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Preface

An infinite-dimensional manifold is a (topological) manifold modeled on a given
infinite-dimensional (homogeneous) space E (called a model space), that is, a
paracompact space covered by open sets that are homeomorphic to open sets in
E. A manifold modeled on E is simply called an E-manifold. Hilbert space �2

and the Hilbert cube Q = [−1, 1]N are typical examples of infinite-dimensional
model spaces, where an �2-manifold and a Q-manifold are also called a Hilbert
manifold and a Hilbert cube manifold, respectively.1 We can also take any infinite-
dimensional topological linear space as a model space. The direct limit R

∞ =
lim−→R

n of Euclidean spaces is one of them. It is known that the direct limit Q∞ =
lim−→Qn of Hilbert cubes is homeomorphic to some topological linear space. Thus,
there are various kinds of infinite-dimensional manifolds, which are research objects
of Infinite-Dimensional Topology.2

Infinite-dimensional manifolds are more than just generalizations of usual
manifolds modeled on Euclidean space R

n. There are many unexpected special
phenomena different from finite-dimensional manifolds. From research of infinite-
dimensional manifolds, various useful tools, techniques, and ideas have been
developed, which are attractive and exciting. In addition, there have been many
applications to other fields of Topology.3 Let us give some examples of outstanding
results related to other fields.

In 1928, Fréchet asked whether Hilbert space �2 is homeomorphic to the
countable product of lines R

N. This question was positively answered in 1966
by R.D. Anderson. It was the dawn of Infinite-Dimensional Topology.4 In 1939,

1We consider not only �2 but also non-separable Hilbert spaces as model spaces.
2Infinite-Dimensional Topology is a branch of Geometric Topology, which studies infinite-
dimensional spaces arising naturally in Topology and Functional Analysis.
3For the history of Infinite-Dimensional Topology, refer to the article of T. Koetsier and J. van Mill
[96, Sect. 4].
4Due to Anderson’s essay [9], the starting point is when he answered in [3] affirmatively to a
question posed by V. Klee, that is, he proved in 1964 that the product of a triod, T , and the Hilbert
cube Q is homeomorphic to Q.
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viii Preface

M. Wojdysławski conjectured that the hyperspace of a Peano continuum is home-
omorphic to Q. This conjecture was finally proved in 1978 and it is known as
the Curtis–Schori–West Hyperspace Theorem. Simple Homotopy Theory had been
established by J.H.C. Whitehead during 1939–1952, where the Whitehead group
and Whitehead torsion were introduced. The topological invariance of Whitehead
torsion had been a longstanding problem, but T.A. Chapman proved it in 1973
by using Q-manifolds. In 1954, K. Borsuk conjectured that a compact absolute
neighborhood retract (ANR) has the homotopy type of a finite simplicial complex.
This conjecture was proved in 1977 by J.E. West, where Q-manifolds were applied.
Shape Theory was founded by K. Borsuk in 1968 as the homotopy theory for spaces
without a good local behavior. In 1972, Chapman showed that two compacta X and
Y in the pseudo-interior (−1, 1)N of the Hilbert cube Q have the same shape type
if and only if their complements Q \X and Q \ Y are homeomorphic.

Meanwhile, the theory of infinite-dimensional manifolds was developed and
outstanding results had been obtained. In 1969, D.W. Henderson proved the Open
Embedding Theorem, that is, every separable �2-manifold can be embedded into �2

as an open set. In 1970, he joined with R.M. Schori and J.E. West in establishing the
Classification and the Triangulation Theorems for Hilbert manifolds, respectively.
Namely, it was shown that two Hilbert manifolds are homeomorphic if they have
the same homotopy type and that every Hilbert manifold is homeomorphic to
the product of Hilbert space and a locally finite-dimensional simplicial complex
with the metric topology. For (compact) Q-manifolds, the Triangulation and the
Classification Theorems were established in 1973 by Chapman, that is, every
compact Q-manifold is homeomorphic to the product of Q and a finite simplicial
complex, and two compact Q-manifolds are homeomorphic if and only if finite
simplicial complexes triangulating them have the same simple homotopy type. In
1980 and 1981, H. Toruńczyk succeeded in characterizing Hilbert cube manifolds
and Hilbert manifolds topologically.

This book is designed as a textbook for graduate students and researchers in
various branches related to Topology to acquire the fundamental results on infinite-
dimensional manifolds and various techniques treating infinite-dimensional spaces.
This can also be used as a reference book. Up to now, the following six books have
been available for the same purpose:

(1) C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topol-
ogy, MM 58 (Polish Sci. Publ., Warsaw, 1975)

(2) T.A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Regional Conf.
Ser. in Math. 28 (Amer. Math. Soc., Providence, 1975)

(3) J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction,
North-Holland Math. Library 43 (Elsevier Sci. Publ. B.V., Amsterdam, 1989)

(4) A. Chigogidze, Inverse Spectra, North-Holland Math. Library 53 (Elsevier Sci.
Publ. B.V., Amsterdam, 1996)

(5) T. Banakh, T. Radul, and M. Zarichnyi, Absorbing Sets in Infinite-Dimensional
Manifolds, Math. Studies, Monog. Ser. 1 (VNTL Publ., Lviv, 1996)
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(6) J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-
Holland Math. Library 64 (Elsevier Sci. Publ. B.V., Amsterdam, 2002)

We selected materials from the above books and compiled them into the present
book and also included the new results that are not presented in those books. In
addition, we have covered the manifolds modeled on the direct limits R∞ = lim−→R

n

and Q∞ = lim−→Qn. As an infinite-dimensional version of a combinatorial n-
manifold, we have defined a combinatorial ∞-manifold, which triangulates an
R
∞-manifold. This is the first book presenting such manifolds.
This book is written to be fairly self-contained if combined with the following

book, which is cited as [GAGT]:

• K. Sakai, Geometric Aspects of General Topology, Springer Monog. in Math.
(Springer, Tokyo, 2013)

To read [GAGT], the readers are required to have the fundamental knowledge on
General Topology. For example, it is enough to finish Part I of the following popular
textbook:

• J.R. Munkres, Topology, 2nd ed. (Prentice Hall, Inc., Upper Saddle River, 2000)

The book [GAGT] also contains some outstanding results in Infinite-Dimensional Topology
different from applications mentioned above, that is, the existence of the following spaces or
maps: a hereditary infinite-dimensional compact metrizable space (a compactum containing
no subspaces of finite-dimension except zero-dimension); an infinite-dimensional compact
metrizable space with finite cohomological dimension (Alexandroff’s Problem); a cell-like
map of a finite-dimensional compactum onto an infinite-dimensional compactum (Cell-Like
Mapping Problem); a separable metrizable topological linear space that is not an absolute
retract (AR). The first one is contained in Chapter 4 and the other three are in Chapter 7.
Those are not necessary for reading the present book.

