

Table 1 – Long list of possible research cases
Table 2 – Interviewee role description
Table 3 – List of case interviews
Table 4 – Secondary data sources
Table 5 – Initial coding scheme
Table 6 – Hierarchy levels of IP modularity
Table 7 – Ecosystem comparison
Table 8 – Cronbach’s alpha tests
Table 9 – Exploratory factor analysis
Table 10 – Descriptive statistics
Table 11 – OLS regression: Platform attractiveness
Table 12 – OLS regression: Return on investment
Table 13 – Hypotheses tests



List of Abbreviations
 
AGPL – Affero GPL
APIs – Application Programming Interfaces
BSD – Berkeley Software Distribution
CDO – Chief Development Officer
CEO – Chief Executive Officer
CIO – Chief Information Officer
CRM – Customer Relationship Management
CTO – Chief Technology Officer
DSM – Design Structure Matrix
FOSS – Free- and Open Source Software
GNU – GNU’s Not Unix
GPL – GNU General Public License
IP – Intellectual Property
IPRs – Intellectual Property Rights
ISV – Independent Software Vendor
JAR – Java Archive
MIT – Massachusetts Institute of Technology
OLS – Ordinary Least Squares
OSS – Open Source Software
SaaP – Software as a Product
SaaS – Software as a Service
SCRM – SugarCRM
SFDC – Salesforce.com
SI – System Integrator
VIF – Variance Inflation Factor
VP – Vice President

http://salesforce.com/


Zusammenfassung

Die Arbeit untersucht die Auswirkungen einer modularen
Softwarearchitektur, die durch die Optimierung von
Wertaneignungsmechanismen entstanden ist (IP
Modularität), auf Softwareprodukte und Softwareplattform-
Ökosysteme. Ein System ist IP-modular, wenn die internen
Modulgrenzen so gezogen werden, dass die jeweiligen
Module ausschließlich Elemente enthalten, die in Bezug auf
geistige Eigentumsrechte identisch behandelt werden
können. Diese Rechte können in Form von Lizenzrechten,
Urheberrecht aber auch informell, zum Beispiel durch
Geheimhaltung von Quellcode, in Erscheinung treten.

Die Ergebnisse dieser Dissertation basieren auf einer
detaillierten qualitativen Fallstudienanalyse von
Softwareprodukten und -plattformen sowie einer
quantitativen Studie in zwei Plattform-Ökosystemen.

Durch das Aufzeigen eines direkten Zusammenhanges
von IP-modularer Produkt- oder Plattformarchitektur mit
dem entsprechenden Geschäftsmodell zur Wertaneignung
erweitern die Ergebnisse der Arbeit die bestehende Literatur
zu IP Modularität. Es wird gezeigt, dass eine IP-modulare
Architektur eine partielle Offenheit erlaubt, die verteile
Wertschöpfung begünstigt. Zusätzlich wurde die frühe
Berücksichtigung von Anforderungen mit Bezug auf
geistiges Eigentum in der Anforderungsanalyse
(Requirements Engineering) von Softwaresystemen als
wesentlicher Treiber zur Verhinderung von zeit- und
kostenaufwändigen Re-Modularisierungen identifiziert.

Die Ergebnisse der quantitativen Studie zeigen, dass die
Ausprägungen IP-modularer Plattformarchitekturen, durch
die Möglichkeit zu größerer Offenheit, bei gleichzeitiger
Sicherstellung der Wertaneignung, die Plattformattraktivität



für Designer plattformspezifischer Zusatzapplikationen
erhöhen können.

Zusammenfassend zeigt die Arbeit die Verbindung von
Management geistigen Eigentums, Softwarearchitektur und
der jeweiligen Geschäftsmodelle von Softwareprodukt oder -
plattform Anbietern auf.



Abstract

This dissertation examines the impact of Intellectual
Property (IP) modular architecture on software products and
software platform ecosystems. A software system is IP
modular when its module boundaries separate parts of a
system that have to be treated differently with respect to IP.
The IP status is then homogeneous within each module, but
may differ between modules. IP rights can be formal IP such
as licensing contracts or copyright, but also informal IP like
keeping the source code secret.

The presented results in this dissertation are based on a
detailed qualitative case study analysis of two software
products and two software platforms and on a quantitative
study of two software ecosystems.

The results extend the existing literature on IP modularity
by demonstrating a direct association between IP modular
product or platform architecture and the related business
models. The analysis also shows that the early consideration
of IP-related requirements in the requirements engineering
process of software systems can prevent costly and time-
consuming re-modularizations.

