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Introduction

The n-dimensional metaplectic group S̃p(n, R) is the twofold cover of the symplec-
tic group Sp(n, R), which is the group of linear transformations of X = Rn × Rn

that preserve the bilinear (alternate) form

[( x
ξ ) , ( y

η )] = −〈x, η〉 + 〈y, ξ〉. (0.1)

There is a unitary representation of S̃p(n, R) in the Hilbert space L2(Rn), called
the metaplectic representation, the image of which is the group of transformations
generated by the following ones: the linear changes of variables, the operators of
multiplication by exponentials with pure imaginary quadratic forms in the expo-
nent, and the Fourier transformation; some normalization factor enters the defini-
tion of the operators of the first and third species. The metaplectic representation
was introduced in a great generality in [28] – special cases had been considered
before, mostly in papers of mathematical physics – and it is of such fundamental
importance that the two concepts (the group and the representation) have become
virtually indistinguishable. This is not going to be our point of view: indeed, the
main point of this work is to show that a certain finite covering of the symplectic
group (generally of degree n) has another interesting representation, which enjoys
analogues of most of the nicer properties of the metaplectic representation. We
shall call it the anaplectic representation – other coinages that may come to your
mind sound too medical – and shall consider first the one-dimensional case, the
main features of which can be described in quite elementary terms.

It may not be an exaggeration to claim that among the foundational objects
of classical analysis, the one-dimensional Gaussian function e−πx2

occupies one
of the foremost positions: it is central in Fourier analysis and special function
theory, everywhere in probability and, through its appearance in theta functions,
it is basic in modular form theory as well. With the help of some of its satellites
– the Heisenberg representation and Bargmann–Fock transform, the metaplectic
representation, the Weyl calculus – it lies again at the core of fundamental methods
of harmonic analysis or partial differential equations; it is also the basis of some
mathematical techniques used in quantum field theory.

A starting point of the present work might be the fact that there is an alter-
native to this function, leading to a different kind of analysis but with a possibly
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wide range of influence too: this is the Bessel function |x| 12 I− 1
4
(π x2), which lies in

the null space of the (formal) harmonic oscillator. It has at infinity the considerable
growth of the more obvious function |x|− 1

2 eπx2
: therefore, it cannot, in general,

occur in integrals on the real line of the usual type. Actually, the development
of the present analysis requires that we stray away from the usual one in several
aspects. Possibly the only mathematical object which will remain as it stands, at
least formally, is the Heisenberg representation: but a new notion of integral –
not destroying the invariance under translations – will be needed, and the Fourier
transformation and associated Weyl calculus of operators will be replaced by some
different, quite parallel objects; finally, the usual L2 scalar product will have to be
changed to an indefinite pseudoscalar product.

Turning to the n-dimensional case, let us first recall that the role of the ho-
mogeneous space Sp(n, R)/U(n) in analysis is well documented. On one hand, it
is the set of complex polarizations of X , i.e., the set of complex structures on
this space such that the symplectic form appears as the imaginary part of some
(Hilbert) scalar product on X ; on the other hand, it is a Hermitian domain (Siegel’s
domain), a natural place for analysis in Bergman’s style. What is more important
here is that one may realize the space L2(Rn) as a space of vector-valued functions
on Siegel’s domain, in a way that makes the metaplectic representation appear as
quite natural. To introduce the anaplectic representation, we substitute for Siegel’s
domain a finite covering Σ(n) of the space U(n)/O(n) of real polarizations of X ,
i.e., the space of Lagrangian subspaces of X . Again, we consider a certain space of
vector-valued functions on Σ(n), getting in a natural way a new representation of
some covering of the symplectic group as a result. These functions can in turn be
identified with scalar functions on Rn: however, in contradiction to the metaplectic
case, the class of functions on Rn which enter the new analysis consists only of
functions which extend as entire functions on Cn. The one–dimensional case of
this analysis coincides with the one hinted at above. A common point of the meta-
plectic and anaplectic representations is that each of the two groups of operators
normalizes the group of operators arising from the Heisenberg representation: the
latter one is formally the same in both cases. The anaplectic representation (only)
can be enriched by a rotation of ninety degrees in the complex coordinates on Cn,
an operation that corresponds to the matrix

(−i I 0
0 i I

)
.

The development of anaplectic analysis calls for mathematical techniques
rather different from the usual ones, as it depends as much on elementary real
algebraic geometry as on Hilbert space methods. Some of the main questions that
have to be tackled concern the analytic continuation of functions, and depend on a
careful examination of the singularities of certain fractional-linear transformations;
homotopy considerations often play a role too.

Except in the one-dimensional case, it seems unlikely that one could define
a space of functions on Rn, invariant under the full anaplectic representation, and
on which an invariant pseudoscalar product could be defined. However, anaplectic
analysis is not concerned solely with representation by the same name. In anaplec-



Introduction ix

tic analysis, the spectrum of the harmonic oscillator L is Z rather than n
2 + N,

and the usual creation and annihilation operators become raising and lowering
operators; also, unless n = 1, all the eigenspaces of L are infinite-dimensional.
Provided that n ≡/ 0 mod 4, one can build, in a way unique up to normalization,
a pseudoscalar product on the space generated by the eigenfunctions of L just
alluded to, with respect to which the infinitesimal generators of the Heisenberg
representation are self-adjoint.

