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Preface

The 41 articles collected in this volume are selected from 170 submissions to the
conference Wavelet Analysis and Applications 2005 (WAA2005) held during the
29th November to the 2nd December, 2005, at University of Macau. The articles
selected are the outgrowth and further development of the talks presented at the
conference by international participants from 22 different countries and areas, in-
cluding Australia, Belgium, Brazil, China, Ethiopia, France, Germany, India, Iran,
Hong Kong, Japan, Korea, Macao, Malaysia, Mexico, Portugal, Russia, Taiwan,
Thailand, Tunisia, UK, United States, and in both the applied and pure mathe-
matics fields. Most of them are up-to-date new research. We include a number of
comprehensive surveys, also containing new results, in several particular areas of
research. All the papers are strictly refereed. This volume reflects some of the latest
development in the area of wavelet analysis and its applications. It contains two
major components: Part I - Wavelet Theory, and Part II - Wavelet Applications.
We note that for the reader’s convenience the book contains a colored-printed
RAM disc although the book itself is in black and white.

There are four chapters in Part I on wavelet theory. In Chapter one, we
include seven articles on approximation theory and Fourier analysis. In a paper
by S. K. Bloshanskaya and I. L. Bloshanskii some local smoothness conditions are
obtained in order to guarantee convergence almost everywhere on some sets of
positive measure of the double Walsh-Fourier series summed over rectangles. We
also include a paper by the latter in which the problem on convergence of Fourier
series of composed function f o m, where m is a linear transformation, is studied
in terms of smoothness of the function f and properties of the transformation m.
N. A. Sheikh in his article generalizes the Sidon inequality for the trigonometric
system to wavelets and obtains convergence of wavelet series in the L' norm. The
article of G-B. Ren and H. R. Malonek formulates and proves an extension of
the Almansi decomposition for the iterated Dunkl-Helmholtz equation. Included
in this chapter the article by M. G. Cowling and M. Sandari, and another by E.
S. M. Hitzer and B. Mawardi, study Uncertainty Principles in different contexts.
The former proves the Hardy’s Uncertainty Principle for operators, and the latter
proves an Uncertainty Principle for some Clifford geometric algebras based on
Clifford Fourier Transformation.

Chapter two contains ten articles on frame theory and construction of wavelets.
In the paper by H-X. Cao and B-M. Yu, wavelet theory for general Hilbert spaces
is formulated. In the paper of C-Y. Li and H-X. Cao close relationship between
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operator frames for bounded linear operators on a Hilbert space and the usual
frames for the Hilbert space is studied. D. R. Larson in his paper presents, as
an application of operator algebra, a profound operator-interpolation approach
to wavelet theory in separable Hilbert spaces by using the local commutant of a
unitary system. In other articles G. Wang and Z-X. Cheng study the stability of
multi-wavelet frames; J-W. Yang, Y-Y. Tang, Z-X. Cheng and X-G. You construct
bi-orthogonal wavelets from two-dimensional interpolatory functions; X-X. Feng,
Z-X. Cheng and Z-P. Yang obtain a complete parametrization for the M-channel
FIR orthogonal filter bank with linear phase while the number of the required

parameters is reduced to (N = 2)(%), Y. Li, Z-D. Deng and Y-C. Liang study
multivariate orthonormal wavelets with trigonometric vanishing moments and pro-
pose a practical construction algorithm; Z. Yao, N. Rajpoot and R. Wilson study
multiscale directional cosine transform and multiscale Fourier transform in or-
der to effectively describe oriented features and linear discountinuities in image
processing; P. Cerejeiras, M. Ferreira and U. Kahler present a group-theoretical
approach for the continuous wavelet transform on the sphere S?~! based on the
Lorentz group Spin(1,n) that provides different representations for the Hilbert
space L?(S"~!) and the Hardy space H?(S™~1!); finally, F. Brackx, N.D. Schep-
per and F. Sommen present their study on Clifford-Jacobi polynomials and the
associated continuous wavelet transform in Euclidean spaces within the Clifford
analysis framework.

Chapter three deals with fractal and multi-fractal theory, wavelet algorithms
and wavelets in numerical analysis. In their comprehensive article S. Jaffard, B.
Lashermes and P. Abry compare several multifractal formalisms based on wavelet
coefficients from mathematical and numerical points of view, and show that the
formalism has to be based on wavelet leaders in order to yield the entire and
correct spectrum of Hoélder singularities. K. Markwardt in his paper studies dis-
crete embedding of system operators in identification models on the base of Fast
Wavelet Transform. J. Bai and X-C. Feng in their paper propose a digital curvelet
reconstruction algorithm to detect singularities in anisotropic images. H. Diao and
Y. Wei study structured condition numbers for Toeplitz under-determined systems
with full row rank, compared in the probability sense with unstructured condition
numbers. J. Maes and A. Bultheel present their study on Powell-Sabin spline pre-
wavelets on the hexagonal lattice, providing an explicit construction of compactly
supported, two-dimensional, piecewise quadratic finite element space of L? (]RQ).