Almost all required background knowledge is listed in Chap. 1, whose detailed
information is founded in [GAGT]. Besides, we need some additional results, for
example, some fundamental results in PL Topology, which are also contained with
their proofs. Taking a brief look at this first chapter, the reader can recognize what
knowledge he or she should take in and where he or she can. Possibly skipping the
first chapter, one can start with the second chapter and go back over necessary parts
of Chap. 1 when needed. For Chap. 4, we need some results in Simple Homotopy
Theory and Wall’s Obstruction Theory, covering spaces and Algebraic Topology,5

which are written in the preliminary part of Chap. 4, not in the first chapter.
Chapter 2 is devoted to the fundamental results on manifolds modeled on an

infinite-dimensional normed linear space, the Stability Theorem, the Unknotting
Theorem, the Open Embedding Theorem, the Classification Theorem, etc., which
are discussed in Bessaga and Pełczynski’s book (1). Here, are also proved the
fundamental results on Hilbert cube manifolds, which are discussed in van Mill’s
book (3) and Chapman’s lecture notes (2). Furthermore, we prove the Toruńczyk

5It is not required for the reader to be familiar with these objects. Only elementary knowledge of
Algebraic Topology is necessary.
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Factor Theorem, that is, for each completely metrizable ANR X with weight � τ ,
the product of X and Hilbert space of weight τ is a Hilbert manifold, which has
not been proved in any other book. Combining this theorem with the Classification
Theorem, we can easily obtain the Triangulation Theorem for Hilbert manifolds.

Toruńczyk’s characterizations of Hilbert manifolds and Q-manifolds are proved
in Chap. 3. For the characterization of compact Q-manifolds, a readable proof is
provided in van Mill’s book (3), but the non-compact version is not easily derived
from the compact case. However, we discuss the non-compact case too. For Hilbert
manifolds, we treat not only �2-manifolds but also non-separable Hilbert manifolds.
In this chapter, some applications of the characterization of Hilbert manifolds and
Q-manifolds are also given. In particular, it is proved that every Fréchet space
(= locally convex completely metrizable topological space) is homeomorphic to
Hilbert space with the same weight and that every infinite-dimensional compact
convex set in a metrizable topological space is homeomorphic to the Hilbert cube
Q if it is an AR. It is also proved that the space of all continuous map from a non-
discrete compactum to a separable completely metrizable ANR is an �2-manifold.

As mentioned above, Chap. 2 contains the Triangulation Theorem for Hilbert
manifolds but not for Q-manifolds. Chapter 4 is devoted to proving the Triangula-
tion Theorem for Q-manifolds, which is contained in Chapman’s lecture notes (2)
but is not in van Mill’s book (3). To prove this theorem, we use some algebraic
results concerning the Whitehead group and the Wall’s finiteness obstruction.
They are contained in the first section, but their proofs are not given. From the
Triangulation Theorem for compact Q-manifolds, we have derived the Borsuk
conjecture mentioned above. The topological invariance of Whitehead torsion is
also proved in this chapter.

In Chap. 5, we discuss f.d.cap sets and cap sets for �2-manifolds and Q-
manifolds, which are manifolds modeled on the following incomplete normed linear
spaces:

�2
f = {

(xi)i∈N ∈ �2
∣
∣ xi = 0 except for finitely many i ∈ N

}
,

�2
Q = {

(xi)i∈N ∈ �2
∣
∣ supi∈N 2i |xi| < ∞}

,

which are the linear spans of the orthonormal basis of �2 and the Hilbert cube Q =∏
n∈N[−2−n, 2−n] ⊂ �2, respectively. We also consider non-separable versions of

f.d.cap sets and cap sets, named absorption bases. As a generalization of (f.d.)cap
sets, introducing absorbing sets in Hilbert manifolds, M. Bestvina and J. Mogilski
gave characterizations of manifolds modeled on the universal spaces of absolute
Borel spaces. Since then, there have been many works on absorbing sets. In this
chapter, we also intend to generalize the work of Bestvina and Mogilski to non-
separable spaces. Although there are many related results, we treat only a small
number of them. For results on absorbing sets, the book of Banakh, Radul, and
Zarichinyi (5) can be referred to but non-separable absorbing sets are not treated.
Related results also treated in the second book of J. van Mill (6).
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Chapter 6 is devoted to manifolds modeled on R
∞ and Q∞, which are the direct

limits of Euclidean spaces and Hilbert cubes, respectively. Here, we prove Heisey’s
Theorem, that is, Q∞ is homeomorphic to a locally convex linear topological space.
Characterizations of these manifolds are given and their Classification Theorems are
proved. We also discuss simplicial complexes triangulating R

∞-manifolds. Such
a simplicial complex is an infinite-dimensional generalization of combinatorial
manifolds, which is called an infinite-dimensional combinatorial manifold (or a
combinatorial ∞-manifold). We prove the so-called Hauptvermutung6 for them.
Furthermore, a combinatorial ∞-manifold is characterized as a simplicial complex
K , such that every simplex σ ∈ K is a Z-set in |K|, equivalently every σ ∈ K has
the non-empty contractible link. We also prove that a countable simplicial complex
K is a combinatorial ∞-manifold if and only if |K| is an R