Despite its many similarities with the usual analysis, anaplectic analysis dif-
fers from it in two major respects. First, there is no natural embedding of, say,
the group of one-dimensional anaplectic transformations into the group of two-
dimensional ones, that would generalize what is obtained, in the usual analysis, by
regarding one of a pair of variables as a parameter. On the other hand, there is in
the usual analysis a class of quite simple functions, to wit the exponentials with a
second-order polynomial (the real part of which has a positive-definite top-order
part) in the exponent, which resists all operations taken from the Heisenberg repre-
sentation or the metaplectic representation. No comparable class can be described
in such simple terms in anaplectic analysis. This is why non-trivial identities can
sometimes be obtained by calculations the analogues of which, in the usual anal-
ysis, would not produce anything interesting: examples will occur in Section 10.

In the last chapter, we imbed the one-dimensional anaplectic analysis into
a one-parameter family of analyses. There is one such analysis for every complex
number ν mod 2, ν /∈ Z: the case when ν is an integer should be regarded as
leading to the usual analysis, the case when ν = − 1

2 mod 2 is that considered
in Section 1. In each case, there is a translation-invariant concept of integral, an
associated Fourier transformation and ν-anaplectic representation. When ν is real,
ν /∈ Z, there is on the basic relevant space Aν a pseudoscalar product, invariant
both under the Heisenberg representation and under the ν-anaplectic representa-
tion: besides, this latter representation, when restricted to the space of even, or
odd, functions on Aν (this depends on whether ν ∈]−1, 0[+2 Z or ν ∈]0, 1[+2 Z), is
unitarily equivalent to one of the representations of the universal cover of SL(2, R)
as made explicit in [18]; not surprisingly, the series that occurs here is one which
does not occur in the Plancherel theorem for the group under consideration.

It is our hope, and belief, that anaplectic analysis will prove useful in several
domains: in quantum mechanics (especially in relativistic quantum mechanics),
in partial differential equations, in special function theory. Let us only observe to
start with that a mathematical analysis based on a harmonic oscillator unbounded
from below cannot fail to help in questions in which we would like to have time
circulate just as well in two directions. Also, the pseudoscalar product which oc-
curs in the one-dimensional anaplectic analysis has a striking similarity to that
which plays a role in the covariant formulation [5, p. 384] or [3, p. 68] of quantum
electrodynamics. Concerning the possibility of using anaplectic analysis in partial
differential equations, this only has, as yet, the status of wishful thinking. We
have, however, initiated the study of the anaplectic Weyl calculus: though we have
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mostly dealt, up to now, with its more formal aspects only, one may expect that
some kind of new pseudodifferential analysis will eventually emerge. Under the
name of “Krein spaces”, the subject of linear spaces with an indefinite metric is
currently under much scrutiny, in particular in connection with spectral problems
of an unusual type (cf. for instance [19]); such a kind of problems has also been
considered by several authors [1, 2] for reasons having to do with PT -symmetry.
Anaplectic analysis certainly provides a special domain of research related to this
question, with a rich harmonic analysis of its own. Also, when it is completed, the
anaplectic pseudodifferential analysis might be a useful tool for this kind of prob-
lems in general. Some possible connection between the one-dimensional anaplectic
pseudodifferential analysis and a variant of the Lax–Phillips scattering theory for
the automorphic wave equation has been briefly hinted at at the end of Section 10.
Finally, but this goes beyond our current projects, there is the question whether
some version of the anaplectic representation could be developed in the case of local
fields such as the fields of p-adic numbers or their quadratic extensions, thus follow-
ing in the steps of Weil’s celebrated paper [28] on the metaplectic representation.

Let me apologize to M. Gell–Mann and Y. Ne’eman [8] for my choice of a
title: I simply could not resist its poetic appeal. On the other hand, the first section
of this volume will show that no other choice was possible.



Chapter 1

The One-dimensional
Anaplectic Representation

In this chapter, we introduce one-dimensional anaplectic analysis in an elementary,
though probably somewhat puzzling, way. The trick is to relate the functions u on
the real line to be considered – they all extend as entire functions – to uniquely
defined 4-tuples of functions. This is not as strange as it might seem, especially in
connection with the study of the Fourier transformation: in mathematical tables
dealing with this transform, functions are always split into their even and odd
parts. Here, the introduction of the four functions f0, f1, fi,0, fi,1 (cf. Definition
1.1) is up to some point a matter of convenience, since the last two can be obtained
from the first two by analytic continuation. The first ones are not exactly the even
and odd parts of u: however, f0 (resp. f1) characterizes the even (resp. odd) part
of u, while enjoying better estimates near +∞. The first example, in Proposition
1.2, will make matters clear. A fundamental definition is that (Proposition 1.16)
of the linear form Int which substitutes for the notion of integral: in connection
with the Heisenberg representation – which is formally defined in the usual way –
it makes it possible to define the anaplectic Fourier transformation, from which it
is easy (Theorem 1.20) to obtain the anaplectic representation in general.

However, the proof of some major facts (including the characterization, given
in Theorem 1.8, of the space A), requires that one should construct the anaplec-
tic representation as the direct sum of two representations taken from the full
non-unitary principal series of SL(2, R). This is the object of Section 2: also, the
decomposition (cf. Proposition 2.3) of analytic vectors of such a representation
into their entire and ramified parts will play a role in several parts of this work. It
is the characterization given in Theorem 1.8 that prepares the way for the defini-
tion of the anaplectic representation in the n-dimensional setting, to be developed
in Chapter 2. We suggest that the reader satisfy himself with a look at the defini-
tion ((2.3) and (2.6)) of the representation πρ,ε, at the statements of Proposition
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2.3 and of Theorems 2.9–2.11, otherwise jump directly from Section 1 to Section
3 or even Section 4, using the technical Section 2 mostly for reference. Another
possibility is to continue the reading of Section 1 with that of Sections 11 and 12,
coming back only later to the n-dimensional case.

