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Preface

The entry of HIV into cellular targets is mediated by the envelope protein
(Env) which studs the viral surface. A major milestone for inhibition of HIV
entry was achieved in 2003 with the approval of the HIV fusion inhibitor enfu-
virtide. A number of other entry inhibitors are currently being developed with
diverse mechanisms of action, including (i) interfering with relatively non-spe-
cific Env-cell surface attachment factor interactions, (ii) inhibiting specific
receptor and coreceptor interactions, and (iii) blocking Env transition through
conformational intermediate states. Major challenges facing entry inhibitor
development include the extensive sequence diversity and remarkable plastic-
ity of Env. Env diversity can give rise to marked variability in baseline sus-
ceptibility of HIV strains to entry inhibitors, as opposed to typically minor
variation in baseline susceptibilities to HIV reverse transcriptase and protease
inhibitors.

Entry Inhibitors in HIV Therapy presents the current status of this relative-
ly new and highly dynamic class of inhibitors and provides a unique overview
of obstacles and considerations for HIV entry inhibition compared to other
antiretroviral targets. It will be of interest to research scientists as well as clini-
cians.

The introductory chapters of this book provide an overview of HIV entry,
entry inhibition and envelope diversity. The first chapter, by Tilton and Doms,
reviews current knowledge of how Env mediates entry and presents an
overview of entry inhibitors. Vergne and Peeters then discuss the challenge of
genetic diversity in the HIV envelope.

Subsequent chapters of this volume feature current information on individ-
ual classes of entry inhibitors that target each step of the virus entry pathway,
from attachment to membrane fusion, with an emphasis on the complex deter-
minants of entry inhibitor susceptibility, resistance mechanisms, and how
these issues create new challenges for antiretroviral therapy. Pöhlmann and
Tremblay review inhibitors that block HIV cell surface attachment and Lin,
Kadow and Alexander discuss inhibitors that target Env interactions with CD4.
Strizki and Mosier review inhibitors of Env-coreceptor interactions and Wang
and Weiss describe inhibitors that target HIV fusion. Studies of entry inhibitors
as microbicides are presented by Hart and Evans-Strickfaden and the use of
entry inhibitors against non-subtype B viruses is discussed by Morris, Binley
and colleagues. Coakley then discusses the clinical utility of coreceptor typing
and entry inhibitor susceptibility testing.

The final chapters of this book highlight the clinical use of entry inhibitors
and survey antiretroviral development. Heath and Kilby review the current sta-



tus of entry inhibitors in clinical studies. The development and approval of
enfuvirtide is detailed by Greenberg, then past and present drug development
targets are discussed by Gulick.

In summary, this book presents a comprehensive and current overview of
entry inhibitors from an expert panel of authors with diverse backgrounds and
perspectives, incorporating many unrelenting successes against a backdrop of
formidable challenges.

Jacqueline D. Reeves, San Francisco
Cynthia A. Derdeyn, Atlanta February 2007



Introduction to entry inhibitors in the management
of HIV infection

John C. Tilton and Robert W. Doms

Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton
Walk, Philadelphia, PA 19104, USA

Introduction

The introduction of highly active antiretroviral therapy (HAART) has dramat-
ically improved the survival of patients infected with human immunodeficien-
cy virus (HIV). However, HAART is complicated by the continuing emer-
gence of drug-resistant strains of HIV and toxicities associated with the anti-
retroviral agents [1, 2]. Furthermore, since the combination HAART regimens
are incapable of eradicating HIV infection, lifelong therapy is required to
avoid disease progression [3, 4]. Together, these factors necessitate the contin-
ual development of new antiretroviral agents that can be utilized against resist-
ant viruses or that in combination with other agents can provide superior viral
suppression with less toxicity.