The quantitative analysis in two software ecosystems
shows that IP modular platform architecture, which can
allow increased openness while still maintaining value
appropriation, can increase a platform’s attractiveness for
complementors.

To summarize, this dissertation demonstrates the
connections between IP management, software architecture
and the respective business models of software product or
platform providers.



1 Introduction

This dissertation explores the implications of the new
concept of Intellectual Property (IP) modularity (Henkel and
Baldwin, 2010, 2011) for the software product and software
platform ecosystems domain. A system is IP modular when
the module boundaries separate the parts that need to be
treated differently with respect to IP. The IP status is
accordingly homogeneous within each module, but it can
differ between modules. IP rights can be formal IP, such as
licensing contracts or copyright, but they can also be
informal IP, such as keeping source code secret. This
research endeavor focuses exclusively on the software
domain because IP is the core asset of each software
business, and the modularity of software systems can be
adapted to a variety of requirements.

More broadly, this dissertation links research on IP
modularity with research concerning software platforms
(Gawer and Cusumano, 2002; West, 2003; Boudreau, 2010),
multi-sided markets (Eisenmann et al., 2006), software
ecosystems (Jansen and Cusumano, 2012), software
business models (Osterwalder, 2004; Weill et al., 2005) and
software requirements engineering (Wiegers, 2003; Chung
and do Prado Leite, 2009).

To motivate the research on IP modularity Henkel and
Baldwin (2010) consider, among others, the case of the
video game Counter-Strike (Jeppesen and Molin, 2003).
When the software publisher Valve Software released the
video game Half-Life in 1998, it divided its codebase into
two different modules. Valve Software put the game engine
under a proprietary license and kept its source code secret,
whereas it made the remaining application source code
available to users under a broad license that allowed users
to modify and share the code. Within approximately one and



a half years of the original release of Half-Life, users
generated the game Counter-Strike, which surpassed the
success of the original game and created significant
additional revenue for Valve Software, given that Counter-
Strike players had to license and reuse the Half-Life game
engine. This example shows the potential benefits that IP
modular design could have for companies in the software
domain, where module boundaries are flexible and
technological entry barriers for value co-creators are low.

Already initial interviews in the early stages of this
research project with industry practitioners have revealed
that IP modular design is of special relevance in software
platforms, which by nature face the challenge of optimizing
value creation in the whole ecosystem of complementors
and value appropriation for the platform providers. The
exchange with managers from software platform companies
confirmed the link between their IP modular platform
designs and their business strategies; the managers also
confirmed the need for a better understanding of these IP
mechanisms on a more conceptual level.

In the software domain, there are many examples of IP
modularity, but little is known about the exact reasoning
that led to those IP modular designs. To my knowledge this
dissertation presents the first empirical study to shed light
on the effects of IP modularity in the software domain. The
main research objective of this dissertation is formulated as
follows:

Research objective: What are the effects of IP modularity
on software products and software platform ecosystems?

This dissertation aims to answer the main research
objective through three different perspectives. First, there is
the perspective of the providers of software products.
Second, there is the perspective of the providers of software
platforms. Third, there are the complementors who generate



additional applications for software platforms. Based on
these perspectives, the structure of this dissertation is as
follows:

Section 2 introduces IP modularity as the main
theoretical concept of this dissertation. This section also
presents the basics of system design and introduces the
concept of modularity and the main drivers of modularizing
technical systems. The section concludes by presenting IP
modularity in software systems with concrete examples.

Section 3 presents the research methodology applied in
this dissertation. First, in section 3.1 a hybrid research
approach is identified as the most suitable method, given
the current progress in the research field. In section 3.2 a
detailed description of the case study methodology builds a
solid methodological foundation for the in-depth qualitative
research conducted in this dissertation. This section not only
describes the applied research methodology, but it also
guides the reader through the case selection process. A
thorough understanding of this section is therefore vital for
the interpretation of the case results. Finally, section 3.3
describes the quantitative analysis.

Section 4 addresses IP modularity from the perspective
of a software product provider. First, the section presents
the basics of software product design and software business
models. The analysis of an engineering software case for
outgoing IP modularity and of a data management software
case for incoming IP modularity build the empirical
foundation to answer the research questions regarding IP
modularity in software products:

Why are software products modularized with regard to
IP considerations?
How do the intended effects of IP modular product
design relate to the real effects?



Finally, in this section, a cross-case comparison of the
identified effects uncovers the similarities of both cases and
leads to the formulation of additional propositions about the
impact of IP modular software product design.