Possibly the most specific feature of the one-dimensional anaplectic repre-
sentation (which extends to the higher-dimensional case) is that it includes the
complex rotation R such that (Ru)(x) = u(ix): note that rotations by angles
�= πn

2 , n ∈ Z, are not permitted in general . Since the conjugate, under R, of the
operator A = π

1
2 (x + 1

2π
d
dx) – also called the annihilation operator in the usual

analysis because of its effect on the ground state x �→ e−πx2
of the harmonic oscil-

lator – is the “creation” operator A∗, the distinction between A and A∗, usually
so essential, blurs out, and the spectrum of the anaplectic harmonic oscillator is
Z instead of 1

2 + N.

1 The one-dimensional case

A representation π of a Lie group G in some complex linear space H is a homo-
morphism π from G to the group of linear automorphisms of H: we shall usually
concern ourselves with non-unitary representations.

Consider the Hilbert space H = L2(R). Given u ∈ H and (y, η) ∈ R2, the
function π(y, η)u defined as

(π(y, η)u)(x) = u(x − y) e2iπ(x−y
2 )η (1.1)

still lies in L2(R). An elementary calculation shows that one has

π(y, η)π(y′, η′) = π(y + y′, η + η′) eiπ (−y η′+y′ η). (1.2)

Enlarging the group R2 to the so-called Heisenberg group which is the set-theoretic
product R2 × S1 endowed with the law of composition defined as

(y, η ; eiθ). (y′, η′ ; eiθ′
) = (y + y′, η + η′ ; ei(θ+θ′−y η′+y′ η)), (1.3)

one gets a unitary representation, the Heisenberg representation. Denoting as Q
and P the (unbounded) self-adjoint operators on L2(R) that consist respectively
in multiplying by x or taking (2iπ)−1 times the first-order derivative, one may also
write, in the sense of Stone’s theorem relative to one-parameter groups of unitary
operators,

π(y, η) = e2iπ (η Q−y P ) : (1.4)

we shall also use this notation later, outside the context of unitary operators, then
taking it as a definition of the operator on the right-hand side.
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Still with the same Hilbert space H = L2(R) as before, consider instead of
R2 the group SL(2, R): it is generated by the elements(

a 0
0 a−1

)
, ( 1 0

c 1 ) ,
(

0 1−1 0

)
, (1.5)

where a is an arbitrary positive number and c is an arbitrary real number. It is im-
possible to find a representation of SL(2, R) in L2(R) such that the automorphisms
π(g) associated to the three transformations above should be respectively:

(i) the transformation u �→ v, v(x) = a− 1
2 u(a−1x);

(ii) the multiplication by the exponential exp (iπcx2);
(iii) e−

iπ
4 times the Fourier transformation F , normalized as

(Fu)(ξ) =
∫ ∞

−∞
u(x) e−2iπxξ dx. (1.6)

To see this is immediate, since the fourth power of
(

0 1−1 0

)
is the unit matrix,

while F4 = I: despite appearances, dropping the factor e−
iπ
4 in the definition of

the transformation (iii) would only make matters worse, though it is a little bit
harder to see. The difficulty is that if some matrix g ∈ SL(2, R) can be written as
g = g1 . . . gk, where all factors are of the special type described in (1.5), the prod-
uct π(g1) . . . π(gk) depends on the decomposition chosen, not only on g: however,
the corresponding indeterminacy in such a definition is not that bad, since the
unordered pair ± π(g1) . . . π(gk) depends only on g. To remedy it completely, one
constructs a group “more precise” than SL(2, R), namely the metaplectic group
S̃L(2, R), a twofold covering of SL(2, R): this means a connected Lie group to-
gether with a homomorphism: S̃L(2, R) → SL(2, R), the kernel of which has two
elements. That such a group exists is a consequence of the fact that the funda-
mental group, in the topological sense, of SL(2, R), is Z (since SL(2, R) has the
homotopy type of its compact subgroup SO(2)), of which Z/2Z is a quotient group:
the two elements of S̃L(2, R) which are sent to some given g ∈ SL(2, R) by the
homomorphism in question are said to lie above g. One can then show that there
exists a unitary representation Met of S̃L(2, R) in L2(R), the metaplectic represen-
tation, such that, given g ∈ SL(2, R), the unordered pair ± π(g) as defined above
should coincide with the pair {Met(γ1), Met(γ2)}, where {γ1, γ2} is the pair of
points in the metaplectic group lying above g.

To proceed towards the anaplectic representation, we may start from a com-
plexification of the Heisenberg representation (1.1): that is, we want to substitute
for the generic pair (y, η) ∈ R2 a pair of complex numbers; elements of the complex-
ified Heisenberg group will then be triples (y, η ; ω) with (y, η) ∈ C2 and ω ∈ C×.
Of course, it is clear that, in this case, π(y, η) can no longer operate within the
space L2(R), and that we must substitute for this space an appropriate space A of
entire functions of one variable; also, it is impossible to preserve unitarity. So as to
introduce the anaplectic representation, and above all to connect it to the Heisen-
berg representation, it is suitable to introduce first the definition of a certain space
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A, which is to play the role of a set of analytic vectors of the anaplectic represen-
tation. It will be clearly explained in the remark following the proof of Theorem
2.9 why the use of analytic vectors, at least at this first stage, is essential.

Definition 1.1. Let us say that an entire function f of one variable is nice if on one
hand f(z) is bounded by a constant times some exponential exp (πR|z|2), on the
other hand the restriction of f to the positive half-line is bounded by a constant
times some exponential exp (−πεx2): here, R and ε are assumed to be positive.
The space A consists of all entire functions u of one variable with the following
properties:

(i) the even part ueven of u coincides with the even part of some nice function f0

satisfying the property that the function z �→ f0(iz) + i f0(−iz) is nice too;
(ii) the odd part uodd of u coincides with the odd part of some nice function f1

such that the function z �→ f1(iz) − i f1(−iz) is nice as well.