Chapter four is on time-frequency Analysis and adaptive representation of
nonlinear and non-stationary signals. In his paper N. E. Huang introduces his em-
pirical mode decomposition algorithm (EMD) and Hilbert spectral analysis (HHT),
and briefly reviews the recent developments. He appeals for a mathematical foun-
dation of the invented method. The article of Q-H. Chen, L-Q. Li and T. Qian
shows that the non-linear Fourier atoms e«(*) |a| < 1, which are the boundary
values of the normalized M6bius transforms parameterized by the zeros of the
transforms, form a Riesz basis, and possess a number of good properties including
Shannon sampling. In his paper T. Qian reviews recent developments aiming to



Preface ix

establish mathematical foundation of EDM and HHT, and presents his new results
on starlike mapping and constructing mono-components of the form p(t)e? ®) for
non-trivial p(t) > 0 without using Bedrosian’s theorem.

In Part IT on wavelet applications, in the paper by X-L. Tian, X-K. Li, Y-K.
Sun and Z-S. Tang a new algorithm based on wavelet transform to transfer colors
from images of Chinese Virtual Human Dada (CVHD) to Magnetic Resonance
Images (MRI) is proposed and implemented. In their second paper a novel algo-
rithm for the multimodalities medical images fusion based on wavelet transform
is proposed and implemented. The paper by Y-Y. Qu, C-H. Li, N-N. Zheng, Z-J.
Yuan and C-Y. Ye describes how wavelet transform may be used to detect salient
building from a single nature image. In the paper of Y. Wu, X. Wang and G-S. Liao
a despeckling method is proposed based on stationary wavelet transform (SWT)
for synthetic aperture radar (SAR) images. In a paper by C-S. Tong and K-T.
Leung, to reconstruct a high resolution image from a set of shifted and blurred
low resolution images, a direct method based on Haar wavelet transform is pro-
posed. In the paper of F-X. Yan, L-Z. Cheng and H-X. Wang, a design scheme for
biorthogonal dual tree complex wavelet transform filter is proposed, and its imple-
mentation to iris image enhancement is presented. The other subjects include that
the paper of S-K. Choy and C-S. Tong studies supervised learning using character-
istic generalized Gaussian density and its applications to Chinese materia medica
identification; T-Z. Tan and J-W. Huang propose an algorithm of singular points
detection for fingerprint images by the Poincaré index method; G-J. Shi and S-L.
Peng present a new receiver scheme for doubly-selective channels to combat the
annoying Doppler diversity; by using the support vector machine method (SVM)
C-F. Wong, J-K. Zhu, M-I. Vai, P-U. Mak and W-K. Ye present a face retrieval
scheme based on lifting wavelets features; S-W. Pei, H-Y. Feng and M-H. Du pro-
pose a method based on a wavelet lifting scheme to increase the order of vanishing
moments for high-resolution image reconstruction; B. Pradhan, K. Sandeep, S.
Mansor, A.R. Ramli and A.R.B.M. Sharif in their paper study multiresolution
spatial data compression using the lifting scheme; Y-Y. Ren, S. Wang, S-Y. Yang
and L-C. Jiao put forward a method making use of ridgelet transform in remote
sensing image recognition; Z-C. Cai, H. Ma, W. Sun and D-X. Qi present their
analysis on frequency spectrum for geometric modelling of digital geometry; and,
in the paper of M-H. Yang, Z-Y. Xiao and S-L. Peng they demonstrate a Hidden
Markov Tree (HMT) model with localized parameters and a fast parameter esti-
mation algorithm. Two papers on implementation of EMD and HHT are included
of which one is by Z-H. Yang, L-H. Yang and D-X. Qi on detection of spindles in
sleep EEGs; and the other by M. J. Brenner, S. L. Kukreja and R. J. Prazenica
on the utility of the Hilbert-Huang algorithm for the analysis of aeroelastic flight
data.

Since the corner-stone lecture of Yves Meyer presented in ICM1990, Kyoto,
in some extent wavelet analysis in the last 15 years may be said to have been an
applied and theoretical-applied area. Yet, we gladly noted that among the atten-
dances of the conference a significant percentage were prominent mathematicians
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working mainly in pure mathematical areas. This indicates that the concept of
wavelets is one that stretches continuously across various disciplines of mathemat-
ics.

The idea of organizing the conference at University of Macau was first ini-
tialized by Daniel Chi Wai Tse, Chairman of University Council, and Rui Paulo
da Silva Martins, Vice Rector of the university, that was endowed through Vai
Pan Iu, Rector of the university, whose support made possible the success of the
conference. The editors wish to sincerely thank the mentioned university leaders
for their kind and generous support. This volume is specially designed to be dedi-
cated to Rui Paulo da Silva Martins, for his unflagging support to mathematics in
the university, including the conference. We are grateful to all the university staff
members and those in the scientific and organization committees who made this
conference possible. Finally, we sincerely thank the referees for their extremely
valuable assistance in creating this volume. The publication of this volume is par-
tially supported by Macao Science and Technology development Fund (FDCT)
051/2005/A.
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Local Smoothness Conditions on a Function
Which Guarantee Convergence of Double
Walsh-Fourier Series of This Function

S.K. Bloshanskaya and I.L. Bloshanskii

Abstract. The local smoothness conditions on a function are obtained, which
guarantee convergence almost everywhere on some set of positive measure of
the double Walsh-Fourier series of this function summed over rectangles.

Mathematics Subject Classification (2000). Primary 42C10; Secondary 42B05.

