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Supervisors’ Foreword

The principle of phase-contrast imaging, exploiting the wave properties of light,
was introduced for the visible-light regime in the 1930s by Frits Zernike. For the
first time, phase shifts induced by the imaged object, which carry important
information on the sample’s properties, could be visualised in a microscopic image.
Phase-contrast imaging revolutionised the field of visible-light microscopy and was
recognised with the Nobel Prize in Physics in 1953. More than a decade later, the
concept was translated to the X-ray regime by Ulrich Bonse and Michael Hart.
They developed an X-ray crystal interferometer, today known as Bonse-Hart
interferometer, to translate X-ray phase effects into intensity modulations recorded
by a detector. As for visible light, the X-ray phase-contrast signal leads to signif-
icantly improved image contrast, in particular for samples with small density dif-
ferences, which can hardly be visualised by the conventional absorption-based
modality. At first not widely applied due to the limitations in the available
instrumentation, X-ray phase-contrast imaging was further pursued in the 1990s
with the advent of high-brilliance X-ray synchrotron sources and more advanced
X-ray optics. A number of groups started working on X-ray phase-contrast imaging
during this time and introduced various other X-ray phase-contrast imaging tech-
niques, such as analyser-based imaging, propagation-based imaging, the
edge-illumination approach and Talbot(-Lau) grating interferometry. X-ray
phase-contrast imaging methods have since seen increasing interest in the last
decade for a wide range of applications, one of the most promising being (bio-)
medical imaging.

In recent years, efforts have increasingly been directed towards the development
and simplification of X-ray phase-contrast methods, also focussing on their trans-
lation from synchrotron facilities to lower brilliance conventional laboratory X-ray
sources. X-ray speckle-based imaging, introduced in 2012, is a simple yet very
sensitive and quantitative method to measure the phase shift induced by the sample
and can be adapted to conventional X-ray sources. The beauty of the technique lies
in the use of a simple optical element, such as a piece of sandpaper, to modulate the
X-ray wavefront and create interference effects, from which the phase information
is extracted. The great interest of the X-ray imaging community in speckle-based
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imaging has resulted in its rapid development, to which Marie-Christine Zdora’s
Ph.D. project has contributed significantly. Her work is a multidisciplinary project
spanning from theoretical advances and algorithmic developments to applications
of the method to relevant research areas.

Marie-Christine Zdora put X-ray speckle-based imaging in context with another
powerful X-ray phase-contrast method named grating interferometry and unified
these two methods with an innovative algorithmic approach for phase extraction
from interferometric data, the Unified Modulated Pattern Analysis, applicable also
to other wavelengths. She subsequently focussed on demonstrating the potential of
her method to various scientific applications, a range of which she presents in this
thesis.

By exploiting the high accuracy and high precision of the phase shift measured
with X-ray speckle-based imaging, Marie-Christine Zdora performed in-situ
metrology of X-ray optics, such as refractive X-ray lenses, commonly used at
synchrotron facilities. The results are relevant for the X-ray synchrotron community
to accurately characterise the optical components of synchrotron beamlines.

When combined with tomography, X-ray speckle-based imaging allows for the
visualisation of the inner structure of the sample and directly measures its mass
density distribution. Marie-Christine Zdora used X-ray speckle-based tomography
to answer relevant questions in materials science and geology, also extending the
technique to higher X-ray energies to image denser and thicker samples.

Marie-Christine Zdora pioneered the development of X-ray speckle-based
tomography for three-dimensional virtual histology of biomedical soft tissue
(biopsies from human tissues and full organs of small animals) in near-native state.
The data obtained in this way complement and advance the images from conven-
tional histopathology, while preserving the real three-dimensional connectivity
information and mapping in detail even the tiniest and most localised inhomo-
geneities in the sample.

Another crucial development was the translation of the Unified Modulated
Pattern Analysis to conventional laboratory-based X-ray systems, making it
accessible to a wider range of users.