It will be proven below (Corollary 1.7) that given u ∈ A, a pair (f0, f1) satisfying
the above properties is of necessity unique: for short, we shall refer to the pair
(f0, f1) as the C2-realization of u. We shall go one step further, associating with
u the C4-valued function (indifferently written in line or column form), called the
the C4-realization of u,

f = (f0, f1, fi,0, fi,1) (1.7)

with

fi,0(z) =
1 − i

2
(f0(iz) + i f0(−iz)),

fi,1(z) =
1 + i

2
(f1(iz) − i f1(−iz)). (1.8)

All four components of f are thus nice functions in the sense of Definition 1.1.

Here is a basic example.

Proposition 1.2. Set, for x real,

φ(x) = (π |x|) 1
2 I− 1

4
(π x2), (1.9)

with [17, p. 66]

Iν(t) =
∑
m≥0

( t
2 )ν+2m

m ! Γ(ν + m + 1)
(1.10)

for t > 0. The function φ lies in A.

Proof. Clearly, φ extends as an entire even function. Note [17, p. 139] that it has
the considerable growth of |x|− 1

2 eπx2
as |x| → ∞. Set, however, for x > 0,

ψ(x) = 2
1
2 π− 1

2 x
1
2 K 1

4
(π x2)

= (π x)
1
2 [I− 1

4
(π x2) − I 1

4
(π x2)]. (1.11)
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From (1.10), this is the restriction to (0,∞) of an entire function, the even part of
which coincides with φ: but now (loc. cit.), ψ(x) goes to zero, as x → ∞, just like
x− 1

2 e−πx2
. On the other hand, for x > 0,

ψ(±ix) = (π x)
1
2 [I− 1

4
(π x2) ∓ I 1

4
(π x2)], (1.12)

as can be seen from a careful use of (1.10), so that

ψ(ix) + i ψ(−ix) = (1 + i)ψ(x). (1.13)

Consequently φ ∈ A: note that the C4-realization of φ is (ψ, 0, ψ, 0). �

We shall prove presently that the map (f0, f1) �→ u introduced in Definition
1.1 is one-to-one, and we take this opportunity to prove at the same time a few
related lemmas which will be put to use later. All this is related to the Phragmén–
Lindelöf lemma, an extension of the maximum principle to angular regions which
can be found in many textbooks, including [26, p. 496]:

Lemma 1.3. Let f be an entire function of one variable, let S be the sector defined
by the inequality |Arg z| ≤ α π

2 for some α ∈]0, 2[, and let δ ∈]0, α−1[. Assume
that one has |f(z)| ≤ exp(|z|δ) if z ∈ S and |z| is sufficiently large. Then, if the
restriction of f to the boundary of S is bounded, f is bounded in S. Moreover, if
f(z) goes to zero as z goes to infinity along any of the two sides of the sector, f(z)
goes to zero in a uniform way as z goes to infinity while staying in S.

Lemma 1.4. Let f be an entire function satisfying some estimate

|f(z)| ≤ C eπR|z|2 , z ∈ C, (1.14)

together with some estimate

|f(x)| ≤ C e−2πδx2
, x > 0. (1.15)

Then there exists θ0 > 0 such that

|f(xeiθ)| ≤ C e−πδx2
, x > 1, |θ| ≤ θ0. (1.16)

Proof. With some A > 0 to be chosen later and an arbitrary γ > 1, set

Φ(z) = exp (2π(δ + iA)e
iπ
2γ z2) f(z e

iπ
4γ ), (1.17)

a function considered in the sector |Arg z| ≤ π
4γ and satisfying the estimate

log+ |Φ(z)| ≤ C |z|2 for z in this sector with |z| large. When z = |z| e− iπ
4γ , one

has
|Φ(z)| ≤ e2πδ|z|2 |f(|z|)| ≤ C;

when z = |z| e
iπ
4γ , one has

|Φ(z)| ≤ C exp
(

2π|z|2
(

δ cos
π

γ
− A sin

π

γ
+

R

2

))
,
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a bounded expression if A is chosen large enough. Then, by the Phragmén–Lindelöf
lemma, Φ is bounded in the whole sector and, for 0 < Arg z < π

2γ , one has

|f(z)| ≤ C exp (−2π Re ((δ + iA)z2)) : (1.18)

when z = |z|eiθ, 0 ≤ θ ≤ π
2γ , one has

Re ((δ + iA)z2) = |z|2 Re ((δ + iA)e2iθ)

= |z|2 (δ cos 2θ − A sin 2θ)

≥ δ

2
|z|2 (1.19)

if θ is small enough. The same holds if − π
2γ ≤ θ ≤ 0, considering instead the

function z �→ f(z̄). �

In a similar way, one can prove the following:

Lemma 1.5. Let g be a function defined and holomorphic in some angular sector
around the positive half-line, satisfying for some pair of positive constants C, R
and every z ∈ C the estimate

|g(z)| ≤ C e2πR|z|. (1.20)

Assume that, for some δ > 0, one has the inequality

|g(x)| ≤ C e−2πδx, x > 0 : (1.21)

then, there exists θ0 > 0 such that

|g(x eiθ)| ≤ C e−πδx, x > 1, ‖θ| ≤ θ0. (1.22)

Lemma 1.6. Let f be an entire function such that, for some pair of positive con-
stants C, R,

|f(z)| ≤ C eπR|z|2 , z ∈ C. (1.23)

If there exists δ > 0, such that

|f(x)| + |f(ix)| ≤ C e−πδx2
, x ∈ R, (1.24)

the function f is identically zero.