Keywords. Double Walsh-Fourier series, summation over rectangles, conver-
gence almost everywhere, localization principle.

1. Discussion and Setting of the Problem

Studies on convergence (including convergence almost everywhere) of series with
respect to the classical orthonormal systems (in particular, the trigonometric and
the Walsh systems) is one of the central problems in the modern theory of Fourier
series.

In the present paper we shall consider Fourier series with respect to the
Walsh-Paley system (which have different applications and, in particular, are used
in the digital data processing).

As it is known, in 1961 E.Stein [1] proved that the one-dimensional Walsh-
Fourier series of a function f € Ly (I'), where I' = [0, 1), can unboundedly diverge
almost everywhere (a.e.) on I'. Moreover, in 2004 S.V.Bochkarev [2] obtained the
following result: there exists a function f € ®(I') = & (I') (where ®, = up(u),
and ¢(u) is a non-decreasing on [0, 0o) function, ¢(0) = 1 and ¢(u) = o((logu)2)
as u — 00), whose Walsh-Fourier series unboundedly diverges everywhere on I'.
On the other hand, as it was proved in 2003 by P.Sjolin and F.Soria [3], if a

This work was supported by grant 05-01-00206 of the Russian Foundation for Fundamental
Research.
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function f € Fy(I') = L(log™ L)(log™ log™ log" L)(I') then Walsh-Fourier series
of this function already converges a.e. on I*.

The question arises: if for some measurable set E C I', uE > 0 (u is the
Lebesgue measure on line) a function f € Fi(E) N ®(I'), or (in the “scale” of
Lebesgue classes) a function f € L,(E)NLy (I'), p > 1, then what can be said about
convergence a.e. of the one-dimensional Walsh-Fourier series of this function, in
particular, about convergence a.e. on the set E (where the function f is “sufficiently
smooth”) or on some of its subsets Ey C E, uEy > 07

In this case, the following question naturally arises: what must be the struc-
ture of the set E — open, closed, G, etc., what must be its boundary.

The analogous question can be posed as well for the N - dimensional (N > 1)
Walsh-Fourier series, namely: on what measurable subsets E C IV, where IV =
[0,1)" is the N-dimensional cube, it is possible to “localize” these or those con-
ditions on a function f, defined on the whole IV, which “guarantee” convergence
a.e. on the whole I of the multiple Walsh-Fourier series summed over rectangles.
In the multiple case besides the question concerning the structural characteristics
of the set E the question arises concerning the geometric characteristics of this
set.

Denote as F(IV) the class of summable (on I'V) functions such that for any f
in this class (f € F(IV)) the multiple Walsh-Fourier series (summed over rectan-
gles) of the function f converges a.e. on I'V. So, we are interested in the question
concerning correlation between the structural and geometric characteristics of the
set E and the smoothness of the function in the framework of these or those sub-
spaces F of the space L.

In the present paper we shall give some solutions of the posed question for
double Walsh-Fourier series summed over rectangles.

As to the one-dimensional case, taking account of the classical principle of
localization (see [4] or [5, p. 70])!, and the mentioned earlier result by P.Sjolin and
F.Soria [3], we can give a partial answer to the posed above question: for any open
ae?set B, E CI', uE > 0 and for any function f € F;(E) N ®(I') (for any
function f € L,(E) N Ly (I'), p > 1) the one-dimensional Walsh-Fourier series of
this function converges a.e. on the set E.

Note that in the setting of the problem we posed the question about conver-
gence a.e. of Walsh-Fourier series in the classes F(E) N L1 (I') on the set E (or on
some of its subsets E; C F), and this is connected with the fact that outside the
set E the Walsh-Fourier series of a function f € F(E) N Lq(I') can, in general,
diverge. For example, it is not difficult to prove (taking account of [2] and [4]), that
for any open set E with boundary of measure zero or for any closed set E, E C I',
wE > 0 there exists a function f € Lo (E) N ®(I'), whose Walsh-Fourier series
unboundedly diverges a.e. outside the set FE.

I'Walsh-Fourier series of a function f € L1 (I'), f(z) = 0 on an open interval J C T' converges
uniformly to zero on each segment which is entirely contained in J.
2The set E is called open a.e., if there exists an open set E; such that u(EAFE;) = 0.
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For trigonometric Fourier series investigations of this type were carried in the
one-dimensional case by G.Alexits, N.K.Bari, S.B.Stechkin, P.L.Ul’'yanov (see [6,
p. 350-354]), and in the multi-dimensional case (N > 1) by I.L.Bloshanskii [7].

2. Notation

Let us denote as {w,}>, = {wn(2)},, = € [0,1) = ' the Walsh system
in Paley enumeration (see, e.g., [5]), i.e. the system of functions constructed as
follows. Let us consider the function

1, forz€l0,1),

ro(®) {—1, for z € [3,1).
Continue this function with period 1 to the entire number line and define the
Rademacher system {r}22, by setting ry(z) = ro(2*z), k=0,1,... .
Next, we represent each positive integer m as the sum m = Zf:o £;2¢, with
gi=0or1lfori=0,1,....k—1and g, = 1.
The Walsh functions w,,(z) are defined as follows: wo(z) = 1,

k
wm(x) = H(ri(ac))e", m=1,2....