∞-manifold. In the
last section, we introduce bi-topological infinite-dimensional manifolds modeled on
(R∞,RN

f ) and (Q∞,QN

f ), which are called (R∞,RN

f )-manifolds and (Q∞,QN

f )-
manifolds, respectively. Every combinatorial ∞-manifold with the weak topology
and the metric topology is a manifold modeled on (R∞,RN

f ).
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Note In the text, numbers in brackets [ ] and [( )], respectively, refer to papers
in the References and books or texts in the Bibliography at the end of the book.
However, the author’s first book [(15)] is cited as [GAGT]. Moreover, for a theorem
(or proposition, etc.) quoted from [GAGT], its corresponding theorem number in
[GAGT] is indicated in a frame box at the end of the statement. For example, 2.9.4

means (Theorem) 2.9.4 in [GAGT].
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Chapter 1
Preliminaries and Background Results

In this chapter, we first introduce the terminology and notation, and then list the
background results. The reader may skip this chapter and can read necessary parts
later when needed. Several results might be learned in graduate courses, but others
are advanced and special. Almost all results are listed without proofs, which can be
found in the following book:

• K. Sakai, Geometric Aspects of General Topology, Springer Monog. in Math.
(Springer, Tokyo, 2013) — [(15)]

That is cited as [GAGT] instead of [(15)], by which the reader can confirm proofs
and details. When a theorem (or proposition, etc.) is quoted from [GAGT], each
corresponding theorem number in [GAGT] is indicated in a frame box at the end of
statement.

Sections 1.1 and 1.2 are almost identical to the same sections of [GAGT]. Contents of
Sects. 1.3, 1.4, 1.12, 1.13, and 1.15 come from Chapters 2, 3, 5, 6, and 7 of [GAGT],
respectively. Almost all contents of Sections 1.5–1.11 except Sect. 1.9 are contained in
Chapter 4 of [GAGT]. Sections 1.9 and 1.14 are supplements for Chapters 4 and 6 of
[GAGT], respectively.

Fundamental results on simplicial complexes are described in Chapter 4 of
[GAGT]. Besides, additional preliminary results in PL Topology (Combinatorial
Topology) are required for Q-manifolds and R

∞-manifolds, which are not covered
by [GAGT]. In Sect. 1.8, a version of the PL embedding approximation theo-
rem 1.8.11 is added together with its proof. Section 1.9 is devoted to regular
neighborhoods that are effectively used in PL Topology. Although we refer to them
too little, PL n-manifolds (or combinatorial n-manifolds) are main subjects in PL
Topology. So we provide an appendix for basic results on them at the end of the
book. The following is a good textbook:

• C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology,
Springer Study Edition (Springer-Verlag, Berlin, 1972, 1982) — [(17)]

© Springer Nature Singapore Pte Ltd. 2020
K. Sakai, Topology of Infinite-Dimensional Manifolds, Springer Monographs
in Mathematics, https://doi.org/10.1007/978-981-15-7575-4_1
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2 1 Preliminaries and Background Results

1.1 Terminology and Notation

With respect to terminology and notation, we follow the book [GAGT]. For the
standard sets, we use the following notation:

• N — the set of natural numbers (i.e., positive integers);
• ω = N ∪ {0} — the set of non-negative integers;
• Z — the set of integers;
• Q — the set of rationals;
• R = (−∞,∞) — the real line with the usual topology;
• C — the complex plane;
• R+ = [0,∞) — the half (real) line;
• I = [0, 1] — the unit closed interval.

A (topological) space is assumed to be Hausdorff and a map is a continuous
function. A singleton is a space consisting of one point. A space is said to be non-
degenerate if it has at least two points. A compact metrizable space is called a
compactum and a connected compactum is called a continuum.1 For a space X
and A ⊂ X, we use the following notation:

• clX A (or clA) — the closure of A in X;
• intX A (or intA) — the interior of A in X;
• bdX A (or bdA) — the boundary of A in X;
• idX (or id) — the identity map of X.

For a metrizable space X,

• Metr(X) — the set of all admissible metrics of X.

The cardinality of a set � is denoted by card�. The weight w(X), the density
densX, and the cellularity c(X) of a space X are defined as follows:

• w(X) = min{cardB | B is an open basis for X};
• densX = min{cardD | D is a dense set in X};
• c(X) = sup{cardG | G is a pairwise disjoint open collection}.
As is easily observed, c(X) � densX � w(X) in general. In the case where X is
metrizable, all these cardinalities coincide (cf. p. 2 of [GAGT]).

For spaces X and Y with subspaces X1, . . . , Xn ⊂ X and Y1, . . . , Yn ⊂ Y ,

• X ≈ Y means that X and Y are homeomorphic;
• (X,X1, . . . , Xn) ≈ (Y, Y1, . . . , Yn) means that there exists a homeomorphism
h : X → Y such that h(X1) = Y1, . . . , h(Xn) = Yn;

• (X, x0) ≈ (Y, y0) means (X, {x0}) ≈ (Y, {y0}),
where (X, x0) is called a pointed space and x0 its base point.

1Their plurals are compacta and continua, respectively.
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For the product space
∏

γ∈� Xγ , the γ -coordinate of each point x ∈ ∏
γ∈� Xγ

is denoted by x(γ ), that is, x = (x(γ ))γ∈�. We can regard x ∈ ∏
γ∈� Xγ as a

function x : � → ⋃
γ∈� Xγ such that x(γ ) ∈ Xγ for each γ ∈ �. For each

γ ∈ �, the projection prγ : ∏γ∈� Xγ → Xγ is defined by prγ (x) = x(γ ). For
� ⊂ �, the projection pr� : ∏γ∈� Xγ → ∏

λ∈� Xλ is defined by pr�(x) = x|�
(= (x(λ))λ∈�). In the case Xγ = X for every γ ∈ �, we write

∏
γ∈� Xγ = X� .

In particular, XN is the product space of countable infinite copies of X. When � =
{1, . . . , n}, X� = Xn is the product space of n copies of X. For the product space
X × Y , prX : X × Y → X and prY : X × Y → Y denote the projections.