Proof. By Lemma 1.4,

|f(x eiθ)| ≤ C e−2πδx2
, x > 1, 0 ≤ θ ≤ θ0 : (1.25)

now the half-width of the sector θ0 ≤ Arg z ≤ π
2 is < π

4 , so that the Phragmén–
Lindelöf lemma applies and shows that f(z) goes to zero, as |z| → ∞, in a uniform
way in the first quadrant. The same goes with the three other quadrants, so that
the lemma is a consequence of Liouville’s theorem. �
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Corollary 1.7. Let u ∈ A, the space of entire functions introduced in Definition
1.1. Then the pair of nice functions f0, f1 the existence of which is asserted there
is unique.

Proof. Taking the difference of any two such pairs, one remarks that if f0 is nice,
odd and if the function z �→ f0(iz) + if0(−iz) = (1 − i) f0(iz) is nice too, then
f0 = 0 according to the lemma that precedes; something similar goes with f1. �

We now show how the vector (f0, f1, fi,0, fi,1) can be rebuilt from the knowl-
edge of u ∈ A. We shall postpone to the next section the proof that, given an
entire function u satisfying some global estimate |u(z)| ≤ C eπR|z|2 , the additional
properties expressed below in terms of the pair (w0, w1) whose definition follows
characterize the fact that u lies in A.

Theorem 1.8. Let u ∈ A. Set, for σ real and large enough,

w0(σ) =
∫ ∞

−∞
e−πσx2

u(x e−
iπ
4 ) dx,

w1(σ) =
1 − i

2

∫ ∞

−∞
e−πσx2

xu(x e−
iπ
4 ) dx. (1.26)

On the one hand, each of these two functions extends as a holomorphic function,
still denoted as w0 ( resp. w1), in some strip |Im σ| < ε. On the other hand, for
|σ| large enough, w0(σ) and w1(σ) admit the convergent expansions

w0(σ) =
∑
n≥0

an σ−n |σ|− 1
2 , w1(σ) =

∑
n≥0

bn σ−n−1 |σ|− 1
2 (1.27)

so that, for R large enough, w0 ( resp. w1) extends as a holomorphic function,
denoted as w̃0 ( resp. w̃1), in the part of the Riemann surface of the square root
function lying above the set |z| > R: the two continuations of the two functions
under consideration are related by the equations, valid for σ real and large,

w̃0(σ eiπ) = −i w0(−σ), w̃1(σ eiπ) = −i w1(−σ). (1.28)

Finally, the C4-realization of u can be obtained, in terms of w0 and w1, by the
formulas (involving semi-convergent only integrals in the first two cases), valid for
x > 0 only,

f0(x) = 2−
1
2 x

∫ ∞

−∞
w0(σ) eiπσx2

dσ,

fi,0(x) = 2−
1
2 x

∫ ∞

−∞
w0(σ) e−iπσx2

dσ,

f1(x) =
∫ ∞

−∞
w1(σ) eiπσx2

dσ,

fi,1(x) =
∫ ∞

−∞
w1(σ) e−iπσx2

dσ. (1.29)
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Proof. Let (f0, f1, fi,0, fi,1) be the C4-realization of u. Since the even part of u
coincides with that of f0 and the odd part of u coincides with that of f1, one can
substitute f0 (resp. f1) for u in the integral defining w0 (resp. w1). Using Lemma
1.4 together with the global estimate of u, one sees that the integral

w+
0 (σ) =

∫ ∞

0

e−πσx2
f0(x e−

iπ
4 ) dx (1.30)

can also be written, for σ real and large, as

w+
0 (σ) =

1 + i

2
1
2

∫ ∞

0

e−iπσx2
f0(x) dx : (1.31)

this makes it possible to write

w0(σ) − 2
1
2

∫ ∞

0

e−iπσx2
f0(x) dx =

∫ ∞

0

e−πσx2
[f0(x e

3iπ
4 ) + i f0(x e−

iπ
4 )] dx

= (1 + i)
∫ ∞

0

e−πσx2
fi,0(x e

iπ
4 ) dx. (1.32)

With a new deformation of contour, made possible by a new application of Lemma
1.4, this time to the function fi,0, one finds that, for large σ,

w0(σ) = 2
1
2

∫ ∞

0

[e−iπσx2
f0(x) + eiπσx2

fi,0(x)] dx. (1.33)

The same method, starting from the identity

1 − i

2

∫ ∞

0

e−πσx2
x f1(x e−

iπ
4 ) dx = −1 + i

2

∫ ∞

0

eiπσx2
x f1(−ix) dx, (1.34)

shows that
w1(σ) =

∫ ∞

0

x [e−iπσx2
f1(x) + eiπσx2

fi,1(x)] dx. (1.35)

Since the four components of f are nice in the sense of Definition 1.1, the equations
(1.33) and (1.35) show that w0 and w1 indeed extend as holomorphic functions in
some open strip containing the real line.

The expansion of w0(σ) for large σ can be derived directly from (1.26): indeed,
the estimate |u(z)| ≤ C exp (πR|z|2) and Cauchy’s inequalities make it possible
to write

ueven(x e−
iπ
4 ) =

∑
k≥0

ck x2k (1.36)

with |ck| ≤ C (2πR)k

k ! : since
∫∞
−∞ e−πσx2

x2k dx = Γ(k+ 1
2 ) (πσ)−k− 1

2 , the expansion

(1.36) can be integrated term-by-term against e−πσx2
dx, leading to the first series

expansion (1.27) as soon as σ > 2R; the same goes with w1(σ) for large σ. We
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now prove (1.28), which will also imply the validity of these series expansions for
−σ large.