When Marie-Christine Zdora was only 2 years into her Ph.D. project, she had
already been recognised by the X-ray imaging community as a pioneer of
speckle-based imaging. The impact of her Ph.D. work has been awarded by an
important recognition in our field, the Werner Meyer-Ilse Award for excellence in
X-ray microscopy in 2018. The expertise and deep understanding that
Marie-Christine Zdora has demonstrated is also reflected in the first review article in
X-ray speckle-based imaging that she has published as a single author during her
Ph.D. project.

This thesis will serve as a handbook of X-ray speckle-based imaging, providing
a comprehensive introduction to the technique and a guide on successfully
implementing it at synchrotron beamlines and laboratory-based systems. The high
quality and the diligent, detailed analysis of the experimental results presented in
the following pages speak for themselves. This work will be highly valuable not
only to the X-ray imaging community, but also disciplines that benefit from
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high-contrast imaging as well as accurate quantitative phase sensing and density
measurements, such as metrology and optics characterisation, the biomedical and
clinical fields, materials science, geology, palaeontology and archaeology, among
others. We anticipate the uptake of X-ray speckle-based imaging in these fields in
the near future.

Southampton, UK
September 2020

Dr. Irene Zanette
Prof. Pierre Thibault
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Abstract

In the last decades, X-ray phase-contrast imaging has proven to be a powerful
method for unveiling the inner structure of samples and is capable of visualising
even minute density differences. Recently, speckle-based imaging (SBI), the
youngest X-ray phase-sensitive technique, has received great interest due to its high
sensitivity, quantitative character and relaxed requirements on the setup compo-
nents and beam properties.

This thesis is focussed on the development, experimental optimisation and
applications of SBI, with the aim of simplifying its implementation, increasing its
flexibility and expanding its potential.

For this, a robust, flexible data acquisition and reconstruction approach, the
unified modulated pattern analysis (UMPA), was developed, which lifts previous
constraints of SBI. UMPA allows for tuning of the sensitivity and spatial resolution
by adjusting the scan and reconstruction parameters. It is applicable not only to
random speckle but also periodic interference patterns, bridging the gap and
improving the performance of both speckle- and single-grating-based techniques.

Following the first demonstration of UMPA, its potential for a range of appli-
cations is illustrated in this thesis. It is shown that UMPA can be employed for
X-ray optics characterisation to quantify aberrations in the focussing behaviour of
X-ray refractive lenses with high precision and accuracy. UMPA phase tomography
is applied to the field of biomedical imaging for high-sensitivity three-dimensional
(3D) virtual histology of unstained, hydrated soft tissue, giving unprecedented
structural and quantitative density information.

Further developments of SBI explored in this thesis include the testing of novel
customisable speckle diffusers, the extension of SBI to higher X-ray energies for
geology and materials science applications and the demonstration of UMPA at a
laboratory X-ray source. These progresses promise new possibilities of SBI for
high-sensitivity, robust and high-throughput imaging in previously inaccessible
fields and make SBI accessible to a wider range of users in research and industry.
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Chapter 1
Introduction

We shall see what we shall see. We have the start now; the developments will follow
in time. Dam (1896)

This is the answer W. C. Röntgen reportedly gave when asked about the future of
X-rays, which he had just discovered in 1895. And he was right. Since these early
days, X-rays have been subject to rapid developments in terms of imaging techniques
as well as applications, both areas of intense ongoing research to this date. This Ph.D.
thesis is part of this actively progressing field. It presents work contributing to the
development and optimisation of emerging X-ray imaging techniques, namely X-ray
speckle-based and grating-based phase-contrast imaging, as well as demonstrations
of the potential of these methods for existing and new areas of applications.

1.1 Background, Motivation and Present Work

The X-ray images taken by Röntgen were based on exploiting the absorption of X-
rays by the object to visualise its inner structure,which is nowadays called absorption-
based X-ray imaging. This conventional way is still the main workhorse of X-ray
imaging and used in a large number of applications such as medical diagnostic imag-
ing, security screening, non-destructive testing, foreign body detection in medicine
and food production, and many more.