Now, let X = (X, d) be a metric space, x ∈ X, ε > 0, and A, B ⊂ X. We use
the following notation:

• Bd (x, ε) =
{
y ∈ X

∣
∣ d(x, y) < ε

}
— the ε-neighborhood of x in X (or the

open ball with center x and radius ε);
• Bd(x, ε) =

{
y ∈ X

∣
∣ d(x, y) � ε

}
— the closed ε-neighborhood of x in X (or

the closed ball with center x and radius ε);
• diamd A = sup

{
d(x, y)

∣
∣ x, y ∈ A

}
— the diameter of A;

• d(x,A) = inf
{
d(x, y)

∣
∣ y ∈ A

}
— the distance of x from A;

• distd (A,B) = inf
{
d(x, y)

∣
∣ x ∈ A, y ∈ B

}
— the distance of A and B;

• Nd (A, ε) =
{
x ∈ X

∣
∣ d(x,A) < ε

}
— the ε-neighborhood of A in X;

• Nd (A, ε) =
{
y ∈ X

∣
∣ d(x,A) � ε

}
— the closed ε-neighborhood of A in X.

It should be noticed that d(x,A) = distd({x}, A), Nd({x}, ε) = Bd (x, ε),
Nd({x}, ε) = Bd (x, ε), and Nd(A, ε) = ⋃

x∈A Bd (x, ε). For a collection A of
subsets of X, the mesh of A is defined as follows:

• meshd A = sup
{

diamd A
∣
∣ A ∈ A}

.

When there are no possible confusions, we can drop the subscript d and write
B(x, ε), B(x, ε), N(A, ε), diamA, dist(A,B) and meshA.

The standard spaces are listed below:

• R
n — Euclidean n-space with the norm

‖x‖ =
√
x(1)2 + · · · + x(n)2,

0 = (0, . . . , 0) ∈ R
n — the origin, the zero vector or the zero element, ei ∈ R

n

— the unit vector defined by ei (i) = 1 and ei (j ) = 0 for j 	= i;
• R

n+ = {
x ∈ R

n
∣
∣ x(n) � 0

} = R
n−1 × R+ — Euclidean half n-space;

• Sn−1 = {
x ∈ R

n
∣
∣ ‖x‖ = 1

}
— the unit (n− 1)-sphere;

• Bn = {
x ∈ R

n
∣
∣ ‖x‖ � 1

}
— the unit closed n-ball;

• �n = {
x ∈ (R+)n+1

∣
∣ ∑n+1

i=1 x(i) = 1
}

— the standard n-simplex;
• Q = [−1, 1]N — the Hilbert cube;
• s = R

N — the space of sequences.
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Note that Sn−1, Bn, and �n are not product spaces even though the same notations
are used for product spaces, where the indexes n − 1 and n represent their
dimensions.

A separable metrizable space M is called an n-manifold (or an n-dimensional
manifold)2 if each x ∈ M has a neighborhood that is homeomorphic to (an open
set in) In, where In can be replaced with R

n+. We call x ∈ M an interior point if it
has a neighborhood homeomorphic to (an open set in) (0, 1)n (≈R

n). The set IntM
of all interior points of M is called the interior of M , which is open in M . We also
call x ∈ M a boundary point if it is not an interior point, that is, any neighborhood
of x is not homeomorphic to (an open set in) R

n. In other words, x ∈ M is a
boundary point if and only if x has a neighborhoodN such that (N, x) ≈ (In, 0) (or
(N, x) ≈ (Rn+, 0)). The set ∂M consisting of all boundary points of M is called the
boundary of M , which is an (n− 1)-manifold and closed in M . When ∂M = ∅, M
is called an n-manifold without boundary. A closed n-manifold is a compact n-
manifold without boundary. The closed n-ball Bn is an n-manifold with ∂Bn = Sn−1

and the n-sphere Sn is a closed n-manifold.
Let A and B be collections of subsets of X and Y ⊂ X. We define

• A ∧ B = {A ∩ B | A ∈ A, B ∈ B};
• A|Y = {A ∩ Y | A ∈ A};
• A[Y ] = {A ∈ A | A ∩ Y 	= ∅};
• Acl = {clA | A ∈ A}.
The star of Y with respect to A is defined as follows:

• st(Y,A) = Y ∪⋃A[Y ] (= Y ∪⋃
A∈A[Y ]A).

When each A ∈ A is contained in some B ∈ B, it is said that A refinesB, which
is denoted by

A ≺ B or B � A.

It is said that A covers Y (or A is a cover of Y in X) if Y ⊂ ⋃A (= ⋃
A∈AA).

When A is a cover of Y in X, st(Y,A) = ⋃A[Y ]. A cover of X in X is simply
called a cover of X.

A cover of Y in X is said to be open (resp. closed) in X depending on whether
its members are open (resp. closed) in X. If A is an open cover of X, then A|Y
is an open cover of Y and A[Y ] is an open cover of Y in X. When A and B are
open covers of X, A ∧ B is also an open cover of X. For covers A and B of X, it
is said that A is a refinement of B if A ≺ B, where A is an open (resp. closed)
refinement if A is an open (resp. closed) cover.

For a space X, we write

• cov(X) — the collection of all open covers of X.

2The (topological) dimension of M is equal to n.
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For U,V ∈ cov(X), we define

st(U,V) = {st(U,V) | U ∈ U}.

In the case of V = U, st(U,U) is denoted by stU. When stU ≺ V, we call U a
star-refinement of V. We inductively define stnU, n ∈ N, as follows:

stnU = st(stn−1 U,U),

where st0 U = U (so st1 U = stU).
Let (Xγ )γ∈� be a family of (topological) spaces and X = ⋃

γ∈� Xγ . The weak
topology on X with respect to (Xγ )γ∈� is the topology defined as follows:

U ⊂ X is open in X ⇔ ∀γ ∈ �,U ∩Xγ is open in Xγ

(
A ⊂ X is closed in X ⇔ ∀γ ∈ �,A ∩Xγ is closed in Xγ

)
.3

Suppose that X has the weak topology with respect to (Xγ )γ∈� and the topologies
of Xγ and Xγ ′ agree on Xγ ∩ Xγ ′ for any γ, γ ′ ∈ �. If Xγ ∩ Xγ ′ is closed (resp.
open) in Xγ for any γ, γ ′ ∈ �, then each Xγ is closed (resp. open) in X and the
original topology of each Xγ is a subspace topology inherited from X. In the case
Xγ ∩Xγ ′ = ∅ for γ 	= γ ′, X is called the topological sum of (Xγ )γ∈� and denoted
by X = ⊕

γ∈� Xγ . In the case Xγ ∩ Xγ ′ = {x0} for γ 	= γ ′, X is called the

wedge sum (or wedge) of (Xγ )γ∈� at x0 and denoted by X = ∨
γ∈� Xγ .4 When

� = {1, . . . , n}, we write as follows:

n⊕

i=1

Xi = X1 ⊕ · · · ⊕Xn and
n∨

i=1

Xi = X1 ∨ · · · ∨Xn.

