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Preface

Light is not everything, but without light there would not be life as we know it. For good reasons,
the sun has been venerated in most ancient civilizations as a god. It has a powerful light and affects
our lives on a daily basis. Light drives, controls, or is generated in numerous chemical reactions
in nature. It is responsible for processes as essential as vision or photosynthesis, is part of the
enchanting phenomena which is bioluminescence but can also be detrimental, such as causing
skin damage. Its power has been exploited by mankind since earliest times, not only to heat but to
heal, e.g., treating epidermal conditions, to name just one example. Today, sunlight is the hope for
providing clean renewable energies. The ways in which the benefits of light can be harnessed go
beyond the boundaries of chemistry, into physics, biology and medicine.

Driven by curiosity and interest, many researchers have been fascinated in understanding how
light interacts with molecules as only then light can be rationally exploited in many applications.
Theory is particular useful for this endeavor, as it allows many details, which are often invisible in
experiments, to be disentangled. This particular research field, that could be termed as theoretical
photochemistry, took off in the early nineties. Thus, the field is not new but there is still much
room for further developments. When a molecule receives a photon of light, its energy changes,
or in the language of quantum mechanics, it gets electronically excited. Thus, the computational
study of electronic excited states requires the inclusion of quantum effects (at least in part) and
this makes it still a challenging problem today except for the smallest molecules. However, recent
years have witnessed an explosion of methods able to tackle the study of electronic states and its
evolution in time in many different ways. This expansion has been accompanied by thousands of
publications dealing with applications involving light. As of 2020, a search in the Web of Science
with the words “excited states” and “theory” returned almost 30 000 hits, of which half are just
from the last ten years! It is for this reason, that we considered it appropriate to bring this book
to light(!), introducing advanced undergraduates, graduate students, and interested researchers to
the many flavors in which the field has developed so far.

The book was born with the ambition to collect most of the computational methods that exist
today able to solve first the time-independent and then the time-dependent Schrödinger equation
for electronic excited states. Accordingly, after an introductory chapter dealing with basic concepts,
the book is divided into two parts. Part I contains 9 chapters dealing with electronic structure the-
ory, i.e., solving the time-independent Schrödinger equation and creating building blocks to be
used in subsequent dynamics simulations. Part II is divided in 10 chapters devoted to the dynamics
of molecules, i.e., solving the time-dependent equation. The solution to the former equation pro-
vides energies and other properties, of the electronic excited states in a static manner. It provides
multidimensional potential energy surfaces and the corresponding wave functions associated to a
particular geometry, which allow molecular spectroscopical properties to be computed. The latter
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equation delivers a complementary picture of the system, being in motion, indulging time scales
and predicting branching ratios. The richness and broadness of the book invites the reader to reflect
on which method could be suitable for a particular problem. We hope that this book fills a gap in
the theoretical and computational community dealing with light–matter interactions and becomes
a guide in hand, as well as a reference for scientists in the field.

From basic theoretical foundations to the latest theoretical developments, every chapter is
self-contained and encompasses the fundamental ideas behind a particular method, its strengths
and limitations, as well as selected applications. The chapters are written with the aim to be
understandable by master students and newcomers to the field while also informing experts about
the state-of-the-art in the field.

Last but not least, we want to express our warm gratitude to all the authors who gracefully
accepted the invitation to be part of this adventure, for their enthusiasm, patience and critical sug-
gestions. We are also thankful to our coworkers, for lively discussions and helpful exchanges, in
particular, to Philipp Marquetand, Sebastian Mai, Sandra Gómez, and Ignacio Fernández Galván.
Their help was priceless.

Leticia González (Vienna)
Roland Lindh (Uppsala)
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Motivation and Basic Concepts
Sandra Gómez1, Ignacio Fdez. Galván2, Roland Lindh2, and Leticia González1

1Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
2Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden

Abstract

This chapter describes what electronic excited states are and why they are important to study and
therefore motivates the need for theoretical tools able to characterize them. Further and most impor-
tantly, in this introductory chapter, we put together in a comprehensive manner a collection of basic
concepts that might be needed, depending on the background of the reader, to understand the remaining
chapters of this book.

1.1 Mission and Motivation

When a photon of light strikes a molecule, the latter’s electrons are promoted from the electronic
ground state to higher electronic levels. Typically, the electronic ground state of a molecule is a
singlet state, but depending on the number of electrons and their most favorable way of pairing, it
can be a doublet, a triplet, or a state of higher multiplicity. Assuming the electronic ground state
is a singlet, upon light absorption the molecule will be excited to another singlet state, as high
in energy as the energy contained in the photon allows. Once excited, a number of radiative and
non-radiative decay processes are possible. These are collected in the Jabłoński diagram shown in
Figure 1.1(a), which assumes an electronic singlet ground state.