While all stages of the HIV life cycle are potential targets for therapeutic
intervention, HAART regimens have been predominantly focused on two viral
enzymes, reverse transcriptase (RT) and protease. New antiretroviral agents
under development include integrase inhibitors as well as compounds that tar-
get components of the viral entry pathway. These latter compounds are collec-
tively known as entry inhibitors, and are the subject of this volume. Entry
inhibitors are varied in that they can target three different steps in the viral
entry pathway: CD4 binding (Chapter by Lin et al.), coreceptor binding
(Chapter by Stritzki/Mosier), or membrane fusion (Chapters by Wang/Weiss
and Greenberg). Regardless of their precise mechanism, all entry inhibitors
target the viral envelope (Env) protein directly or, in the case of coreceptor
inhibitors, indirectly. Thus, a major challenge to the clinical use of entry
inhibitors is the impressive sequence diversity of the Env protein, which con-
tributes to the significant variation in the baseline sensitivity of HIV isolates to
these compounds (Chapter Vergne/Peeters). Patient-specific variation in host
factors involved in the HIV entry process may also modulate the susceptibili-
ty of HIV to entry inhibitors and the development of resistance mutations.
Resistance pathways to entry inhibitors are likely to be complex, and may alter
viral tropism (and hence pathogenesis and disease course) by altering the man-
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ner in which Env interacts with host cell receptors. Together, these factors
make entry inhibitors a particularly interesting class of antiretroviral agent that
may shed significant light on HIV pathogenesis.

The viral Env protein

The Env protein of HIV-1 is the molecular determinant for viral attachment
and membrane fusion. Env is synthesized as a single polypeptide precursor
(gp160) that forms noncovalently associated homotrimers, and which is
cleaved during transport to the cell surface into two subunits, gp120 and gp41.
The gp120 subunit mediates receptor binding, while gp41 mediates the mem-
brane fusion reaction. HIV-1 gp120 consists of five conserved (C1–C5) and
five variable (V1–V5) domains [5], with the conserved domains contributing
to the core of gp120, while the variable domains (and numerous N-linked gly-
cosylation sites) are located near the surface of the molecule. The V1–V4
regions form exposed ‘loops’ anchored at their bases by disulfide bonds [6]
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Figure 1. The HIV envelope proteins gp120 and gp41. (A) Schematic diagram of the HIV gp120 pro-
tein showing the five conserved (C1–C5) and five variable (V1–V5) domains. Positions of conserved
glycosylation sites are indicated by branched chains on the diagram. The conserved “core” of gp120
with deletions of the V1/V2 and V3 loops, and truncations at the N' and C' termini, is depicted under-
neath the main gp120 molecule, and is shaded to match the domains indicated in the space-filling
model of gp120. (B) Space-filling model of gp120 showing the major domains of the protein, includ-
ing the inner domain (dark gray), outer domain (light gray), bridging sheets (white) and V1/V2 and
V3 stems (black). (C) Schematic diagram of the HIV gp41 protein showing the fusion peptide (FP),
heptad-repeat domains (HR1 and HR2), and the transmembrane anchor (TM). (D) A model of the
gp41 protein in the post-fusion conformation, where HR1 and HR2 have interacted to form the six-
helix bundle structure. Note the proximity of the fusion peptide (which has inserted into the host mem-
brane) and the TM region (which is inserted into the viral membrane). The fusion inhibitor enfuvir-
tide acts by interfering with association of the HR1 and HR2 domains, blocking the formation of the
six-helix bundle.



(Fig. 1A). The gp120 molecule has proven difficult to crystallize in its entire-
ty, but several structures have been solved in recent years, including a degly-
cosylated HIV-1 gp120 bound to CD4 and lacking the V1–3 loops as well as
containing truncations at the N and C termini [7], a similar molecule but con-
taining the V3 loop [8], and a glycosylated form of SIV gp120 also lacking
V1–3 and small portions of the N and C termini [9]. From these structures, it
is evident that in its native state gp120 contains two distinct regions: an inner
domain that is involved in interactions with gp41 and the formation of trimer-
ic envelope spikes, and an outer domain that forms a large part of the exposed
surface of the spikes and is heavily glycosylated. Binding of CD4 to gp120
induces significant conformational changes that result in the formation of a
third domain termed the bridging sheet (Fig. 1B). This domain consists of two
pairs of antiparallel β-sheets that link the inner and outer domains, and plays
a major role in interacting with the viral coreceptors [10].

The gp41 protein consists of three distinct domains: an unusually large
cytoplasmic domain on the inside of the viral membrane, a transmembrane
(TM) anchor, and an ectodomain that extends from the surface of the virion.
The ectodomain is the principal determinant of membrane fusion and contains
a hydrophobic, N-terminal fusion peptide that is believed to insert into the cel-
lular membrane and two heptad repeat (HR) sequences, HR1 and HR2, which
are critical to the fusion process [11, 12] (Fig. 1C). The only approved mem-
ber of the entry inhibitor class of antiretrovirals, enfuvirtide (Fuzeon, T20) acts
by targeting the interaction of the two conserved HR domains [13] (Fig. 1D).