Note that the system {w,, }3° is orthonormal on I' and complete in the space
L,(I') for each p, 1 < p < oo.

Let ZVN, ZVN c RN, N > 1 be a set of all vectors with integer coordinates,
assume ZY ={n = (n1,...,ny) € ZN : nj > a, j=1,...,N}, a € Z'. Further,
for x = (z1,...,zn) € IV, where IV =[0,1)" and k = (k1,...,kn) € Z{, denote
as wi(x) = w, (1) X+ - - Xwgy (2 ) the multiple Walsh-Paley system. Let a function
f € L1(IV) be expanded into a multiple Walsh-Fourier series with respect to the
system {wy}rezn:

fl@)~ > crwr(a),
keZly
where

Chk = Chy ...k = / f(x)wg(z) dz (1)

are Walsh-Fourier coefficients of the function f.
We consider the rectangular partial sum of this series
n1—1 nN—l
Sn(z; f) = Z Z cvwr(z), n=(ny,...,ny) €LY,
k1=0 En=0
whose particular case is the square partial sum Sy, (z; f), when n; = ... =ny =
no.
Let E be an arbitrary measurable set, E C IV, uE > 0 (u = px is the
N-dimensional Lebesque measure), and let F(F) be a subspace of L;(F) such
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that the multiple Walsh-Fourier series (summed over rectangles) of any function
f € F(IY) converges a.e. on IV.

We study the behavior of S, (z; f) as n — oo, i.e. minj<;j<nyn; — oo (or
Sno (w5 f) as ng — oo) on IV depending on the smoothness of the function f (i.e.
on the type of the space F(I'V)) and on the structural and geometric characteristics
of the set F.

3. Some Results on Convergence of Double Walsh-Fourier Series

For square summation the double Walsh-Fourier series (as follows from the result
of F.Méricz, [8]) converges a.e. on 12 for functions in the class Lo (I?), whereas
for rectangular summation the double Walsh-Fourier series can diverge a.e. on I2
even for the continuous on I? function (see the result of R.D.Getsadze [9]). From
the theorem of E.M.Nikishin [10] concerning the Weyl multipliers (for convergence
over rectangles of the double Fourier series with respect to the system of the form
{¥n, (21) - ny (22) }55 1,1 » Where {, (25)}5°—1, s = 1,2 is the orthonormal on
a segment system of functions) and the result of P.Billard [11] concerning conver-
gence of the one-dimensional Walsh-Fourier series of functions in Lo it follows: if
the following condition on Fourier coefficients (1) of the function f € Lo(I?) is
true:

o0
S Jekr.ral? - log? min[kal, [ks]) +2] < oo, (2)
k1, k2=0
then the double Walsh-Fourier series summed over rectangles of the function f
converges a.e. on 2.

Let us note, that in solution of the problem (considered in the present paper)
for one-dimensional Walsh-Fourier series we used (see section 1) the validity (for
N =1 in the class Ly) of the principle of the classical localization, which permits
to state that for any open (nonempty) set E C I' and for any function f € L;(I')
such that f(z) =0on E

lim S, (z; f) =0 uniformly on any compact set K C E. (3)
n—oo

Unfortunately, for multiple (i.e. for N > 2) Fourier series (both with respect
to the trigonometric system and to Walsh system) such localization is not true
even for continuous functions (for more details see our papers [12], [13]).

Being in the framework of the classes L, (IV), p > 1 we “replaced” in (3) the
uniform convergence by the convergence a.e., introducing the following concept of
the generalized localization almost everywhere (see [14], [15]3).

Let E, E C IV, N > 1 be an arbitrary set of positive measure. On the set F
for multiple Fourier series of functions in the classes L,(IV), p > 1 the generalized

3In the paper [14] the concept of the generalized localization a.e. was introduced for trigonometric
Fourier series.
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localization almost everywhere is valid if for any function f € L,(IV), f(z) = 0 on
E the multiple Fourier series of the function f converges a.e. to zero on the set E.

In 1995 in [12] for N = 2 we proved the validity of the generalized localization
a.e. for the double Walsh-Fourier series summed over rectangles on arbitrary open
(open a.e.) set in the classes L,(I%), p > 1 (see [12, Theorem 1]).

Concerning the cases N =2, p=1and N > 2, p > 1, in the same paper [12]
(see also [15]) we ascertained the invalidity of the generalized localization a.e. in
the indicated cases not only on the open sets, but also on any non-dense in IV set.

Later in [16] (see also [17] and [18]) we (extending the notion of general-
ized localization a.e. on the Lebesgue-Orlicz classes) strengthened the result (of
Theorem 1) of the paper [12], proving the following theorem

Theorem A. Let E, E C I? be an arbitrary open a.e. set, wE > 0. For any
function f € L(log™ L)*(1?), f(z) =0 on E

lim S, (z;f) =0 almost everywhere on E.
n—oo

Thus, for double Walsh-Fourier series summed over rectangles of the function
in the classes L(log™ L)?(I?) the generalized localization a.e. is true on the open
a.e. sets, but, as it was already said, the generalized localization a.e. is not true in
the class L;(I?) on the wide class of sets, in particular, it is not true on the open
sets.