To do this, we go back to (1.26) and, for large σ, accompany, up to θ = π,
the change σ �→ σ eiθ by the change of contour x �→ x e−

iθ
2 , ending up, with

ui(x) = u(ix), with the pair of equations

w̃0(σ eiπ) = −i

∫ ∞

−∞
e−πσx2

ui(x e−
iπ
4 ) dx,

w̃1(σ eiπ) =
1 − i

2

∫ ∞

−∞
e−πσx2

xui(x e−
iπ
4 ) dx. (1.37)

Now, if u ∈ A is associated to the vector (f0, f1, fi,0, fi,1), it is immediate to check
(more about it in Proposition 1.13, which does not depend on any previous result)
that ui is associated to the vector (fi,0, −i fi,1, f0, −i f1): using (1.33) and (1.35)
and comparing the results obtained if one utilizes the C4-realization of u or that
of ui, one obtains the relation (1.28).

The inversion formulas (1.29) are obtained from (1.33) and (1.35), using the
change of variable y = x2

2 followed by the Fourier inversion formula. �

Examples. (i) Take for some non-negative integer n, and x ∈ R,

u(x) = |x|2n+ 1
2 In− 1

4
(πx2), (1.38)

so that u extends as an entire even function. One finds if σ > 0, using [17, p.
66, 91],

w0(σ) = 2 (−1)n

∫ ∞

0

e−πσx2
x2n+ 1

2 Jn− 1
4
(πx2) dx

= (−1)n 2n− 1
4 π−n− 5

4 Γ
(

n +
1
4

)
(1 + σ2)−n− 1

4 . (1.39)

Clearly, for σ > 1,
w̃0(σ eiπ) = −i w0(σ) = −i w0(−σ), (1.40)

which confirms (1.28). Using (1.29), one finds for x > 0

f0(x) = (−1)n 2
1
2 π−1 x2n+ 1

2 Kn− 1
4
(πx2), (1.41)

and it is indeed immediate to check that the even part of the continuation of f0 as
an entire function coincides with u, and that the conditions of Definition 1.1 are
satisfied. Thus u ∈ A: the particular case when n = 0 is the function π− 1

2 φ, where
φ is the function introduced in Proposition 1.2.

(ii) More generally, with n = 0, 1, . . . and j ∈ Z, one defines two (disjoint) classes
in A by the consideration of the functions

|x|2(j+n)+ 1
2 In−j− 1

4
(π x2) and |x|2(j+n)+ 1

2 In−j+ 3
4
(π x2). (1.42)
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Indeed, setting u(x) = |x|λ Iρ(π x2), assuming that ρ + λ
2 = 2n or 2n + 1 with

n = 0, 1, . . . so that u should be analytic and even, one finds [17, p. 91]

w0(σ) = 2 (−i)ρ+ λ
2

∫ ∞

0

xλ e−πσx2
Jρ(πx2) dx

= (−i)ρ+ λ
2 Γ

(
ρ +

λ + 1
2

)
π

−1−λ
2 (1 + σ2)

−1−λ
4 P−ρ

λ−1
2

(
σ√

1 + σ2

)
, (1.43)

where the Legendre function involved is even (resp. odd) in the case when −ρ+ λ−1
2

is an even (resp. odd) integer [17, p. 170]. On the other hand, the continuation w̃0

can be found from the expression [17, p. 47]

w0(σ) = 2−ρ (−i)ρ+ λ
2 π

−1−λ
2

Γ(ρ + λ+1
2 )

Γ(1 + ρ)
σ−ρ− 1+λ

2

(
1 +

1
σ2

)− ρ
2− 1+λ

4

× 2F1

(
λ + 1

4
+

ρ

2
,
1 − λ

4
+

ρ

2
; ρ + 1;

1
1 + σ2

)
(1.44)

since, if σ > 1, 1
1+(σ eiθ)2 can never be a real number > 1 so that, in the continuation

process, the argument of the hypergeometric function remains in a domain where
this function is uniform: this makes it possible to conclude.

(iii) On the other hand, the function u(x) = e−πx2
does not belong to A. For w0,

as obtained by an application of (1.26), is given for σ > 1 as w0(σ) = (σ − i)−
1
2 :

indeed, this function extends as an analytic function in the strip |Im σ| < 1.
However, following the determinations of the square root, one notices that, for
σ > 1, one has the relation w̃0(σ eiπ) = −w0(−σ) rather than the relation (1.28). A
large class of entire functions not in A is the class M of multipliers of A introduced
in Proposition 1.15 below which, as proven there, only intersects A trivially.

(iv) If the four components of the C4-realization of some function in A are all less,
on the positive half-line, than a multiple of exp(−πεx2) for some specific ε, it is
clear that they can all be multiplied without harm by any even entire function of
z globally less than a multiple of exp(πa|z|2) for some a < ε: the same goes, as a
consequence, for the function in A we started out with.