A major challenge in the design of entry inhibitors that target the viral Env
protein is that the structure of the native, trimeric Env is not known. Recent
electron tomography studies reveal the overall dimensions of Env trimers [14,
15], but more precise information will be needed to assist in structure-based
drug design efforts.

The HIV-1 entry process

Entry of HIV-1 into cells involves three distinct stages: binding of gp120 to
CD4, binding of gp120 to coreceptor, and gp41-mediated fusion of the viral
and host membranes. The primary receptor for HIV-1 is CD4, a member of the
immunoglobulin superfamily that is expressed on monocytes, macrophages,
and subsets of dendritic cells. CD4 makes contact with the gp120 molecule at
a depression near the intersection of the inner domain, outer domain, and
bridging sheet [7] (Fig. 2A, B). CD4 binding actually appears to induce the
formation of the bridging sheet domain itself, as the two pairs of β-sheets are
spatially separated in a crystal structure of the unliganded core of SIV gp120
but come together to form a four-stranded sheet in the CD4-liganded confor-
mation [7, 9] (Fig. 2C). Additional changes in gp120 occur with CD4 binding,
including movement of the V1/V2 and V3 loop structures. As a result, CD4
binding not only induces the formation of the bridging sheet, it likely enhances
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Figure 2. Space-filling models of gp120 interactions with CD4. (A) Models depicting the most distal
immunoglobulin domain of the CD4 receptor (black) binding to CD4 gp120 (gray). (B) The CD4-
binding site on the surface of gp120 (white highlight) overlaps the inner domain, outer domain, and
the bridging sheet domain (white) of gp120. Two water-filled pockets, a large cavity and the Phe43
cavity, are conserved features of the CD4-gp120 interface and are thought to be important in the con-
formational changes in gp120 that accompany CD4 and coreceptor binding. (C) Interaction between
gp120 and CD4 results in major conformational changes in gp120. The structure of gp120 in an unli-
ganded form (left) shows the positions of the inner domain (dark gray), outer domain (light gray) and
the β-sheets that comprise the bridging sheet (white). Note that in the unliganded state (left), the bridg-
ing sheet β-sheets are spatially separated, but come together to form a four-stranded domain in the
CD4-bound conformation (right).



exposure of this region and orients it and the V3 loop towards the target cell
membrane where they can engage the viral coreceptor [16, 17]. Unlike other
regions of the gp120 molecule, the residues contacting CD4 are highly con-
served and are devoid of carbohydrate [7]. These properties make the CD4-
binding face of gp120 a logical target for small molecule inhibitors of gp120-
CD4 binding.

In humans, the major coreceptors for HIV-1 are the chemokine receptors
CCR5 and CXCR4, both of which are members of the seven-TM G protein-
coupled receptor family [18–25]. These receptors are integral membrane pro-
teins with a small extracellular pocket formed by three loops between TM seg-
ments. The N-terminal segment of the receptor also extends into the extracel-
lular space. Both regions are involved in binding to gp120. The two main
regions of gp120 that are involved in binding to coreceptor are the coreceptor-
binding site formed by the bridging sheet and adjoining regions, and the V3
loop [26–29]. Several of the amino acids in the coreceptor-binding site are
among the most highly conserved residues between HIV-1, HIV-2, and SIV
[10, 30]. In contrast, the V3 loop is defined as one of the variable domains of
gp120, but the length of the V3 loop is strictly conserved, with most HIV-1 iso-
lates containing between 34 and 36 residues. V3 has a GPGR or GPGQ motif
that forms a β-turn in the loop, a region that comprises the center of the ‘tip’
or ‘crown’ of V3. Binding of gp120 to the pocket of CCR5 appears to be
dependent on the residues present at the ‘crown’ of the V3 loop [29]. Contact
between residues in the tip of CCR5 and extracellular loop 2 have been shown
to be particularly important for HIV entry [31–34]. These data are consistent
with a recent crystal structure of gp120 in which the V3 loop is found to extend
nearly 30 Å from its base towards the cellular membrane, where it could pre-
sumably make contact with the chemokine receptor pocket [8].