Being again in the framework of classes L,(IV), p > 1, it was natural (the
same way, as for the trigonometric system, see [15]) to pass to a more refined
apparatus for studying the behavior of the Fourier series of a function f on the sets
where f equals zero, namely, to the concept of “the weak generalized localization
a.e.” (on the set E the weak generalized localization almost everywhere is true, if
for any function f € L,(IV), f(z) = 0 on E the multiple Fourier series of the
function f converges a.e. to zero on some subset Ey, Eg C E, uEy > 0).

In the paper [13] (see also [15], [18]) we obtained the criteria of the weak
generalized localization a.e. in the class Ly (HN ), N > 1. For N = 2 let us formulate
the particular case of this result (see [13, Theorem 2']), and for this let us give the
following definitions.

Let us consider on the axis Oz; an arbitrary (nonempty) open set ; C
I', =1, 2, and denote as W° and W the sets

WO = (Q xI') N (I x Q) (4)
and

W=WW°% = (Q xI'")U(I' x Q). (5)
We shall say that a set E possesses property B; if there exists a set W of the
form (5) such that u (W \ E) = 0; property B is property B, (W?) if W = W (W?).
Further, let us denote by pr(mj){P} the orthogonal projection of the set
P, P C I’* onto the axis Oxz;, j = 1, 2; by int (P) the set of interior points

of P; by P the closure of the set P and by Fr P the boundary of P.
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Let E be an arbitrary measurable set, £ C 12, uE > 0. Let us denote
G =12\ E and consider the following two conditions on Fr E:

p(G\int (G)) 0,4 (6)
p1 (Frpre){int(G)}) = 0, j=1,2, (7)

where p = o is the measure on the plane, pq is the measure on the line.

Theorem B. Let E be an arbitrary measurable set, E C 12, uE > 0, and let
G=12\E.
1. If for some set W° of the form (4) the set E possesses property By (W?), then
for any function f € L1(I?), f(x) =0 on E

lim S, (x;f) =0 almost everywhere on  WP°.
n—oo

2. Let in addition the set E satisfy conditions (6) and (7). If the set E does not
possess property By, then there exists a function f(©) € Li(1?), f©(z) =0
on E such that

lim [S,(z; f (V)] = 400  almost everywhere on T2
n—oo

4. Main Results

In the present paper, basing on Theorem A, we have obtained the result which
shows possibility “to localize on an open a.e. subset” E C I? condition (2) of
convergence a.e. on the whole cube I? of double Walsh-Fourier series.
Let E, E C I? be an arbitrary set of positive measure. Assume
2

i // f(x1, x2) Wi, (71) Wiy, (22) doy dxo

k1, ko=0

X logQ[min(|k1|, |ka]) + 2] < 400 }

Theorem 4.1. Let E be an arbitrary open a.e. set, E C 12, uE > 0. For any
function f € F(E)NL,(I?), 1<p<2

li_>m Sn(z; f) = f(x) almost everywhere on E.

Further, taking into account geometry of the set £ C I2, and basing on
Theorem B, we can get the following result, which shows under what conditions it
is possible “to localize on some subset” of the set E condition (2) (of convergence
a.e. on the whole cube I? of the double Walsh-Fourier series) in the case when on
the whole I? the function is in the class L; only.

4In particular, the sets G such that p {int G} = p G satisfy this condition; in it’s turn the, last
condition is true, for example, for an arbitrary open set.
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Theorem 4.2. Let E be an arbitrary measurable set, E C 12, uE > 0, with con-
ditions on the boundary Fr E — (6) and (7), and let the set E have an open
(nonempty) subset E°. For any function f € F(E°®) N L(log™ L)*(E) N L1 (1?),

li_>m Sp(z; f) = f(x) almost everywhere on E° C W°

if and only if the set E possesses property By (WY), where
WO = (pre){E°} x ') N (I" x prez,) {E°}). (8)

Remark 4.3. In the part of sufficiency the result of Theorem 4.2 is true without
the restrictions (6) and (7).

Taking into account “more fine” structural and geometric characteristics of
the sets E and E° (which appear in Theorem 4.2), it is possible to obtain the
following result

Theorem 4.4. Let E be an arbitrary measurable set, E C 12, pE > 0, with
conditions on the boundary Fr E — (6) and (7), and let E° be an open (nonempty)
subset of E. If the set E possesses property B1(W?), where the set W° is defined

in (8), but for any set WO of the form (4) such that M(WO \ W% >0 the set E
does not possess property B;(W?), then
L. If u(I2\ W°) > 0, then there eists a function f € F(E°)N L(log™ L)?(E) N
L1 (%) such that

lim |S,, (z; f)| = +oo  almost everywhere on 12\ W°.
n—oo

2. If W(WO\ E®) > 0, and pFrE® = 0, then there exists a function f(1) ¢
F(E®) N L(log™ L)*(E) N Ly(I?) such that

lim |S,, (x; f V)| = +00  almost everywhere on 1%\ E°.
n—oo

And finally, let us once more turn our attention to the questions of conver-
gence a.e. of Walsh-Fourier series in the classes F(E) N L,(IN), p > 1, N > 1
outside the set E (see section 1), this time for N = 2. Basing on the result concern-
ing general properties of sequences of linear operators obtained by I.L.Bloshanskii
in [19] (see [19, Theorem 1]) and using the function constructed by R.D.Getsadze
in [9] we can get the following result.