Absorption-based X-ray imaging relies on the fact that for a fixed wavelength the
absorption ofX-rays in a specimendepends on its composition, density and thickness.
This, in fact, had already been observed by Röntgen in his very first experiments
(Röntgen1898).As a consequence, high-densitymaterials such asmetals or bone lead
to strongX-ray absorption while low-densitymaterials such as plastics or biomedical
soft tissue only attenuate theX-ray beamveryweakly, in particular at higher energies.
It is hence relatively easy to distinguish materials with large differences in density
based on X-ray absorption, but small density variations in a specimen are difficult
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to visualise. A prominent example is the visualisation of biomedical specimens.
Bones can easily be distinguished from surrounding soft tissue, as observed early in
Röntgen’s images of his assistant’s and wife’s hands, whereas differences in the soft
tissue itself cannot be visualised with sufficient contrast.

This limitation is addressed byX-ray phase-contrast imaging, introduced 70 years
after Röntgen’s early work (Bonse and Hart 1965). Instead of measuring the absorp-
tion in the sample, the X-ray phase-contrast imaging approach exploits the phase
shift of the X-rays as they travel through the specimen. It has been demonstrated that
utilising the phase information can significantly increase image contrast between fea-
tures of similar densities, in particular for biomedical soft tissue (Fitzgerald 2000;
Momose et al. 1996). Furthermore, X-ray phase-contrast imaging has the potential
to lead to better dose efficiency, a crucial factor for medical imaging applications
(Lewis 2004). This is due to the fact that the X-ray phase-shift cross-section drops
less rapidly with the X-ray energy than the absorption cross-section. This allows for
the use of higher X-ray energies, which leads to a reduction in the dose absorbed by
the sample. Since it was first introduced, X-ray phase-contrast imaging has found a
large range of applications originally mainly for medical and biomedical imaging,
but later also in other areas such as materials science, geology and archaeology, as
well as metrology (for the characterisation of X-ray optics) and wavefront sensing
(for the analysis of the X-ray beam itself).

Differentmethods have been proposed to extract theX-ray phase-shift information
about the sample. They all rely on translating the phase shift into intensity variations
in the observation plane, which can be recorded by a detection system, as will be
explained in more detail in the next chapter of this thesis. Some of the methods not
only deliver the phase-contrast image but also complementary X-ray transmission
and small-angle scattering information from the samedata set. The latter is commonly
referred to as dark-field signal in this context (Nesterets 2008; Yashiro et al. 2010).

Among these multimodal techniques, X-ray grating interferometry (David et al.
2002; Momose et al. 2003; Weitkamp et al. 2005) has gained popularity in the imag-
ing community during the last decade due to its quantitative character, high phase
sensitivity and compatibility with low-brilliance polychromatic X-ray sources that
allowed for its translation to the laboratory (Pfeiffer et al. 2006) and raises hopes for
its future implementation in the clinics. The principle of X-ray grating interferome-
try is to use an X-ray beam-splitting grating to create a periodic interference pattern
downstream in the detection plane, which is then used as a wavefront marker. The
information on the specimen is encoded in modulations of this reference pattern aris-
ing when the sample is inserted into the beam path. These are subsequently decoded
computationally to extract the transmission, refraction and small-angle scattering
signals of the sample from the change in intensity, the lateral displacement and the
change in visibility of the reference pattern, respectively.

A similar idea is the basis for the most recently proposed phase-sensitive (and
multimodal) imaging method, namely X-ray speckle-based imaging (Bérujon et al.
2012a, b; Morgan et al. 2012). The periodic grating pattern is replaced by a random
pattern, known as X-ray near-field speckle pattern (Cerbino et al. 2008). The latter is
produced by placing a diffuser, i.e. a material containing small randomly distributed
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particles, into the X-ray beam, which leads to X-ray scattering and interference
effects. X-ray speckle-based imaging has raised great attention in the last years as it
can reach a very high phase sensitivity down to a few nanoradians angular resolution
and can be operated with a simple setup that does not require additional specialised
equipment and is compatible with polychromatic and divergent beams. Commonly,
cheap and widely available sandpaper is used as a diffuser, making this method
significantly less costly than many other methods.