On the coreceptor molecules, the N terminus of CCR5 is rich in sulfated
tyrosines and is highly acidic [35]. Mutagenic studies have indicated that these
sulfotyrosines in the N-terminal extracellular region of CCR5 interact with
gp120 by binding to conserved residues at the base of the V3 loop and may
also make contact with the coreceptor binding site [28]. Indeed, sulfated pep-
tides corresponding to this region inhibit infection by CCR5-tropic viruses [36,
37]. Binding of CXCR4 to gp120 appears to occur in a similar fashion [26,
38–41].

Binding of gp120 to coreceptor is believed to trigger further conformation-
al changes in the envelope trimer that enable gp41 to mediate the fusion of
viral and cellular membranes [42]. The structural rearrangements triggered by
binding to CD4 and coreceptor are believed to allow the glycine-rich,
hydrophobic fusion peptide at the N-terminal region of gp41 to insert into the
target cell membrane. Following insertion of the fusion peptides, the heptad
repeat regions of gp41, HR1 and HR2, undergo an energetically favorable
structural reorganization that results in the formation of a thermostable, six-
helix bundle structure that is essential for membrane fusion (Fig. 1D). In the
six-helix bundle, three HR2 regions wrap in an antiparallel direction around

Introduction to entry inhibitors in the management of HIV infection 5



the central coiled-coil of HR1 domains, bringing the N-terminal fusion pep-
tides of the gp41 trimer, which have inserted into the cellular membrane, into
close proximity to the TM regions, which traverse the viral membrane [43, 44].
This juxtaposition of the viral and cellular membranes results in the formation
of a fusion pore. A schematic model of the multi-step fusion process is pre-
sented in Figure 3.

Entry inhibitors

Blocking the interaction between CD4 and gp120 is a logical strategy for pre-
venting HIV infection, although targeting CD4 itself is complicated by side
effects due to disruption of CD4 function in immune processes. In contrast,
agents that interact with the CD4 binding site on gp120 hold greater promise.
One such antiretroviral agent is the small-molecule inhibitor BMS-806, that
appears to bind in a pocket in gp120 and either prevents CD4 binding, or pre-
vents CD4-induced conformational changes [45, 46]. However, a major chal-
lenge with this class of compounds is the highly variable nature of gp120. It is
not uncommon to identify virus strains that are resistant to BMS-806, and
those that are sensitive can easily acquire resistance via mutations [47]. More
potent, broadly cross-reactive agents are needed if this is to prove to be a
viable antiviral strategy. To do this, a structure of unliganded gp120, preferably

6 J.C. Tilton and R.W. Doms

Figure 3. Model of the multi-step entry process that enables HIV to gain access to target cells. (A) The
CD4 and coreceptor molecules are embedded in the host membrane (bottom), while the gp120 and
gp41 proteins are associated with the viral membrane (curved, top). The V3 loop and bridging sheet
domain of gp120 are identified. The gp41 fusion peptide (FP), heptad-repeat (HR1 and HR2), and TM
regions are also labeled. (B) The attachment of gp120 to CD4 is associated with conformational
changes in gp120 that result in the formation of the bridging sheet domain (white) and the extension
of the V3 loop which prior to CD4 binding partially occludes the coreceptor binding site. (C)
Coreceptor binding relies on interactions between the bridging sheet and CD4-induced (CD4i) epi-
topes and the extracellular N' terminal peptide on the coreceptor as well as on interactions between the
V3 loop of gp120 and the extracellular loops on the coreceptor. (D) Interactions between gp120, CD4,
and coreceptor are believed to result in a conformational change in gp120 that results in dissociation
of the envelope trimeric spike, releasing the fusion peptide of gp41, which then inserts into the host
membrane. (E) Interaction of the HR1 and HR2 domains of gp41 result in the formation of a six-helix
bundle that brings host and viral membranes into close proximity and creates a fusion pore, allowing
entry of the HIV capsid into the target cell.



with the bound drug, may be needed to assist in drug design. A compound with
strategic flexibility at specific bonds may be required to enable the inhibitor to
adapt to a somewhat variable drug-binding pocket. Until more potent and
broadly cross-reactive inhibitors of gp120-CD4 binding are produced, clinical
development of this inhibitor class is unlikely to proceed.