Theorem 4.5. For any closed set E C 12, u E > 0 there exists a function f €
Loo(I?), f(z) =0 on E such that

1. lim S,(z;f) =0 almost everywhere on E,
n—oo

2. lim |S,(z; f)] = +oo almost everywhere on 12\ E.
n—oo

Remark 4.6. For any (nonempty) open set E, E C 12 with the boundary of measure
zero the result similar to the result of Theorem 4.5 directly follows from [9] and [15].
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Linear Transformations of R" and Problems
of Convergence of Fourier Series of Functions
Which Equal Zero on Some Set

I.L. Bloshanskii

Abstract. Let 9 be a class of (all) linear transformations of R, N > 1. Let
A= ATY), TV = [-7, 7)Y be some linear subspace of Li(T"), and let 2
be an arbitrary set of positive measure 2 C TV.

We consider the problem: how are the sets of convergence and divergence
everywhere or almost everywhere (a.e.) of trigonometric Fourier series (in case
N > 2 summed over rectangles) of function (f o m)(z) = f(m(z)), f € A,
f(z) =0o0n A, m € M, changed depending on the smoothness of the function
f (i.e. on the space A), as well as on the transformation m.

In the paper a (wide) class of spaces A is found such that for each A
the system of classes (of nonsingular linear transformations) ¥y, ¥, C 9
(k = 0,1,...,N), which “change” the sets of convergence and divergence
everywhere or a.e. of the indicated Fourier expansions is defined.

Mathematics Subject Classification (2000). Primary 42B05.

Keywords. Multiple trigonometric Fourier series, convergence and divergence
everywhere and almost everywhere, linear transformations, rotation group.

1. Discussion of the Problem

In the theory of Fourier expansions the following problem plays an important role:
how properties of Fourier expansions are affected by modifying the function that
generates these expansions?

In the one-dimensional case to this range of problems, for example, the fol-
lowing result belongs obtained in 1940 by D.E.Men’shov [1] (for trigonometric
Fourier series): any measurable function finite almost everywhere on T! = [—7, )
(in particular, any continuous function f, f € C(T?)), can be changed on a set of

This work was supported by grant 05-01-00206 of the Russian Foundation for Fundamental
Research.



14 I.L. Bloshanskii

arbitrary small measure so that the obtained function has the uniformly convergent
Fourier series.

Let us also note the classical problem posed by N.N.Luzin: does a continuous
function exist such that, after the continuous transformation of variable, it becomes
a function with absolutely convergent Fourier series. As it is known the answer
to this question turned out to be negative: in 1981 A.M.Olevskii [2] proved the
existence of a function f, f € C(T?!), such that for any homeomorphism ¢ : T! —
T!, — the Fourier series of superposition (f o ¢)(z) = f(¢(x)) is not absolutely
convergent. Let us mention, as well, the result of 1935 by H.Bohr [3], who proved
that for any continuous function f there exists a homeomorphism ¢ : T — T?,
such that the Fourier series of superposition f o ¢ is uniformly convergent. (The
detailed survey of the concerning results in the one-dimensional case see in the
papers of J.P.Kahane [4] and A.M.Olevskii [5, 6].)

As for the multiple case, in 1998 A.A.Saakyan [7], generalizing the result of
H.Bohr, proved that for any function f € C(TV), TV = [-m, 7)Y, N > 2 (and
therefore, for the continuous function with trigonometric Fourier series rectangu-
larly divergent everywhere on TV — see the example of Ch.Fefferman [8]), there
exists a homeomorphism ¢ : TN — T¥ such that trigonometric Fourier series of
superposition f o ¢ uniformly rectangularly converges. The same year S.Galstyan
and G.Karagulyan [9] proved an “opposite” (in a certain sense) result, namely:
for any function f € C(TV), N > 2 (which has no intervals of constancy in T%)
there exists a homeomorphism ¢ : TV — T¥ such that the Fourier series of f o ¢
rectangularly diverges almost everywhere (a.e.).

In 2000 O.S. Dragoshanskii [10] published the following result: there exists a
function f € C(T?) (whose support belongs to the square [, 3]?) such that the
double trigonometric Fourier series of f converges rectangularly a.e. on T?, while
the same series but of the function f o 7, where 7 is a rotation of the coordinate
system R? on an angle % diverges rectangularly on its support. In the same pa-
per it was proved that rotation on the angle 7 can “spoil”, as well, the uniform

4
convergence of the series under consideration.

We [11] in 2002 studied the problem concerning convergence everywhere and
a.e. of multiple trigonometric Fourier series (summed over rectangles) of the func-
tion for, when f € Li(TV), N > 2, f(z) = 0 on some subset (of positive measure)
of TV, and 7 is a rotation of the coordinate system RY on an arbitrary angle.