Let f : A → Y be a map from a closed set A in a space X to another space
Y . The adjunction space Y ∪f X is the quotient space (X ⊕ Y )/∼, where X ⊕
Y is the topological sum and ∼ is the equivalence relation corresponding to the
decomposition of X ⊕ Y into singletons {x}, x ∈ X \ A, and sets {y} ∪ f−1(y),
y ∈ Y (the latter is a singleton {y} if y ∈ Y \ f (A)). When Y is a singleton,
Y ∪f X ≈ X/A. One should note that the adjunction spaces are not Hausdorff in
general. It is necessary to require some conditions for the adjunction space to be
Hausdorff.

3I.e., the finest (or largest) topology such that each inclusion Xγ ⊂ X is continuous. (The term
“weak topology” is used with a different meaning by functional analysts, etc.)
4The wedge (sum) is used for a family of pointed spaces with the common base point.
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Let f : X → Y be a map. For A ⊂ X and B ⊂ Y , we write

f (A) = {
f (x)

∣
∣ x ∈ A

}
and f−1(B) = {

x ∈ X
∣
∣ f (x) ∈ B

}
.

For collections A and B of subsets of X and Y , respectively, we write

f (A) = {
f (A)

∣
∣ A ∈ A}

and f−1(B) = {
f−1(B)

∣
∣ B ∈ B}.

The restriction of f to A ⊂ X is denoted by f |A. It is said that a map g : A → Y

extends over X if there is a map f : X → Y such that f |A = g. Such a map f is
called an extension of g.

Let [a, b] be a closed interval, where a < b (∈ R). A map f : [a, b] → X

is called a path (from f (a) to f (b)) in X, where it is said that two points f (a)
and f (b) are connected by the path f in X. An embedding (i.e., an injective path)
f : [a, b] → X is called an arc (from f (a) to f (b)) in X, and the image f ([a, b])
is also called an arc. Namely, a space is called an arc if it is homeomorphic to I.
A space X is path-connected (or arcwise connected) if each pair of distinct points
x, y ∈ X are connected by a path (or an arc). It is said that X is locally path-
connected (or locally arcwise connected) if any neighborhood U of each point
x ∈ X contains a neighborhood V of x such that each pair of distinct points in V

are connected by a path (or an arc) in U (i.e., for each y, z ∈ V , there is a path (or
an arc) f : I → U such that f (0) = y and f (1) = z). In this definition, as is
easily observed, V may be a path-connected (or an arcwise connected). The (local)
arcwise connectedness looks to be stronger than the (local) path-connectedness, but
they are the same concepts, that is:

Proposition 1.1.1 An arbitrary space X is path-connected if and only if X is
arcwise connected. Moreover, X is locally path-connected if and only if X is locally
arcwise connected. 5.14.7

For spaces X and Y , we write

• C(X, Y ) — the set of (continuous) maps from X to Y .

Given subspaces X1, . . . , Xn ⊂ X and Y1, . . . , Yn ⊂ Y , a map f : X → Y is said
to be a map from (X,X1, . . . , Xn) to (Y, Y1, . . . , Yn) and is written

f : (X,X1, . . . , Xn) → (Y, Y1, . . . , Yn)

if f (X1) ⊂ Y1, . . . , f (Xn) ⊂ Yn. We write

• C((X,X1, . . . , Xn), (Y, Y1, . . . , Yn)) — the set of maps from (X,X1, . . . , Xn)

to (Y, Y1, . . . , Yn);
• C((X, x0), (Y, y0)) = C((X, {x0}), (Y, {y0})).

For maps f, g : X → Y (i.e., f, g ∈ C(X, Y )),

• f � g means that f and g are homotopic (or f is homotopic to g),
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that is, there is a map h : X × I → Y such that h0 = f and h1 = g, where
ht : X → Y , t ∈ I, are defined by ht (x) = h(x, t), and h is called a homotopy
from f to g (between f and g). When g is a constant map, it is said that f is null-
homotopic, which is denoted by f � 0. For a homotopy h : X × I → Y , we call
h({x} × I), x ∈ X, the tracks of h, where each h({x} × I) is the track of x ∈ X

by h.
For spaces X and Y ,

• X � Y means that X and Y are homotopy equivalent,

that is, there are maps f : X → Y and g : Y → X such that gf � idX and
fg � idY , where f is called a homotopy equivalence and g is a homotopy inverse
of f . Then, we also say that X and Y have the same homotopy type or X has the
homotopy type of Y . For each f, f ′ ∈ C(X, Y ) and g, g′ ∈ C(Y,Z), we have the
following:

f � f ′, g � g′ ⇒ gf � g′f ′.

A homotopy h between maps f, g ∈ C((X,X1, . . . , Xn), (Y, Y1, . . . , Yn))

requires the condition that ht ∈ C((X,X1, . . . , Xn), (Y, Y1, . . . , Yn)) for every
t ∈ I, that is, h is regarded as the map

h : (X × I,X1 × I, . . . , Xn × I) → (Y, Y1, . . . , Yn).

When there are maps

f : (X,X1, . . . , Xn) → (Y, Y1, . . . , Yn),

g : (Y, Y1, . . . , Yn) → (X,X1, . . . , Xn)

such that gf � idX and fg � idY , we write

• (X,X1, . . . , Xn) � (Y, Y1, . . . , Yn);
• (X, x0) � (Y, y0) means (X, {x0}) � (Y, {y0}).

For A ⊂ X, a homotopy h : X × I → Y is called a homotopy relative to A
if h({x} × I) is a singleton for every x ∈ A. When a homotopy from f to g is a
homotopy relative to A (where f |A = g|A), it is said that f and g are homotopic
relative to A, which is written as follows:

f � g rel. A.