Targeting the interaction between virus and the coreceptor molecules is per-
haps a more viable strategy for preventing HIV-1 infection of host cells. The
CCR5 coreceptor is particularly important for HIV transmission and patho-
genesis: the vast majority of virus strains that establish infections in new hosts
are those that use CCR5 (R5 strains) [48–53]; the genetic absence of CCR5
results in a high level of protection from HIV infection without significant side
effects due to loss of CCR5 function [54–56]; heterozygosity for the inacti-
vating ∆32-ccr5 polymorphism confers a survival advantage upon HIV infec-
tion [55–59], indicating that CCR5 levels are rate-limiting for HIV infection
in vivo; and seven-TM domain receptors are good pharmacological targets. In
fact, several CCR5 inhibitors under clinical development and have been shown
to reduce viral loads in infected humans [60–62]. Nonetheless, the develop-
ment of CCR5 inhibitors is not without challenges. Slight variation in the con-
formation of the helices and extracellular loops of chemokine receptors may
result in significant differences in sensitivity to coreceptor inhibitors in vivo.
Viral resistance to this class of entry inhibitors may occur from either a core-
ceptor ‘switch’, either from CCR5 to CXCR4 or vice versa, or from altered uti-
lization of the same coreceptor [63–65]. Evidence for both resistance path-
ways have been found in patients treated with these compounds.

Finally, entry inhibitors targeting the gp41-mediated fusion stage of the
entry process have been developed. One of these agents, enfuvirtide, is the only
currently approved member of the entry inhibitor class of antiretroviral agents,
and is a peptide with an amino acid sequence identical to the HR2 region of
gp41. This agent has been demonstrated to potently inhibit HIV infection in
vitro and in vivo, but viral resistance to these compounds has also been identi-
fied [66, 67]. Mutations in the HR1 region of gp41 result in decreased sensi-
tivity to enfuvirtide but also result in slower fusion kinetics [68]. In vivo, com-
pensatory mutations occur in the HR2 region that improve the kinetics of viral
fusion, while maintaining resistance to enfuvirtide [69, 70].

Challenges in the development and use of entry inhibitors

The emerging class of entry inhibitors holds considerable potential for the
treatment of patients with HIV infection, particularly those harboring viruses
that have resistance to RT and protease inhibitors. However, while progress has
been made in understanding the HIV-1 entry process, a number of critical gaps
remain. As noted previously, structures of gp120 in an unliganded state and
bound to CD4 have been solved, as has the structure of the core of gp41 in the
post-fusion state. However, determination of the structures of the gp120-core-
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ceptor interaction, the conformation of gp41 prior to fusion, and the structure
of the native trimer remain elusive. Additionally, structures of CD4 inhibitors
bound to gp120 and of coreceptor inhibitors bound to CCR5 or CXCR4 are
also unavailable. A better understanding of how entry inhibitors bind to Env or
coreceptors should make it possible to develop more potent and broadly cross-
reactive inhibitors, as well as to design drugs with ‘strategic flexibility’ that
might enable them to bind to a somewhat variable target, such as HIV gp120.

Other challenges in the use of the entry inhibitors are viral and host factors
that may alter drug effectiveness in vivo. The diversity of the viral envelope
proteins suggests that not all viral isolates interact with CD4 and coreceptor in
exactly the same way. As a result, there are likely to be some viral isolates that
are more sensitive to entry inhibitors and others that are more resistant. Host
diversity may also have a role. As indicated by the slower rate of disease pro-
gression in patients with the heterozygous ∆32-ccr5 mutation [55, 57–59], the
amount of CCR5 expressed on the cell surface is a critical factor in viral patho-
genesis. Differences between patients in CCR5 structure or expression levels
may also modulate their susceptibility to entry inhibitors [71]. Together, these
viral and host factors have a potent effect: viral isolates from patients have dif-
fered in susceptibility to enfuvirtide by several orders or magnitude, a much
larger range than has been seen with other classes of antiretrovirals [72, 73].
Whether this diversity will affect the clinical outcomes of these patients
remains unclear, but must be monitored as use of these agents becomes more
established.

Resistance pathways

There are a number of fundamental clinical questions regarding the use of
entry inhibitors in the treatment of patients in vivo. One of the principal con-
cerns with all antiretroviral agents is the development of viral resistance, and
resistance mechanisms to entry inhibitors may not only be complex and vari-
able, but might have the potential to alter viral tropism and pathogenesis by
altering the way in which Env binds coreceptors.