These two phase-sensitive imaging methods are the subject of this Ph.D. thesis,
which explores X-ray phase-sensitive imaging with a single, periodic or random,
phase modulator (grating or diffuser) as a wavefront marker to access the phase-
contrast and other complementary multimodal signals of a sample under investiga-
tion. The approach of using a single phase modulator allows for an easily imple-
mented, flexible experimental setup that has the potential for wider uptake by the
user communities, also at X-ray laboratory sources and in clinical environments.
The main focus of the project is the further development and optimisation of the
relatively young X-ray speckle-based imaging technique, exploring advanced data
acquisition and reconstruction approaches, but also demonstrating its potential for
a range of applications. The latter include high-contrast, quantitative phase-contrast
and multimodal imaging in the fields of biomedical research, geology and materi-
als science, in particular in three-dimensional (3D) tomographic implementation, as
well as X-ray optics characterisation. In addition to the studies and developments on
the speckle-based technique, X-ray grating interferometry using a single grating was
investigated and optimised for biomedical imaging applications. Although the pro-
cess for creating the interference pattern and the commonly applied algorithms for
signal extraction differ for X-ray grating interferometry and speckle-based imaging,
both share the same basic principles of signal generation. In fact, it will be shown
in this thesis that the two approaches can be unified in a single data acquisition and
reconstruction method, which was developed during this Ph.D. project. This bridges
the gap between grating- and speckle-based methods and generalises the concepts
discussed in this thesis to any kind of reference pattern, making it transferable tomost
existing setups designed for X-ray phase-contrast imaging. Moreover, the approach
can be extended to laboratory sources, which makes it widely accessible for research
applications and future clinical and industrial use.

1.2 Outline of this Thesis

This thesis contains the results of newly developed concepts and experimental vali-
dations of X-ray single-grating and X-ray speckle-based phase-sensitive imaging. It
is organised as follows.

Chapter 2 gives an overview of the fundamental principles of X-ray imaging
that are essential for the work presented later in the thesis. Starting from the basics
of the interaction of X-rays with matter, the concepts and implications of tempo-
ral and spatial coherence are explained, followed by a summary of different X-ray
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phase-contrast imaging methods. For the latter, a more detailed overview of the tech-
niques relevant to this thesis is given. In the last sections of the chapter, the principles
of computed tomography as well as a summary of different types of X-ray sources,
in particular the ones used during this Ph.D. project, is given.

Chapter 3 provides some basic information on the layout, specifications, instru-
mentation and equipment of the two synchrotron beamlines at which most of the
experiments during this Ph.D. project were carried out: beamline I13 at Diamond
Light Source (UK) and beamline ID19 at the European Synchrotron Radiation Facil-
ity (France). At the end of the chapter, the contributions to these beamlines resulting
from this Ph.D. project are summarised.

Chapter 4 presents results on X-ray grating interferometry with a single grating.
It starts with the theoretical background on the working principles, signal generation
and extraction and developments of X-ray grating interferometry, followed by the
demonstration of X-ray single-grating interferometry at Diamond I13 beamline for
high-contrast 3D biomedical imaging. In the last section of the chapter, more recent
results on the implementation of single-grating interferometry at I13 are shown.

Chapter 5 contains a comprehensive literature review of the concepts and state
of the art of X-ray speckle-based imaging. Starting from the principles of X-ray
near-field speckle and its use as a wavefront marker, the image formation and recon-
struction processes are explained and the existing experimental implementations
are outlined. Furthermore, an overview of the developments and applications of
X-ray speckle-based imaging to date is given, including somemost recently reported
advances.

Chapter 6 introduces the unified modulated pattern analysis (UMPA), which uni-
fies the X-ray grating- and speckle-based imaging techniques in a single approach
and is one of the main developments achieved during this Ph.D. project. The chapter
starts with a section exploring the performance and limitations of existing opera-
tional modes for speckle-based imaging. This is followed by the first demonstration
of UMPA, which is shown to address some of the main limitations of previous
implementations of the speckle- and grating-based techniques. After introducing the
principles of UMPA data acquisition and analysis, the potential of the method for
multimodal imaging is experimentally demonstrated and quantitatively analysed on
a test sample and a more complex specimen. It is, moreover, shown that UMPA
can be applied not only to random speckle but also periodic reference patterns. The
last section of the chapter contains a more detailed study of the tunable character of
UMPA and an analysis of the effects of different scan and reconstruction parameters
on the image quality.