In its turn, the results earlier obtained by us (see, e.g., [12]— [18]) which de-
scribe the structural and geometric characteristics (SGC) of sets of convergence
and divergence a.e. and everywhere for multiple trigonometric Fourier series, mul-
tiple Walsh-Fourier series (summed over rectangles) and multiple Fourier integrals
of functions f from various functional spaces A (e.g., L1, Orlicz classes L(log™ L)*,
s > 1, the classes L,, 1 < p < oo, C, H¥, etc.), f equals zero on some set 2 of
positive measure, permit to make some conclusions concerning convergence a.e.
and everywhere of multiple Fourier expansions of the superposition f o, when
feA f(r) =0on%, and ¢ belongs to some class ¥ of linear (e.g., orthogonal)
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transformations of RY, ¥ C 9, where 901 is the set of (all) linear transformations
of RV,

It is a matter of interest to find (describe) all those classes of transformations
¥, which for the given space A “change” the sets of convergence and divergence
everywhere or a.e. of the multiple Fourier expansion of a function f in the space A
(f(z) = 0 on some set of positive measure), i.e. to give description of pairs (A, ¥).

2. Notation

Consider the N-dimensional Euclidean space RY, whose elements will be denoted
as © = (z1,...,xy), and set kx = kyxy +--- + knaw, |z| = (27 + ...+ 23)"/2

Let ZV, ZN c RY be a set of all vectors with integer coordinates, let us also
define the set ZY = {n = (n1,...,ny) €ZN : n; >, j=1,...,N}, a € Z.

Let S, (x; f), n € ZY¥, N > 1 be the rectangular partial sum of trigonometric
Fourier series of a function f € Li(TV), TV = [—x, 7)Y, whose particular case
is the square partial sum S, (z; f), when ny = ... = ny = ng. Let A = A(TY)
be some linear subspace of the space Li(TV), 2 — an arbitrary measurable set,
A c TV, u2l > 0 (p = pn is the N-dimensional Lebesgue measure), and let
f(z) =0 on .

We investigate how does the behavior of Sy, (z; f) as n — oo, i.e. 12nj<nN n; —
<<

oo (or Sy, (w; f) as ng — 00) on TV depend on the smoothness of the function f
(i.e. on the type of the space A), on the “modification” of the function f, and,
finally, on the structural and geometric characteristics of the set 2 (SGC()).

3. Definition of the System of Functional Spaces

Denote as F = Fy = {A,(Cj )}k ~a matrix N x 6, whose elements are functional
J

spaces A,(Cj) = A,(Cj)(’]I‘N), k=1,....,N; N > 1and j € {0} JJ, where J =
{1,2,...,5}. The spaces A,(CJ) will be defined as follows. For k = 1,2 we set:

APV =AD =11, jed; AP =AY =Le; AP =AY = Lo,
AV =L, 1<p<2; AP =L(og" L)% (3.1)
For k =3,..., N we set:
A}(Co) _ g™
where w(®)(§) is the modulus of continuity w®*)(§) = wg\k)(é) = A(6) - (log (15)_[5],

where [€] is the integral part of £, and A(d) is a function increasing to +oc as
§ — +0 and A(6) = o(loglog ), & — +0;

A,(Cl) = g*""” and A,(CQ) = H§"(k71) ,
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where w*=1(§) = wék_l)(é) = (log ;)_kgl_e, 0<e< ;!

k—1
A — {f € Lo(TV): Y enl*- max [T 10g(n,.1 +2) < +oo},
=1

1<ji1<...<jg—1<N
nezN =71 Je—15 s

where ¢, = ¢, (f) are Fourier coefficients of function f; and, besides, we set

Ag4) — {f € Ly(TV) : Z lcn|?log?]  max m7ié1la(|n5|, ln]) + 2] < +oo},

g s,1=1,2,...N

Ags) = H“’(l), where  w)(8) = o([log ; loglog log ;]_1), § — +40.

For k=4,..., N we set:
AW = AP = A,

Let us note that “smoothness” of functions f € A,(Cj)(TN ) certainly “in-
creases” with the growth of the number &, i.e. A,(Cj) D A,(j_zl, je{0tUJ, k =
1...,N—1.

Let us also note that the classes A,(Cj ) (T™), j € J have the following property:
in the case k > 1 for any function f € A,(Cj )(Tk_l) convergence of (k — 1) -multiple
trigonometric Fourier series summed over rectangles takes place a.e. on T*~! (see
results of L.Carleson [19], R.Hunt [20] (k = 2); K.I.Oskolkov [21], P.Sj6lin [22]
(k = 3); L.V.Zhizhiashvili [23] and [24], F.Méricz [25] (k > 4)).

The indicated (“functional”) matrix IF was introduced by us in the paper [26].

4. Definition of the Classes of Linear Transformations of R

Let 91 be a class of (all) linear transformations of RN, N > 1. Denote as ¥, ¥y C
M the class of linear nonsingular transformations, whose inverse transformations
have matrices A = {al7m}i\{m:1, satisfying condition: there exists s, 1 < s < N
such that

max, lag, 5| < 1. (4.1)

Further, in the case of dimension of the space N > 2, we define the following
N subsets of ¥y.

First, for any k, 2 < k < N, we define the class of transformations ¥y:
¥ € Wy if the matrix A of inverse (to 1) transformation 1! satisfies condition:

there exist my,...,mi, 1 <my < ...<my < N such that
% {Jam| 4t lanm ]} < L (4.2)
For classes of transformations ¥y, ..., ¥y, the embeddings are obvious: ¥; D

Uy D...D Up.

INote that .A](CO) C .A](Cl) if k is even, k > 4.
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Second, for N > 2 we define the class of transformations o C ¥;. Let F be
a group of rotations of RN about the origin, and let Fy be a set of rotations from
F, that are compositions of rotations in all the two-dimensional coordinate planes
by angles which are integer multiple of 7. Set?