Let f, g : X → Y be maps and U a collection of subsets of Y (as usual, U ∈
cov(Y )). It is said that f and g are U-close (or f is U-close to g) if

{{f (x), g(x)} ∣∣ x ∈ X
} ≺ U ∪ {{y} ∣∣ y ∈ Y

}
,
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which implies that U covers the set {f (x), g(x) | f (x) 	= g(x)}. A homotopy h is
called a U-homotopy if the collection of non-degenerate tracks of h refines U, that
is,

{
h({x} × I)

∣
∣ x ∈ X

} ≺ U ∪ {{y} ∣∣ y ∈ Y
}
.

In this case, U covers the set

⋃{
h({x} × I)

∣
∣ h({x} × I) is non-degenerate

}
.

When a homotopy from f to g is a U-homotopy, it is said that f and g are U-
homotopic (or f is U-homotopic to g), which is written as follows:

f �U g.

When Y = (Y, d) is a metric space, we can define a metric d called the sup-
metric on the set C(X, Y ) as follows:

d(f, g) = sup
x∈X

min{d(f (x), g(x)), 1}.5

The metric space (C(X, Y ), d) is denoted by Cd (X, Y ). The topology of Cd (X, Y )

is called the uniform convergence topology, where each f ∈ Cd(X, Y ) has a
neighborhood basis consisting of the following:

Bd (f, ε) =
{
g ∈ C(X, Y )

∣
∣ d(f, g) < ε

}
, ε > 0.

For ε > 0, it is said that f and g are ε-close or f is ε-close to g if d(f, g) < ε. A
homotopy h is called an ε-homotopy if mesh{h({x} × I) | x ∈ X} < ε. When a
homotopy from f to g is an ε-homotopy, it is said that f and g are ε-homotopic,
which is written as follows:

f �ε g.

The compact-open topology on C(X, T ) is generated by the sets

〈K;U〉 = {
f ∈ C(X, Y )

∣
∣ f (K) ⊂ U

}
,

5In the case where Y is bounded or X is compact, we can employ the definition d(f, g) =
supx∈X d(f (x), g(x)). But, in general, the case d(f, g) = ∞ might occur for this definition.
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where K is any compact set in X and U is any open set in Y . With respect to the
compact-open topology, we have the following:

Proposition 1.1.2 (Properties of the Compact-Open Topology)

(1) Every map f : Z × X → Y induces the map f̃ : Z → C(X, Y ) defined by
f̃ (z)(x) = f (x, y). 1.1.1

(2) For each f ∈ C(Z,X) and g ∈ C(Y,Z), the following are continuous:

f ∗ : C(X, Y ) → C(Z, Y ), f ∗(h) = h ◦ f ;
g∗ : C(X, Y ) → C(X,Z), g∗(h) = g ◦ h. 1.1.3(1)

(3) When Y is locally compact, the following composition is continuous:

C(X, Y )× C(Y,Z) � (f, g) �→ g ◦ f ∈ C(X,Z). 1.1.3(2)

(4) When X is locally compact, the following (evaluation) is continuous:

ev : C(X, Y )×X → Y, ev(f, x) = f (x).

So, every map f : Z → C(X, Y ) induces the map f̃ : Z × X → Y defined by
f̃ (z, x) = f (z)(x). 1.1.3(4)

(5) When X is locally compact, the following inequalities hold:

w(Y ) � w(C(X, Y )) � ℵ0w(X)w(Y ).

In particular, if X is separable locally compact and Y has infinite, then
w(C(X, Y )) = w(Y ). 1.1.3(5)

(6) When X is compact and Y = (Y, d) is a metric space, the sup-metric on
C(X, Y ) is admissible, that is, the compact-open topology is induced by the
sup-metric. 1.1.3(6)

Regarding C(X, Y ) as a subspace of the product space YX, we can introduce
another topology on C(X, Y ), which is called the pointwise convergence topology.
The space C(X, Y )with the pointwise convergence topology is written as Cp(X, Y ).
For each x ∈ X, the evaluation evx : C(X, Y ) → Y is defined by evx(f ) =
f (x), which is the restriction of the projection prx : YX → X. Thus, the pointwise
convergence topology is the coarsest topology such that the evaluations evx , x ∈ X,
are continuous and it is generated by the sets

〈x;U〉 = {
f ∈ C(X, Y )

∣
∣ f (x) ∈ U

}
,

where x is any point of X and U is any open set in Y . Hence, every open set in
Cp(X, Y ) is open in C(X, Y ), that is, the pointwise convergence topology is not
finer than the compact-open topology.
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Remark 1.1 Proposition 1.1.2(4) does not hold for the space Cp(X, Y ) even if X is
compact and Y = R. For example, let X = {0, 1/n | n ∈ N} and c0 : X → R be
the constant map with c0(X) = {0}. For any neighborhoodU of c0 in Cp(X,R) and
any neighborhood V of 0 in X, we can choose a finite set F ⊂ X, 0 < ε < 1, and
x0 ∈ V \ F so that

⋂
x∈F 〈x; (−ε, ε)〉 ⊂ U. Let f0 : X → R be the map defined

by f0(x0) = 1 and f0(x) = 0 for any x ∈ X \ {x0}. Then, (f0, x0) ∈ U × V but
ev(f0, x0) = f0(x0) = 1 	∈ (−1, 1).

1.2 Banach Spaces in the Product of Real Lines

Throughout this section, let � be an infinite set. Here, we review Banach spaces6

being linear subspaces of the product R� . We write

• Fin(�) — the set of all non-empty finite subsets of �.

Then, note that card Fin(�) = card�. The product space R
� is a linear space with

the following scalar multiplication and addition:

R
� × R � (x, t) �→ tx = (tx(γ ))γ∈� ∈ R

�;
R
� ×R

� � (x, y) �→ x + y = (x(γ )+ y(γ ))γ∈� ∈ R
�.

These operations are continuous with respect to the product topology of R
� .

Namely, R� with the product topology is a topological linear space.7 Note that
w(R�) = ℵ0 card Fin(�) = card�.