Radiative processes include fluorescence or phosphorescence, depending on whether the emis-
sion of light involves a transition between two states of the same multiplicity, for example from the
lowest singlet S1 to the S0, or involves a change of spin, as shown in Figure 1.1, from the triplet T1
to the S0. Typically, as in the example depicted, the emitted light has a longer wavelength than the
absorbed radiation because luminescence occurs from lower energy levels, and thus absorption and
emission spectra are easy to identify from experimental data. In this example, the molecule returns
to the original ground state from where it started and thus there was no photochemical reaction,
one would say that a photophysical process has taken place.

Non-radiative processes can be much more complicated to observe experimentally, as they typi-
cally involve not only the bright or absorbing state defined by the wavelength employed to irradiate,
but also dark states, i.e., states that do not have a significant oscillator strength but are populated
from the bright states. A transition between electronic states of the same multiplicity is known as

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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Figure 1.1 (a) Jabłoński diagram with levels. After absorption of a photon with energy h𝜈, different
processes can occur: radiative processes are fluorescence (F) and phosphorescence (P), non-radiative
processes are internal conversion (IC) and intersystem crossing (ISC). (b) Jabłoński diagram with potential
energy surfaces.

internal conversion, e.g., from S2 to S1. When two states of different multiplicities are involved, e.g.,
from the S1 to T1, one speaks of intersystem crossing.

The electronic levels of a molecule are defined through potential energy surfaces (PES) that
extend along 3N − 6 dimensions (with N the number of atoms contained in the molecule). PES are
the direct consequence of invoking the Born–Oppenheimer approximation (BOA), see section 1.7.
As comfortable as it might seem for a chemist to employ electronic states to envision the course
of a chemical reaction from a reactant to a product, sticking to the BOA when talking about elec-
tronic excited states implies that the coupling between different PES is neglected. However, these
so-called non-adiabatic couplings between PES are the “salt and pepper” of photochemistry, as they
are essential to understand which states and geometrical conformations are populated after excita-
tion. One key concept in this respect is the non-adiabatic transition around a conical intersection, see
section 1.9. Named after the ideal topology two PES adopt when they intersect (see Figure 1.1(b)),
a conical intersection is the molecular funnel that allows for internal conversion, and it can also
be seen as the transition state in photochemistry, which connects a reactant with a product. Like-
wise, intersystem crossing is mediated by spin–orbit coupling, which is another form of vibronic
or non-adiabatic coupling between electronic levels.

Figure 1.1(b) summarizes the radiative and non-radiative processes described before, now in
terms of PES. If after the detour via the different PES, the molecule ends up at a different geomet-
rical configuration from which it started after irradiation, one speaks of a photochemical reaction;
if instead, it returns back to the electronic ground state of the reactant, the term photophysics is
employed.

Be it photophysics or photochemistry, light-induced processes are all around us. As Ciamician
already recognized in 19121, “reactions caused by light are so many, that it should not be diffi-
cult to find some of practical value”. Indeed, just to give one representative example, the dream
of using solar fuel to produce sustainable energy is keeping many scientists around the world
busy. In an effort to mimic natural photosynthesis, one needs among others, to design efficient
antenna complexes able to harvest the broad solar spectrum and direct the electrons towards the
catalytic centers. This design requires a profound understanding of the underlying processes that
take place in the molecules after light excitation. Theoretical modeling can help explain existing
experiments and hopefully guide new ones. Which are the electronic states that are populated after

1 Giacomo Ciamician, “The photochemistry of the future”, Science 36 (1912) 385–394.
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excitation? How does the molecule evolve along the complicated PES associated to these electronic
states? Often these two simple questions are not easy to answer. They imply a need to get an
accurate solution of two key equations, the electronic time-independent Schrödinger equation and
the time-dependent Schrödinger equation. Both equations are challenging to solve, except for very
small molecules, and so approximations and numerical strategies are required. The solution of the
first equation is the goal of electronic structure theory and the solution of the second, the target of
chemical dynamics. Both fields have tremendously evolved in the last decades, with the emergence
of many different methods that have a common objective.

The mission of this book is to keep up-to-date with the recent development in these two inter-
twined fields, setting the focus at solving electronic excited states and following their time evo-
lution. Accordingly, Part I collects the most important electronic structure methods that can be
used nowadays to calculate electronic excited states as well as associated PES and other electronic
properties. Part II, in turn, covers the state of the art for solving molecular motion in the elec-
tronic excited states. The variety and extension of the methods collected in this book speaks for
itself about how much progress has been achieved in this branch of theoretical chemistry, which
undoubtedly has also massively profited in the last years from enormous advances in computational
resources. It would not be fair, however, to pretend that theoretical photochemistry has reached its
cusp. A deeper reading of the chapters will reveal to the reader not only how far we have come but
also how much still remains to be done.