Section 5 uncovers the impact of IP modular design on
software platform design from a software platform
provider’s perspective. Based on a review of the core
concepts of software platforms and related ecosystems, two
case studies on popular software platforms form the
empirical basis to answer the research questions of this
section:

Why are software platforms modularized with regard to
IP considerations?
How does IP modular platform design influence the
cooperation between platform providers and
complementors?

The findings from the first case on SugarCRM confirm
prior findings by Henkel and Baldwin (2010) and lead to the
formulation of the research hypotheses for later quantitative
tests. The second case on SAP NetWeaver PI suggests how
the IP modular design can increase the attractiveness of a
proprietary software platform. Finally, the cross-case
analysis uncovers the common effects of IP modular
platform design on platform development, platform
attractiveness for complementors and platform
attractiveness for end-users.

Section 6 follows up on the findings of the previous
section with a quantitative research approach. It tests the
findings from the qualitative case analysis on the levers of
platform attractiveness. In this section, the perspective
switches from the platform providers to the complementors.
The analysis aims to answer the following research
question:



How does IP modularity influence the attractiveness of a
software platform from a complementer’s perspective?

The analysis is based on a platform attractiveness
model1 that describes the variables that influence the
platform attractiveness in the platform provider setting and
in the complementor setting. With reference to the
qualitative findings from Section 5 and propositions on
outgoing IP modularity from Henkel and Baldwin (2010) two
hypotheses are formulated and tested with a regression
analysis.

Finally, Section 7 draws conclusions for two target
audiences. The first audience is the scientific community,
for which this dissertation embeds the results in the broader
discussion on related streams of research and makes
suggestions for further research. The second audience are
practitioners, such as general managers in software
companies, ecosystem managers or software architects, for
whom the managerial implications of IP modular design are
discussed.

All results presented in this dissertation are based on my
own work unless stated otherwise. All results from other
researchers are carefully referenced. However, it is my
deepest belief that creative ideas do not only sparkle in the
mind of a single researcher. To reflect this belief and to
recognize the efforts of my co-authors in earlier publications
on the topic and other members of the research community
to critically review my results, I purposely use “we” to
present the results of this dissertation.

1 The model is based on the Master’s thesis of Schreiner (2012) that I initiated
and supervised. For the analysis in this dissertation the original model was
adapted and simplified.



2 The concept of IP modularity

In this chapter we introduce the concept of IP modularity
as the central topic of this dissertation. We start with a basic
description of design and introduce modularity as a design
concept. Subsequently, we show the impact of modular
design on value appropriation with a special focus on the
software domain. Finally, we present IP modularity as a
means to combine the benefits of modularity with the goal
of value appropriation.

2.1 The basics of design

To understand modular design, it is important to first
understand the basics of design. According to Baldwin and
Clark, design is a complete description of an artifact
(Baldwin and Clark, 2000, p. 21). The artifact can be a
physical object or, as in the context of this dissertation, a
virtual object such as a software source code. The design
specifies all parameters of an artifact. All interdependencies
between the design parameters define the design structure
of an artifact (Baldwin and Clark, 2000, p. 21).

This design structure can be visualized with a tool named
design structure matrix (DSM), invented by Steward
(Steward, 1981) and refined by Eppinger (Eppinger, 1991).
The use of design structure matrices can be illustrated with
the simple example of the design of a mug (Baldwin and
Clark, 2000, p. 21). The design parameters are named from
P1 to P10, and the interdependencies are displayed with X
marks in the DSM. These marks refer to an is input to
relationship and mean that the specification of one column
design parameter affects the design of the corresponding
row design parameter (Eppinger, 1991, p. 285).



Figure 1 a) shows such a hierarchical relationship in the
mug example. The manufacturing process influences the
possible height but not vice versa. For the design process of
the mug, this influence implies that manufacturing process
can be specified first, regardless of the height. Once the
manufacturing process is defined, the height cannot be
chosen without restrictions. The design process is strictly
sequential.



Figure 1 – Design structure (based on Baldwin and Clark, 2000)



If the design parameters mutually depend on each other,
the relationship is interdependent as shown in Figure 1 b).
Here, the material and the tolerance depend on each other.
A change in the specification of one parameter requires the
designer to adapt the specification of the other parameter.
Design parameters can also be fully independent from one
another, as in the case of the height and tolerance in the
mug example. The full design structure matrix of the mug
example is shown in Figure 2 which presents an input-output
table of design parameter choices (Baldwin and Clark, 2000,
p. 41).