In Chap. 7, the UMPA approach implemented with both a random and a periodic
reference pattern is applied to X-ray optics characterisation for the analysis of two
different X-ray refractive lenses. Aberrations in the focussing behaviour due to pre-
vious beam damage and fabrication errors are successfully identified and quantified
using UMPA phase-sensitive imaging.

Chapter 8 presents another major contribution of this project to the field of X-ray
speckle-based imaging: the first speckle-based phase tomography of a scientifically
relevant specimen using UMPA, demonstrating its potential for biomedical imaging.
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UMPA phase tomographies of various unstained biomedical soft-tissues samples,
such as a mouse testicle, a mouse kidney and human brain tissue, are shown and
evaluated qualitatively as well as quantitatively. An in-depth analysis of the results
on the murine kidney illustrates the great potential of X-ray speckle-based phase
tomography for 3D virtual histology, giving unprecedented insights into the interre-
lationship and connectivity of features within fully hydrated biomedical specimens
without the need for contrast agents.

Chapter 9 reports on some of the recent and ongoing work conducted during this
Ph.D. project that is aimed at making X-ray speckle-based imaging adaptable to
various different experimental conditions and setups and widening its accessibility
to the user community. This includes the optimisation of setup components and the
extension of the method to higher X-ray energies as well as polychromatic, low-
brilliance laboratory X-ray sources. A new type of customisable speckle diffuser is
presented, which has the potential to optimise the imaging setup by adapting the
speckle properties to specific experimental conditions. Furthermore, high-energy
speckle imaging with the UMPA technique is demonstrated on volcanic rock and
mortar samples, extending the technique to new areas of research. In the last section
of the chapter, the translation of UMPA to a laboratory X-ray system is reported and
its performance is illustrated in a proof-of-principle measurement of a test sample
and a bug.

The thesis ends with Chap. 10, which contains a summary and conclusions of the
work presented in the previous chapters and a guide ofwhich phase-sensitive imaging
methodmight be most suitable for given experimental conditions. The chapter closes
with a discussion on future developments and perspectives.

1.3 Contributions

The main work conducted during this Ph.D. project and presented in this thesis, is
based on ideas and concepts conceived by the author and her primary supervisors Dr.
Irene Zanette and Prof. Pierre Thibault. Further work was performed in collaboration
with a number of European research groups, some on topics pursued in this thesis,
somenot directly related. Themajor part of the researchwithin this project is focussed
on X-ray grating- and speckle-based imaging. This involved collaborations with
several people, in particular for beamtime support and for the supply and preparation
of samples. Their contributions are mentioned in the relevant sections. For the parts
of this thesis based on previously published papers, collaborators are not explicitly
mentioned but can be found in the author list of the related publications.

Specifically, the contributions of the Ph.D. candidate to the main projects pre-
sented in this thesis are summarised in the following:

• Implementation and applications of X-ray grating interferometry at Diamond
I13-2 (Chap. 4): The project was initiated by Dr. Irene Zanette and continued
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by the Ph.D. candidate. Planning and experiments were led by the Ph.D. candidate
and measurements were performed with the assistance of beamline staff and col-
laborators. The specimens were prepared and provided by collaborators. All data
analysis was performed by the Ph.D. candidate.

• Development of the unified modulated pattern analysis (UMPA) for speckle- and
grating-based imaging (Chap. 6): The initial idea of the UMPA data acquisition
and analysis method and the first version of the basic Python code were conceived
by Prof. Pierre Thibault and Dr. Irene Zanette. The Ph.D. candidate parallelised
and optimised the code and carried out first performance tests. All experiments
using UMPA were initiated, planned and led by the candidate with input from
her supervisors. Beamline staff and collaborators provided beamtime support and
samples. Data analysis was performed by the candidate.