As an explicit example of function in A obtained in this way, take for some
θ ∈]0, π

4 [ the function defined for x ∈ R as

u(x) = π
1
2 |x| I− 1

4
(πx2 cos θ) I− 1

4
(πx2 sin θ). (1.45)

Note that this is the product of two factors, each of which is a rescaled version of
the function φ from Proposition 1.2: also note that we explicitly discard the case
when the two rescaling factors would be the same. Applying (1.26), one finds with
the help of [10, p. 95] the equation

w0(σ) = 2
1
2 π− 3

2 (sin 2θ)−
1
2 Q− 3

4

(
σ2 + 1
sin 2θ

)
, (1.46)
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where the function Q− 3
4

is the Legendre function of the second species defined for
t > 1 as

Q− 3
4
(t) =

Γ(1
4 )Γ(1

2 )

2
1
4 Γ(3

4 )
t−

1
4 2F1

(
5
8
,
1
8
;
3
4
; t−2

)
: (1.47)

it is analytic for t > 1. It is immediate that the equation (1.28) linking the two
continuations of w0 is satisfied. Using the equation (1.29) again, we find for x > 0,
using [17, p. 194], that

f0(x) = 2π− 3
2 (sin 2θ)−

1
2

∫ ∞

0

Q− 3
4

(
σ2 + 1
sin 2θ

)
cos (πσx2) dσ

=
(

2
π

) 1
2

x K 1
4
(πx2 cos θ) I− 1

4
(πx2 sin θ). (1.48)

Of course, this is the result we expected: but the proof above also shows that u is
no longer in A in the case when θ = π

4 , since then the function w0 in (1.46) ceases
to be analytic at σ = 0.

As a matter of fact, this example may be connected to the family in the
example (i), since one has the so-called Neumann series [17, p. 125]

u(x) =
∑
n≥0

(−1)n

n ! Γ(3
4 + n)

(
sin 2θ

2

)2n− 1
4

(πx2)2n+ 1
4 I2n− 1

4
(πx2). (1.49)

(v) Other examples of functions lying in A, or not lying in that space, will be given
in Remark 1.2, at the end of this section.

One last pair of lemmas in the Phragmén–Lindelöf spirit will be useful later.

Lemma 1.9. Let g be an entire function of one variable such that, for some pair
of positive constants C, R, the estimate

|g(z)| ≤ C e2πR|z|, z ∈ C, (1.50)

holds. If |g(x)| is less than C e−πδ|x| for some δ > 0 or if |g(x)| + |g(ix)| goes to
zero, as x is real and goes to ±∞, g is identically zero.

Proof. In the first case, we argue just as in the proof of Lemma 1.6, starting from
Lemma 1.5 in place of Lemma 1.4, thus ending up with an application of the
Phragmén–Lindelöf lemma in some angle of half-width < π

2 . The second case is
easier. �

Lemma 1.10. Let f be an entire function satisfying some estimate

|f(z)| ≤ C eπR|z|2 , z ∈ C, (1.51)
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together with some estimate

|f(x)| ≤ C e−2πδx2
, x > 0. (1.52)

Assume, moreover, that for every ε > 0, there exists C > 0 such that

|f(±ix)| ≤ C eπεx2
, x > 0. (1.53)

Then, for every β ∈ [0, π
2 [, f(z) goes to zero, as |z| → ∞ and |Arg z| ≤ β, in a

uniform way.

Proof. Since the function z �→ f(z̄) satisfies the same assumptions as f , one may
interest oneself in the sector 0 ≤ Arg z ≤ β only. Set

Φε(z) = f(z) exp (πε z2 e−iα) (1.54)

for some ε ∈]0, δ[ and some α ∈ [0, π
2 [ to be determined later. From Lemma 1.4,

one gets
|Φε(x eiθ)| ≤ C e−π(δ−ε)x2

, x > 0, 0 ≤ θ ≤ θ0. (1.55)

On the other hand,
|Φε(ix)| = |f(ix)| e−πε x2 cos α (1.56)

goes to zero as x → ∞ so that, as an application of the Phragmén–Lindelöf lemma,
Φε(x eiθ) goes to zero, as x → ∞, uniformly for θ0 ≤ θ ≤ π

2 . Now, with z = x+ iy,

Re (z2 e−iα) = (x2 − y2) cosα + 2xy sin α (1.57)

is ≥ 0 provided that x
y ≥ 1−sin α

cos α , an expression that is less than cos β
sinβ if α is chosen

close enough from π
2 . �

Proposition 1.11. For any complex y, η, the transformation

π(y, η) = e2iπ (η Q−y P )

defined by the equation (1.1) preserves the space A.

Proof. Abbreviating π(y, 0) = e−2iπyP as τy, one may verify that τyu is given, in
the C2-realization, as

(h0,h1)=
(

1
2
(τy f0 +τ−yf0 +τyf1−τ−yf1),

1
2
(τyf0−τ−yf0 +τyf1 +τ−yf1)

)
:

(1.58)
then, the other two components of the C4-realization of the same function are

(hi,0, hi,1) =
(

1
2
(τiy fi,0 + τ−iy fi,0 + i τiy fi,1 − i τ−iy fi,1),

1
2
(−i τiy fi,0 + i τ−iy fi,0 + τiy fi,1 + τ−iy fi,1)

)
: (1.59)
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as a consequence of Lemma 1.4, all the components are nice in the sense of Defini-
tion 1.1. We also need the explicit formulas relative to π(0, η) = e2iπηQ abbreviated
as τη : the C4-realization g of τη u is given as

(g0,g1)=
(

1
2
(τη f0 +τ−ηf0 +τη f1−τ−ηf1),

1
2
(τη f0−τ−η f0 +τηf1 +τ−η f1)

)
(1.60)

and

(gi,0, gi,1) =
(

1
2
(τ iη fi,0 + τ−iη fi,0 − i τ iη fi,1 + i τ−iη fi,1), (1.61)

1
2
(i τ iη fi,0 − i τ−iη fi,0 + τ iη fi,1 + τ−iη fi,1)

)
. �

Proposition 1.12. On analytic functions of x on the real line, define the operator
Q as the operator of multiplication by x, and the operator P as 1

2iπ
d
dx . The space

A is preserved under the action of the algebra generated by Q and P .