In contrast to CD4-binding inhibitors and fusion inhibitors targeting gp41,
the coreceptor inhibitors will theoretically be less susceptible to viral resist-
ance mechanisms since they target host proteins rather than the viral envelope.
However, the coreceptor inhibitors present some unique challenges also based
on the relationship between coreceptor usage, cell tropism, and viral patho-
genicity. Coreceptor usage is a principal factor in determining the cellular tar-
gets of HIV, with R5-tropic viruses infecting primarily cells of the monocyte
and macrophage lineage and memory CD4+ T cells, while X4-tropic viruses
predominantly infect naïve CD4+ T cells [74, 75]. X4-tropic viruses are also
more infectious and more pathogenic for developing thymocytes than are R5
isolates [76–81]. Viral isolates from patients in early stages of disease are
almost universally R5-tropic, regardless of the route of transmission [48–53,
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82–85]. Since it appears that a mix of R5 and X4 viruses are transmitted in cer-
tain cases [86, 87], and the number of mutations needed to switch coreceptor
usage are minimal [88–90], it seems evident that a selection pressure is acting
to maintain R5 dominance in early disease. A coreceptor switch from R5- to
X4-tropic viruses has been observed in patients during late-stage HIV disease
and has been associated with rapid depletion of CD4+ T cells and progression
to AIDS [49, 50, 91–95]. However, it remains to be determined whether the
emergence of X4-tropic strains is a cause or a consequence of deteriorating
immune function.

Viral resistance to coreceptor inhibitors in patients has been seen with two
distinct mechanisms. In several patients treated with the R5 inhibitor miravi-
roc, viral resistance to coreceptor inhibitors has been the result of a ‘shift’ in
viral coreceptor usage from CCR5 to CXCR4 [63]. Notably, the X4-tropic
strains that emerged were found to be pre-existing in the patients’ viral reser-
voirs. A second mechanism has been observed in patients treated with other R5
inhibitors, including AD101 and SchD, in which virus continued to utilize the
same chemokine receptor but in a drug-insensitive manner [64, 65]. Both of
these resistance mechanisms may have profound effects of HIV cell tropism
and pathogenicity. Whether a treatment-induced shift from R5- to X4-tropism
will accelerate disease progression in patients with preserved immune function
is unclear, and will need to be closely monitored during the clinical trials of
these agents. The alternative pathway of resistance to coreceptor inhibitors –
altered utilization of the same chemokine receptor – may also influence the
cellular tropism of HIV. Studies of chemokine receptor mutations that influ-
ence sensitivity to AD101 and SchC have suggested that chemokine receptors
can exist in several possible conformations on the cell surface [96]. This rais-
es the possibility that altered chemokine receptor usage may influence the sub-
sets of R5- and X4-expressing cells that HIV can infect, potentially changing
the pathogenicity of the virus. Future studies of patients developing resistance
to coreceptor inhibitors will be important to dissect the mechanisms of viral
resistance and their effects on viral pathogenicity and clinical outcome.

Clinical use of HIV entry inhibitors

Although the fusion inhibitor enfuvirtide is the only entry inhibitor currently
approved for the treatment of patients, CD4 and coreceptor inhibitors are in
various phases of testing (Chapter 10). The varied mechanisms of actions of
these agents, acting at different stages of the multi-step entry process, com-
bined with the complications of targeting a highly diverse viral protein with
complex resistance pathways, indicates that the effective use of entry
inhibitors will require a high degree of clinical acumen. Phenotypic or geno-
typic tests that predict sensitivity to entry inhibitors – as are available for RT
and protease inhibitors – will likely be possible with a better understanding of
the mechanisms of viral resistance, and would be useful in selecting agents
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when initiating therapy or if a change in therapy is required. Similarly, studies
will need to be done to address whether combination therapy with several
entry inhibitors targeting multiple stages of the entry process may have syner-
gistic effects that may improve viral suppression and reduce side effects. The
use of entry inhibitors along with other classes of antiretroviral agents will also
have to be investigated. Collectively, the entry inhibitors are a complex but
exciting new class of antiretroviral agents that provides significant opportuni-
ties and challenges for the treatment of HIV infection and the understanding
of HIV pathogenesis.
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