• Optics characterisation with the unified modulated pattern analysis (Chap. 7):
The initial idea for characterising refractive lenses was proposed by the Ph.D.
candidate in discussion with collaborators Dr. Frieder Koch and Dr. Arndt Last.
Experiment planning and measurements were led by the candidate with support
from beamline staff and collaborators. Collaborators provided the samples and
information on them. All analysis was performed by the candidate.

• 3D virtual histology with the unified modulated pattern analysis (Chap. 8): The
idea was conceived by the Ph.D. candidate. The experiments were planned and
led by the candidate with support from beamline staff and collaborators. The
data analysis was performed by the candidate. Some analysis steps, such as the
3D visualisation of the reconstructed data, videos and the conventional histology
procedure, were carried out with support from collaborators, as indicated in the
relevant sections. Samples were prepared and provided by collaborators.

• Development of customisable phase modulators (Chap. 9, Sect. 9.2): The principle
of customising phase modulators for speckle-based imaging was conceived by the
Ph.D. candidate together with the collaborator Dr. Joan Vila-Comamala. Dr. Joan
Vila-Comamala had the idea of using the technique of metal-assisted chemical
etching and produced the phase modulators. The experiments were planned and
carried out by the Ph.D. candidate and the collaborator with support from beamline
staff. The sample was provided by Dr. Johannes Ihli. Data reconstruction was
performed by the Ph.D. candidate.

• Investigation of geological and materials science samples (Chap. 9, Sect. 9.3):
The experiment was initiated and planned by collaborators Dr. Tunhe Zhou and
Dr. Beverley Coldwell. Themeasurements were carried out by the Ph.D. candidate
together with the collaborators and with support from beamline staff. The samples
and information on them were provided by Dr. Beverley Coldwell and Dr. Fei
Yang. Analysis of the data presented in this thesis was performed by the Ph.D.
candidate.

• First implementation of the unified modulated pattern analysis at a laboratory
source (Chap. 9, Sect. 9.4): The laboratory setup with the liquid-metal-jet X-ray
source was conceived by the Ph.D. candidate’s supervisor Prof. Pierre Thibault.
The experimental arrangement and procedure for lab-based UMPA speckle imag-
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ing were developed and planned by the candidate in discussion with Dr. Irene
Zanette and Prof. Pierre Thibault. The experiment was led by the candidate and
carried out with support from collaborators as listed in Sect. 9.4. All data analysis
was performed by the candidate.

In addition to the measurements and results presented in the following chapters,
collaborative work on X-ray grating interferometry was performed at Diamond I13
and ESRF ID19 beamlines with the group of Prof. Bert Müller, Biomaterials Science
Centre at the University of Basel (Switzerland), mainly for imaging of brain tissue.
This resulted in a number of co-authored conference proceedings, see Schulz et al.
(2016, 2017), Khimchenko et al. (2016). Further work on the development of X-
ray speckle-based imaging was conducted in collaboration with Dr. Tunhe Zhou and
JennyRomell, first at the liquid-metal-jet laboratoryX-ray source at KTHStockholm
(Sweden) in the group of Prof. Hans Hertz and later at Diamond I13 and Diamond
I12 beamlines (UK), leading to co-authored publications, see Zanette et al. (2014),
Zanette et al. (2015), Zhou et al. (2015), Zhou et al. (2016), Romell et al. (2017).
In another collaboration, both speckle- and grating-based imaging were used for
high-speed differential phase-contrast imaging at ESRF ID19 beamline for the visu-
alisation of fast processes. This research was carried out with Dr. Patrik Vagovič,
DESY andXFEL (Germany) andDr.Margie Olbinado, ESRF (France), as evidenced
in Olbinado et al. (2018); Vagovič et al. (2019).