Proof. In the C4-realization, the operator Q or P expresses itself as f �→ h with

h(z) = (z f1(z), z f0(z), z fi,1(z), −z fi,0(z)) (1.62)

in the first case, and

h =
1

2iπ
(f ′

1, f ′
0, −f ′

i,1, f ′
i,0) (1.63)

in the second one. �

Obviously, the multiplication by z preserves the space of nice functions in-
troduced in Definition 1.1, and the same holds for the operation of taking the
derivative by virtue of Lemma 1.4 (together with Cauchy’s integral formula for
the derivative).

It is immediate to check how some basic symmetries on A transfer to the
C4-realization: the formulas below thus constitute a proof that the symmetries
under examination do preserve A.

Proposition 1.13. Define the linear operators R (for rotation) and R2 by the
equations

(R2 u)(z) = u(−z), (Ru)(z) = u(iz) ; (1.64)

define the antilinear operator C (for conjugation) by the equation

(Cu)(x) = ū(x) if x ∈ R or (Cu)(z) = u(z̄), z ∈ C. (1.65)

The operations R2, R, C transfer respectively, in the C4-realization, to the oper-
ations

f = (f0, f1, fi,0, fi,1) �→ h = (h0, h1, hi,0, hi,1) (1.66)
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with (
h0
h1

hi,0
hi,1

)
=

(
f0
−f1
fi,0
−fi,1

)
or

(
fi,0

−i fi,1
f0

−i f1

)
or

(
Cf0
Cf1

Cfi,0
Cfi,1

)
. (1.67)

We can now define the scalar product on A, at the same time proving that
it is non-degenerate.

Proposition 1.14. Let ( | ) be the scalar product on A defined, in the C4-realiza-
tion, as

(h |f ) (1.68)

= 2
1
2

∫ ∞

0

(
h̄0(x)f0(x) + h̄1(x)f1(x) + h̄i,0(x)fi,0(x) − h̄i,1(x)fi,1(x)

)
dx.

This scalar product is non-degenerate.

Proof. Obviously, the subspaces of A consisting of all even (resp. odd) functions
are orthogonal with respect to ( | ). On Aeven, the scalar product is positive-
definite. On the other hand, it follows from (1.62) and (1.68) that the operator Q
is self-adjoint with respect to ( | ): the non-degeneracy of the scalar product on
the odd part of A is then a consequence of its non-degeneracy on the even part
together with the equation (Q2u|u) = (Qu|Qu). �
Proposition 1.15. Let M denote the space of all entire functions m satisfying for
some pair (R, C) of positive numbers the estimate

|m(z)| ≤ C eπR|z|2 , z ∈ C (1.69)

and the property that, for every ε > 0, one has for some C > 0 the estimate

|m(x)| + |m(ix)| ≤ C eπεx2
, x ∈ R. (1.70)

Then, for every u ∈ A, the product mu belongs to A as well. The intersection
M ∩ A reduces to zero.

Proof. If u ∈ A is associated to the vector f as before, the function mu is then
associated to the vector h, with

h0(z) = meven(z) f0(z) + modd(z) f1(z),
h1(z) = modd(z) f0(z) + meven(z) f1(z) (1.71)

and

hi,0(z) = meven(iz) fi,0(z) − i modd(iz) fi,1(z),
hi,1(z) = i modd(iz) fi,0(z) + meven(iz) fi,1(z), (1.72)

which proves the first part.
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Since the assumptions relative to m are invariant under the symmetry R2

introduced in Proposition 1.13, one may, in the proof of the second part, deal
separately with the even and odd parts of m; in view of Proposition 1.12, one may
even consider only the case when m is even. Thus, assuming this to be the case,
and that m ∈ M ∩ A, let f , reducing in this case to (f0, 0, fi,0, 0), be the vector
associated with m. Since m is the even part of f0, (1.8) yields the equations

(1 − i) f0(ix) = (1 + i) fi,0(x) − 2i m(ix),
(1 − i) f0(−ix) = 2 m(ix) − (1 + i) fi,0(x), (1.73)

which show, since m ∈ M, that |f0(ix)| is, for every ε > 0, a O(eπεx2
) as x → ±∞.

Lemma 1.10 thus shows that f0(z) goes to zero, as |z| → ∞, in any closed sector
contained in the half-plane Re z > 0. Exchanging the roles of f0 and fi,0, and using
the result already obtained for f0, one finds that f0(z) also goes to zero, as |z| → ∞,
in any closed sector contained in the quadrant defined by −π < Arg z < −π

2 or
π
2 < Arg z < π. One concludes with the help of the Phragmén–Lindelöf lemma
together with Liouville’s theorem. �

We now define a substitute for the notion of integral, to wit a translation-
invariant linear form on A.

Proposition 1.16. If f = (f0, f1, fi,0, fi,1) is the C4-realization of some function
u ∈ A, set

Int [u] = 2
1
2

∫ ∞

0

(f0(x) + fi,0(x)) dx. (1.74)

For every y ∈ C, with (e−2iπ yP u)(z) = u(z − y), one has

Int [e−2iπ yP u] = Int [u]. (1.75)

Proof. Set v = e−2iπyP u. From the proof of Proposition 1.11, one has

2
1
2 Int [v] =

∫ ∞

0

[f0(x − y) + f0(x + y) + fi,0(x − iy) + fi,0(x + iy)] dx (1.76)

+
∫ ∞

0

[f1(x − y) − f1(x + y) + i fi,1(x − iy) − i fi,1(x + iy)] dx.

The second line is∫ y

−y

f1(z) dz + i

∫ iy

−iy

fi,1(z) dz =
∫ y

−y

f1(z) dz −
∫ y

−y

fi,1(iz) dz (1.77)

=
∫ y

−y

1 + i

2
(f1(z) − f1(−z)) dz = 0.