Uy = F\ Fo. (4.3)

5. Setting of the Problem and Approaches to Its Solution

We pose and study the problem: how are the sets of convergence and divergence
(everywhere or a.e.) of trigonometric Fourier series (in case N > 2 summed over
rectangles) of function f, belonging to one of the spaces A (elements of the matrix
F) and vanishing on some measurable set 2 C TV, 0 < pA < 27)N, N > 1,
(1 = pn is the Lebesgue measure) changed (if changed) in dependence on the
transformation ¢ € ¥, where ¥ = ¥y, 0 < k < N7 Thus, we want to “describe”
a pair (A, ).

Further, for any set £ C RY and any m € 91 we define the set m(E) =
{y € RN : y = m(x), 2 € E}. Analogously the set m~1(E) is defined, where
transformation m~! is such that: m~*-m =1 (if m~! exists). It is obvious that for
any E C TV there exists m € 9 such that m(E) ¢ TV.

Thus, taking into account that (in the present paper) we consider 27-periodic
functions f(x), the question arises: how the Fourier series should be understood
for the function (f om)(z) = f(m(z)), e.g., for rotation (of the coordinate system
of RV), i.e. when m =7 € F.3

Analogously to the paper [11], where we considered the group of rotations F,
we shall formulate two variants how the Fourier series of function fom, m € 9
can be understood.

Let us fix an arbitrary m € 9. For any function f € L;(T™)* we define
2m-periodic (for N > 2 — in each argument) functions gV (), 1 =1,2, so that on
TN these functions are defined by equalities:

gw@) = (fom)(z)=f(m(z)), zeTV, (5.1)
g @) = (fom)(z) = f(m(z)) x.(m(z)), zeT, (5.2)

where x_ (-) is the characteristic function of the cube TN.

Thus, the posed above problem is decomposed into two problems in depen-
dence on the regard to Fourier series of function f o m. Further in the text: for
l =1 — the problem 1, and for [ = 2 — the problem 2.

Earlier we have investigated [12]-[18] (see also [26]) the problem concerning
changes of the structure and geometry of sets of convergence and divergence a.e.

2Tt is obvious that rotations 7 € Fg can not change the sets of convergence or divergence of
multiple Fourier expansions.

3Let us note that for Fourier integrals f]RN ﬁ(f)eich d¢, x € RN, of function h € L1 (RY) the
problem “in this sense” does not arise.

4Naturally, the function f(z) is 27 -periodic in each argument.
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and everywhere for (multiple) trigonometric Fourier series (for N > 2 summed over
rectangles) of functions f in A,(CJ)(TN), k=1,...,N, 5 €{0}tUJ, f(z) =0 on
some measurable set 2t C T, in dependence on changes of structure and geometry
of the set 2(. So, the both posed problems are reduced (in fact) to the study of the
question concerning changes of structure and geometry of sets ¢~ () N TV and
TN\ supp(f o)), in dependence on ¢ € ¥y, 0 < k < N.°

Let us note that problem 1, being a more complicated problem, is, at the
same time, a more natural one for trigonometric Fourier series even in the study
of such “unnatural” for these series “problem of rotations”.

Let us show some particular solutions of problem 2, whose results give the
description of the pairs (A, ¥), more exactly, let us formulate the results describ-
ing (some) relation between the “smoothness” (in terms of the matrix F) of the
function f (f(x) = 0 on ) and the transformation ¢ (in terms of the classes Uy, ).

6. The Set of Transformations Uy, £k =1,..., N.

Solution of Problem 2
Two following theorems give description of the pair (.Agj ), Uy), 7€ {0}UJ, ie,
taking account of (3.1), —the pair (L, ¥;) (for N = 1 and for N > 1, respectively).
Theorem 6.1. For any ¥ € ¥ and e, 0 < € < 27, there exist the measurable sets
Q= Q) C T A = Ale, ) C T : uQ > 0, pA > 27 — € and a function
f=fep € Li(TY), f(z) =0 on 2, such that

1. li_>m 1S, (25 f)| = +00 in each point xz € T, (6.1)
2. li_>m Sp(x; fo) =0 in each point x € Q. (6.2)

Here the notation f o) is understood in the sense of equality (5.2), i.e. foy) = gff).

Theorem 6.2. Let N > 1. For any v € U1 and e, 0 < e < (2m)N, there exist the
open sets Q= Q(e,9), A=A(e,v) : QCAC TN, pA > 2m)N —¢, 0 < pQ < pA
such that

1. There exists a function f(©) = fe(ol)/} € Li(TN), fO(z) =0 on A, and

liin 1Sy (@3 fO)| = 400 in each point z € TV. (6.3)
no o0
2. For any function f € Li(TV), f(z) =0 on ,

li_>m Sp(x; fo) =0 in each point x € Q. (6.4)

Here the notation f o) is understood in the sense of equality (5.2), i.e. foy) = gff).

Analogous results are obtained for other pairs (Agj ), U}.), where k <r < N,
je{0yUJfork=r=N,if N=2 andfor 1 <k <2-[N;!],if N > 3, namely,
the following theorems are true

5Note that for singular transformations m € 9t the discussed problem becomes trivial.