In an effort to make the contents of this book accessible to undergraduates and newcomers to
the field, the rest of this chapter contains a number of basic concepts to ease the reading. All the
chapters have been written in a fully consistent manner, so as to allow them to be studied inde-
pendently from the others. The chapters are, nevertheless, organized such that they try to reflect
a natural progression. In this respect, the chapters are grouped in two sections consisting of Part I
and Part II – electronic structure theory and methods for molecular dynamics, respectively.

In the electronic structure section the selected order of the chapters tries, to some extent, to be in
the order of sophistication. However, in some cases chapters are clustered together because of com-
mon grounds or methodology. In that sense, Part I starts with the chapters based on density func-
tional theory (DFT) – the chapters on time-dependent DFT (TD-DFT) and multi-configurational
DFT (MC-DFT). This is followed by chapters revolving around equation-of-motion coupled cluster
theory (EOM-CC) and the algebraic-diagrammatic construction (ADC) scheme for the polarization
propagator, which are grouped together due to the technical similarities of the methods. Finally,
five chapters are grouped together based on the use of a configurational interaction (CI) type of
wave function. Initially, the basics of the so-called complete active space SCF (CASSCF) and related
methods – the foundation of multi-configurational quantum chemistry – is introduced. This is
followed by two chapters on techniques describing how to solve the associated equations – the
chapters on density matrix renormalization group (DMRG) and the quantum Monte-Carlo (QMC)
approaches. To conclude Part I, two chapters about the inclusion of electronic dynamical corre-
lation follow – the chapters on the multi-reference configuration interaction (MRCI) method and
the multi-configurational reference perturbation theory (MRPT). A pictorial summary of the meth-
ods described is provided in Figure 1.2. Starting from Hartree–Fock (HF), different methods cover
different degrees of dynamic and static correlation, all the way to the exact full-CI (FCI).

Part II, dealing with the time evolution of nuclear configurations, starts with three chapters
that can be considered within the realm of quantum dynamics. The first one introduces the
time-dependent Schrödinger equation and how to solve it exactly in a grid – what is known as
wave packet dynamics. Due to the cost of obtaining PES, wave packet dynamics is typically done
in reduced dimensionality. The multi-configuration time-dependent Hartree (MCTDH) family of
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Figure 1.2 Scheme of quantum chemical methods for electronic structure. The lower left corner contains
the most basic ab initio method, Hartree–Fock (HF), while the exact solution of the time-independent
Schrödinger equation, full configuration interaction (FCI), lies, mostly unreachable, on the upper right
corner. A panoply of methods described in Part I of this book, identified by their acronyms, try to “correct”
HF, adding the missing electronic correlation and thus approximating the ideal FCI. The methods are
arranged, qualitatively, based on their algorithmic relations and their prioritization of so-called static or
dynamic correlation, which ultimately lead to the same end point.

methods is presented next, as a method that can alleviate in part the cost of grid-based wave packet
methodologies. This chapter ends, bridging with the next block of four chapters that are based on
quantum-mechanical and quantum-classical methods using on-the-fly computation of PES. These
chapters are arranged in sort of going from more to less “quantum” – direct dynamics variational
multi-configurational Gaussian (DD-vMCG) method, full and ab initio multiple spawning (FMS
and AIMS), Ehrenfest methods, and surface hopping (SH). The next four chapters are based on
alternative formulations of quantum dynamics. Exact factorization is based on an alternative way
to express the electronic–nuclear wave function, Bohmian dynamics is based on wave theory,
while semi-classical and path integral methods are based on Feynman’s path integral formulation.
Figure 1.3 illustrates pictorically the dynamical methods explained here.

Given the diversity of methods and authors it is unavoidable that every chapter follows its own
writing style. For that reason, we considered it useful to collect here some underlying mathematical
background, assuming basic knowledge of quantum mechanics, as well as a few photochemical
concepts, that naturally arise in many chapters.

1.2 Atomic Units

A comment on atomic units is in order here. Hartree atomic units can elegantly simplify equations
by setting to 1 the numerical value of some fundamental constants. Typical examples are the mass
of the electron me, the electron charge e, the Coulomb or electric force constant ke =

1
4𝜋𝜖0

and the

reduced Plank constant ℏ = h
2𝜋

. Other useful constants used as units, derived from those funda-
mental quantities and used in this book are the bohr, a0 ≈ 0.529 Å, and the hartree, Eh ≈ 27.21 eV.