For each γ ∈ �, we define the unit vector eγ ∈ R
� by eγ (γ ) = 1 and eγ (γ ′) = 0

for γ ′ 	= γ . It should be noticed that {eγ | γ ∈ �} is not a Hamel basis for R� and
its linear span8 is the following:

R
�
f = {

x ∈ R
�
∣∣ x(γ ) = 0 except for finitely many γ ∈ �

}
,

which is a dense linear subspace of R� . The subspace RN

f of s = R
N is also denoted

by sf , which is consisting of all finite sequences.
As is easily observed, the following are equivalent:

(a) R
� is metrizable;

(b) R
�
f is metrizable;

(c) R
�
f is first countable;

(d) card� � ℵ0.

6A Banach space is a complete normed linear space.
7Refer to p. 23.
8The linear span of B is the linear subspace generated by a set B.
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Thus, when � is uncountable, every linear subspace L of R� with R
�
f ⊂ L is non-

metrizable. Moreover, R� (or R�
f ) is metrizable only when � is countable. In the

case card� = ℵ0, R� is linearly homeomorphic to the space of sequences s = R
N,

that is, there exists a linear homeomorphism between R
� and s. On the other hand,

we have the following proposition:

Proposition 1.2.1 Let � be an infinite set. Then, any norm on R
�
f does not induce

the topology inherited from the product topology of R� . Consequently, every linear
subspace L of R� with R

�
f ⊂ L is not normable. 1.2.1

We can consider various norms defined on linear subspaces of R� , which are not
compatible with the product topology as in Proposition 1.2.1 above. In general, the
unit closed ball and the unit sphere of a normed linear space X = (X, ‖ · ‖) are
denoted by BX and SX respectively, that is,

BX = {
x ∈ X

∣
∣ ‖x‖ � 1

}
and SX = {

x ∈ X
∣
∣ ‖x‖ = 1

}
.

The zero vector (the zero element) of X is denoted by 0X, or simply by 0 if there is
no possible confusion.

The Banach space �∞(�) and its closed linear subspaces c(�) ⊃ c0(�) are
defined as follows:

• �∞(�) = {
x ∈ R

�
∣
∣ supγ∈� |x(γ )| < ∞}

with the sup-norm

‖x‖∞ = sup
γ∈�

|x(γ )|; 9

• c(�) = {
x ∈ R

�
∣
∣ ∃t ∈ R such that ∀ε > 0, |x(γ )− t| < ε

except for finitely many γ ∈ �
};

• c0(�) =
{
x ∈ R

�
∣
∣ ∀ε > 0, |x(γ )| < ε except for finitely many γ ∈ �

}
.

These are linear subspaces of R� but not topological ones as seen above. The space
c(�) is linearly homeomorphic to c0(�)×R by the following correspondence:

c0(�)× R � (x, t) �→ (x(γ )+ t)γ∈� ∈ c(�).

This correspondence and its inverse are Lipschitz with respect to the norm ‖(x, t)‖ =
max{‖x‖∞, |t |}.

Furthermore, �∞f (�) denotes R�
f with this norm. Then,

�∞f (�) ⊂ c0(�) ⊂ c(�) ⊂ �∞(�).

9In some literature, this space is denoted by m(�).



12 1 Preliminaries and Background Results

For the weight of these spaces, we have the following:

w(�∞(�)) = 2card� but w(c(�)) = w(c0(�)) = w(�∞f (�)) = card�

(cf. Proposition 1.2.2 in [GAGT]). The topology of �∞f (�) is different from the
topology inherited from the product topology. Indeed, {eγ | γ ∈ �} is discrete in
�∞f (�) but 0 is a cluster point of this set with respect to the product topology.

In the case � = N, we write:

• �∞(N) = �∞ — the space of bounded sequences;10

• c(N) = c — the space of convergent sequences;
• c0(N) = c0 — the space of null-sequences (= sequence tending to 0).

We also write �∞f (N) = �∞f , where �∞f = sf as sets (linear spaces) but they
have different topologies. It should be noted that c and c0 are separable but �∞ is
non-separable. When card� = ℵ0, the spaces �∞(�), c(�) and c0(�) are linearly
isometric to these spaces �∞, c and c0, respectively.

Here, we regard Fin(�) as a directed set by ⊂. For x ∈ R
� , we say that∑

γ∈� x(γ ) is convergent if
(∑

γ∈F x(γ )
)
F∈Fin(�) is convergent and define

∑

γ∈�
x(γ ) = lim

F∈Fin(�)

∑

γ∈F
x(γ ).

When x(γ ) � 0 for all γ ∈ �, in order that
∑

γ∈� x(γ ) is convergent, it is necessary

and sufficient that
(∑

γ∈F x(γ )
)
F∈Fin(�) is upper bounded, and then

∑

γ∈�
x(γ ) = sup

F∈Fin(�)

∑

γ∈F
x(γ ).

Thus, by
∑

γ∈� x(γ ) < ∞, we mean that
∑

γ∈� x(γ ) is convergent.

For x ∈ R
N,

∑
i∈N x(i) should be distinguished from

∑∞
i=1 x(i). When the

sequence
(∑n

i=1 x(i)
)
n∈N is convergent, we say that

∑∞
i=1 x(i) is convergent and

define

∞∑

i=1

x(i) = lim
n→∞

n∑

i=1

x(i).

Evidently, if
∑

i∈N x(i) is convergent then
∑∞

i=1 x(i) is also convergent and∑∞
i=1 x(i) =

∑
i∈N x(i). However,

∑
i∈N x(i) is not convergent even if

∑∞
i=1 x(i)

is convergent. In fact, due to Proposition 1.2.3 in [GAGT], the following equiva-

10In some literature, this space is denoted by m.
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lence holds:

∑

i∈N
x(i) is convergent ⇔

∞∑

i=1

|x(i)| is convergent.

For each p � 1, the Banach space �p(�) is defined as follows:

• �p(�) = {
x ∈ R

�
∣∣ ∑

γ∈� |x(γ )|p < ∞}
with the norm

‖x‖p =
(∑

γ∈�
|x(γ )|p

)1/p

.

Like �∞f (�), the space R�
f with this norm is denoted by �pf (�).

11

Similarly to c0(�), we have w(�p(�)) = card�. When card� = ℵ0, the Banach
space �p(�) is linearly isometric to �p = �p(N), which is separable. The space
�2(�) is the Hilbert space with the inner product

〈x, y〉 =
∑

γ∈�
x(γ )y(γ ),

which is well-defined because

∑

γ∈�
|x(γ )y(γ )| � ‖x‖2

2 + ‖y‖2
2

2
< ∞.