Although not discussed in this thesis, the author was also involved in exper-
iments and data analysis using X-ray single-distance propagation-based (inline)
phase-contrast imaging to investigate biomedical and palaeontological specimens.
Propagation-based phase-contrast measurements were performed in a collaboration
with the group of Prof. Bert Müller, Biomaterials Science Centre at the Univer-
sity of Basel (Switzerland), for the high-resolution visualisation of human brain
tissue and further analysis such as cell quantification, as reported in resulting arti-
cles, see Hieber et al. (2016); Khimchenko et al. (2016, 2017). The aim of another
project in collaboration with Dr. Irvin Teh and Prof. Jürgen Schneider, previously
Radcliffe Department of Medicine, University of Oxford (UK), now Leeds Institute
of Cardiovascular & Metabolic Medicine, University of Leeds (UK), was the high-
contrast, high-resolution visualisation of rat and mouse heart tissue for the validation
of diffusion-tensor magnetic resonance imaging (MRI) data. The results have been
published asTeh et al. (2017, 2018). The third biomedical application of propagation-
based imaging during this Ph.D. project was a collaboration with Dr. Carles Bosch
Piñol and Prof. Andreas Schaefer, Francis Crick Institute London (UK), on the visu-
alisation of the murine olfactory tube in the brain, which is an essential part of the
olfactory sensory system.

Apart from biomedical imaging, contributions in the scope of this Ph.D. project
include propagation-based phase-contrast imaging of palaeontological specimens in
collaboration with the group of Prof. Roger Benson, Department of Earth Sciences,
University of Oxford (UK). In this project, X-ray phase-contrast imaging at high
spatial resolution was used to visualise osteocytes, i.e. bone cells, in a large number
of fossilised fish bone samples from different points in time to study the evolution
of the cell size in bony fishes.
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Moreover, the author of this thesis was involved in work on absorption-based
micro computed tomography of biomedical specimens based on staining with con-
trast agents, which she had initiated during her Bachelor project in the group of
Prof. Franz Pfeiffer at Technical University Munich (Germany). This resulted in a
co-authored journal publication, see Bidola et al. (2019).

A list of the first and co-authored publications derived from the main work and
collaborative side projects conducted during this Ph.D. project can be found in the
author’s Curriculum Vitae at the end of this book. It also includes a list of invited and
contributed talks by the Ph.D. candidate given at international conferences, work-
shops and meetings.
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Chapter 2
Principles of X-ray Imaging

X-rays are electromagnetic radiation emitted by electrons outside the nucleus of
atoms. They typically have energies in the range of 100eV to 500keV, corresponding
to a wavelength range from 2.5pm to 10nm (Als-Nielsen and McMorrow 2011).
Compared to visible light, X-rays have a much higher penetration power through
dense materials and in particular hard X-rays (with an energy of >10 keV) have the
ability to penetrate deep into matter. This was first observed by Röntgen when he
discovered X-rays in 1895 (Röntgen 1895, 1898). X-rays were immediately used to
investigate the inner structure of materials as well as the human body and they have
been exploited for various imaging applications ever since.

While the first applications of X-rays were based on their absorption in the mate-
rial, e.g. for medical imaging of bones (Codman 1896; Editorial 1896b, a; Spiegel
1995), it was discovered later that, analogous to the visible light case (Zernike 1942,
1955), also their phase shift can be exploited for signal generation (Bonse and Hart
1965). However, the extraction of phase-contrast information is not as straightfor-
ward as for absorption imaging as detectors can only measure the beam intensity,
and not the phase shift. Therefore, methods were developed to encode this informa-
tion in intensity variations that could be recorded by the detector. The first X-ray
phase-contrast setup was proposed in 1965 by Bonse and Hart (Bonse and Hart
1965) who built a crystal interferometer to visualise the X-ray phase shift. How-
ever, X-ray phase contrast only gained increased interest with the development of
powerful and coherent X-ray sources at the end of the 20th century. In particular,
the discovery of X-ray propagation-based phase-contrast imaging at the European
Synchrotron Radiation Facility (ESRF) was a major milestone in the popularity of
the X-ray phase-contrast modality (Snigirev et al. 1995, 1996; Raven et al. 1996).
An interesting fact here is that both the first discovery of X-rays by Röntgen and the
first discovery of propagation-based phase contrast happened by chance when the
researchers were investigating on a different topic. Röntgen was performing experi-
ments with a Crookes tube and noticed the green fluorescence light on the phosphor
screen covering the tube, which was caused by X-rays generated in the tube. X-ray
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