For 1 � p < q < ∞, we have

�p(�) � �q(�) � c0(�) as sets (or linear spaces).

These inclusions are continuous because ‖x‖∞ � ‖x‖q � ‖x‖p for every x ∈
�p(�). When � is infinite, the topology of �p(�) is distinct from the one induced
by the norm ‖ · ‖q or ‖ · ‖∞ (i.e., the topology inherited from �q(�) or c0(�)). In
fact, the unit sphere S�p(�) is closed in �p(�) but not closed in �q(�) for any q > p

nor in c0(�). — Refer to [GAGT, p. 17].
For 1 � p � ∞, we have

R
�
f ⊂ �p(�) as sets (or linear spaces).

Let �pf (�) denote the subspace of �p(�) with �pf (�) = R
�
f as sets.

11The triangle inequality for ‖x‖p is known as the Minkowski inequality. The proof can be found
on pp. 16–17 in [GAGT].
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When � = N, we write �pf (N) = �
p
f . By Proposition 1.2.1, we know �

p
f (�) 	=

R
�
f as spaces for any infinite set �. In the above, the sequence (xn)n∈N is contained

in the unit sphere S�pf (�) of �pf (�), which means that S�pf (�) is not closed in �
q
f ,

hence �pf 	= �
q

f as spaces for 1 � p < q � ∞. Note that S�pf (�) is a closed subset

of �qf for 1 � q < p.
Concerning the convergence of sequences in �p(�), we have the following:

Proposition 1.2.2 For each p ∈ N and x ∈ �p(�), a sequence (xn)n∈N converges
to x in �p(�) if and only if

‖x‖p = lim
n→∞‖xn‖p and ∀γ ∈ �, x(γ ) = lim

n→∞ xn(γ ). 1.2.4

Remark 1.2 It should be noted that Proposition 1.2.2 is valid not only for sequences
but also nets, which means that the unit spheres S�p(�), p ∈ N, are subspaces of the
product space R

� , whereas neither R� nor R�
f is metrizable if � is uncountable.

Therefore, if 1 � p < q � ∞, then S�p(�) is also a subspace of �q(�), while, as
mentioned above, S�p(�) of �p(�) is not closed in the space �q(�). The unit sphere
S�pf (�) of �pf (�) is a subspace of R

�
f (⊂ R

�) and also a subspace of �q(�) for

1 � q � ∞.

Remark 1.3 The “if” part of Proposition 1.2.2 does not hold for the space c0(�) for
any infinite set � (but the “only if” part obviously does hold). — Refer to Remark 3
on p. 17 of [GAGT].

Concerning the topological classification of �p(�), we have the following
theorem due to S. Mazur [104]:

Theorem 1.2.3 (MAZUR) For each 1 < p < ∞, �p(�) is homeomorphic to �1(�).
By the same homeomorphism, �pf (�) ≈ �1

f (�), that is, the pair (�p(�), �pf (�)) is

homeomorphic to the pair (�1(�), �1
f (�)). 1.2.5

For each space X, we simply write Cd (X,R) = Cu(X), where the metric d of
R is the usual metric induced by the absolute value | · |, that is, Cu(X) is the metric
space with the sup-metric

d(f, g) = sup
x∈X

min
{|f (x)− g(x)|, 1

}
.12

This metric is not induced by a norm. The topology of Cu(X) is the uniform
convergence topology. It should be noted that Cu(X) is a linear space but it
is not a topological linear space in general. In fact, the scalar multiplication
R × Cu((0, 1]) → Cu((0, 1]) is not continuous with respect to the uniformly
convergence topology.

12See Footnote 5 (p. 8).
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Let f ∈ Cu((0, 1]) be defined by f (x) = x−1 for each x ∈ (0, 1]. Then, for any t > 0, if
x < t , then |tf (x) − 0f (x)| > 1, that is, d(tf, 0f ) = 1.

Among subspaces Cu(X), we have the following Banach space:

• CB(X) = {
f ∈ C(X)

∣
∣ supx∈X |f (x)| < ∞}

with the sup-norm

‖f ‖ = sup
x∈X

|f (x)|.

As is easily observed, CB(X) is clopen in C(X). Moreover, CB(X) is a component
of the space Cu(X) because CB(X) is path-connected as a normed linear space.
When X is compact, we have CB(X) = Cu(X). If X is discrete and infinite, then
CB(X) = �∞(X), so CB(N) = �∞ in particular.

The space Cp(X) = Cp(X,R) is a topological linear space as a subspace of the
product space R

X. The topology of Cp(X) is the pointwise convergence topology.
The space Cp(N) is none other than the space of sequences s = R

N.

1.3 Topological Spaces

The following TIETZE–URYSOHN EXTENSION THEOREM is very useful and
applied in various fields:

Theorem 1.3.1 (TIETZE–URYSOHN) Let A be a closed set in a normal space X.
Then, every map f : A → I extends over X. 2.2.2

Let A be a collection of subsets of a space X. It is said that A is locally finite
(resp. discrete) in X if each point has a neighborhood U in X which meets only
finitely many members (resp. at most one member) of A, that is, cardA[U ] < ℵ0
(resp. cardA[U ] � 1). If A is locally finite (resp. discrete) in X, then so is Acl

(= {clA | A ∈ A}). Moreover, we say that A is σ -locally finite (resp. σ -discrete)
in X if A is a countable union of locally finite (resp. discrete) subcollections.

Theorem 1.3.2 (A.H. STONE) Every open cover of a metrizable space has a
locally finite and σ -discrete open refinement. 2.3.1

Theorem 1.3.3 (BING; NAGATA–SMIRNOV) For a regular space X, the follow-
ing conditions are equivalent:

(a) X is metrizable;
(b) X has a σ -discrete open basis;
(c) X has a σ -locally finite open basis. 2.3.4

The equivalence of (a) and (b) in the above theorem is called the BING METRIZA-
TION THEOREM and the equivalence of (a) and (c) is called the NAGATA–SMIRNOV

METRIZATION THEOREM. Separable metrizable spaces are characterized as fol-
lows:


