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Preface

This volume is intended to cover the present status of the mathematical tools used
to deal with problems related to slow rarefied flows. The meaning and usefulness
of the subject, and the extent to which it is covered in the book, are discussed in
some detail in the introduction. In short, I tried to present the basic concepts and
the techniques used in probing mathematical questions and problems which arise
when studying slow rarefied flows in environmental sciences and micromachines.
For the book to be up-to-date without being excessively large, it was necessary
to omit some topics, which are treated elsewhere, as indicated in the introduc-
tion and, whenever the need arises, in the various chapters of this volume. Their
omission does not alter the aim of the book, to provide an understanding of the
essential mathematical tools required to deal with slow rarefied flows and give the
background for a study of the original literature.

Although I have tried to give a rather complete bibliographical coverage, the
choice of the topics and of the references certainly reflects a personal bias and I
apologize in advance for any omission.

I wish to thank Lorenzo Valdettaro, Antonella Abbà, Silva Lorenzani and
Paolo Barbante for their help with pictures and especially Professor Ching Shen
for his permission to reproduce his pictures on microchannel flows.

Milano, December 2005 Carlo Cercignani



Introduction

Rarefied gas dynamics can be defined as the study of gas flows in which the
average value of the distance between two subsequent collisions of a molecule (the
so-called mean free path) is not negligible in comparison with a length typical of
the structure of the flow being considered, e.g., the thickness of a microchannel or
the radius of curvature of the nose of a space shuttle. Thus it intrinsically requires
the use of statistical ideas typical of the kinetic theory of gases as embodied in
the integro-differential equation proposed by Boltzmann in 1872 and bearing his
name.

Rarefied gas dynamics has existed, in principle, since the 19th century, but
came in the foreground with space exploration. One can even give a birthdate, July
1958, when the first international symposium on rarefied gas dynamics was held in
Nice (France). Since then, these symposia have been held regularly every second
year. When glancing through the corresponding proceedings, one should not be
surprised to find a shift of topics. The first few volumes contain a considerable
amount of experimental papers and the theoretical papers contain very general
surveys on the Boltzmann equation that rules the evolution of rarefied flows, but
very few papers dealing with explicit solutions of some elementary problems. The
first numerical solutions of some interest appear in 1962, but still in the late 1960s
were few in number and not so accurate. Then one witnesses the reduction of
experimental work and the increasing importance of numerical simulation. In the
most recent volumes, experiments occupy just a few pages of the proceedings. This
is compensated for by the fact that numerical simulations have spread through all
the subfields, indicating the maturity reached by the theoretical understanding
of the subject. Increasingly complicated phenomena, such as reacting flows or
evaporation and condensation, are the object of widespread interest.

The mathematical theory of the Boltzmann equation goes back to such il-
lustrious mathematicians as Hilbert and Carleman and is mentioned in the mo-
tivation of the Fields medal awarded to P.L. Lions in 1994. Some details of this
theory will be presented in this book. The present introduction is mainly devoted
to explain why this equation is so important for applications. We also remark that
this book, although describing a well-defined topic, can serve two sets of readers:
those more interested in the basic mathematical theory and those more interested
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in applications. The former might restrict themselves to Chapters 1–4, the latter
to Chapter 1, the first section of Chapter 4 and Chapters 5–7.

In addition to space research, rarefied gas dynamics is also required in the area
of environmental problems. Understanding and controlling the formation, motion,
reactions and evolution of particles of varying composition and shapes, ranging
from a diameter of the order of .001 µm to 50 µm, as well as their space-time
distribution under gradients of concentration, pressure, temperature and the action
of radiation, has grown in importance, because of the increasing awareness of the
local and global problems related to the emission of particles from electric power
plants, chemical plants, vehicles as well as of the role played by small particles
in the formation of fog and clouds, in the release of radioactivity from nuclear
reactor accidents, and in the problems arising from the exhaust streams of aerosol
reactors, such as those used to produce optical fibers, catalysts, ceramics, silicon
chips and carbon whiskers.

One cubic centimeter of atmospheric air at ground level contains approxi-
mately 2.5×1019 molecules. About a thousand of them may be charged (ions). A
typical molecular diameter is 3×10−10 m (3×10−4 µm) and the average distance
between the molecules is about ten times as much. The mean free path is of the
order of 10−8 m, or 10−2 µm. In addition to molecules and ions, one cubic cen-
timeter of air also contains a significant number of particles varying in size, as
indicated above. In relatively clean air, the number of these particles can be 105

or more, including pollen, bacteria, dust, and industrial emissions. They can be
both beneficial and detrimental, and arise from a number of natural sources as
well as from the activities of all living organisms, especially humans. The particles
can have complex chemical compositions and shapes, and may even be toxic or
radioactive. A suspension of particles in a gas is known as an aerosol. Atmospheric
aerosols are of global interest and have important impact on our lives. Aerosols
are also of great interest in numerous scientific and engineering applications.

A third area of application of rarefied gas dynamics has emerged in the last
few years and will be discussed in detail in the last chapter of the present book.
Small size machines, called micromachines, are being designed and built. Their
typical sizes range from a few microns to a few millimeters. Rarefied flow phe-
nomena that are more or less laboratory curiosities in machines of more usual size
can form the basis of important systems in the micromechanical domain. In fact,
rarefied gas flows occur in many micro-electro-mechanical systems (MEMS), such
as actuators, microturbines, gas chromatographs, and micro air vehicles (MAVs).
A correct prediction of these flows is important to design and develop MEMS.
Nanoscale design occurs for computer components as well and is no longer limited
to chip technology but extends to mechanical devices as well. In a modern disk
drive, the read/write head floats at distances of the order of 50 nm above the
surface of the spinning platter. The prediction of the vertical force on the head (as
obtained from the pressure distribution in the gas) is a crucial design calculation
since the head will not accurately read or write if it flies too high. If the head
flies too low, it can catastrophically collide against the platter. Micro-channels
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may have further computer applications because they are supposed to dissipate
the heat generated in microchips more effectively than fans, and may be used as
a more practical cooling system in integrated circuit chips.

Since, as these examples indicate, micro-devices are gaining popularity both
in commercial applications and in scientific research, there exists a rapidly grow-
ing interest in improving the conventional design techniques related with these
devices. Micro-devices are often operated in gaseous environments (typically air),
and thus their performances are affected by the gas around them. The numerical
simulation of all these flows cannot be performed with the Navier–Stokes equations
(or the related Reynolds equation for a slider air bearing) because the smallest
characteristic length of MEMS or of the thin air film occurring in a computer drive
is comparable with (or smaller than) the mean free path of the gas molecules. For
this reason the continuum equations are no longer valid and the Boltzmann equa-
tion must be invoked to understand and compute the rarefied flows related to
these devices.

Numerical methods based on this equation are generally numerically expen-
sive especially when the flow to be considered progresses from free molecular,
through transitional, to continuum regions. Since these flows, contrary to the flow
past space vehicles, are usually at low Mach number, the use of the linearized
Boltzmann equation is permissible and this revives old methods developed in the
sixties and seventies of the 20th century to deal with this equation.

Among the rarefied flows of interest, one should not forget the design and
simulation of the aerosol reactors, used to produce optical fibers, catalysts, ce-
ramics, silicon chips and carbon whiskers, which have been mentioned above as
sources of air pollution. A further area of interest occurs in the vacuum industry.
Although this area has existed for a long time, the expense of the early com-
putations with kinetic theory precluded applications of numerical methods. The
latter could develop only in the context of the aerospace industry, because the big
budgets required till recently were available only there.

The present volume is an attempt to cover the mathematical results and
techniques to deal with rarefied flows when the speeds are small with respect to
the sound speed. The mathematical theory is much more advanced in this case and
provides a rigorous justification for the use of the linearized Boltzmann equation,
which avoids costly simulations based on Monte Carlo methods.

After introducing the Boltzmann equation in Chapter 1, we shall survey the
rigorous theorems on validity and existence in Chapter 2. Chapter 3 is devoted
to the basic existence theory for flows close to equilibria in an infinite expanse of
gas or in a periodic box. Chapter 4 deals with more realistic boundary conditions
and Chapter 5 deals with the techniques used to solve problems in the simple
but extremely important case of a slab geometry. Chapter 6 discusses problems in
three dimensions and Chapter 7 is devoted to the recent contributions to rarefied
lubrication theory with particular attention to applications to MEMS.



Chapter 1

The Boltzmann Equation

1.1 Historical Introduction

In 1738 Daniel Bernoulli advanced the idea that gases are formed of elastic mole-
cules rushing hither and thither at large speeds, colliding and rebounding according
to the laws of elementary mechanics. Of course, this was not a completely new
idea, because several Greek philosophers asserted that the molecules of all bodies
are in motion even when the body itself appears to be at rest. The new idea
was that the mechanical effect of the impact of these moving molecules when
they strike against a solid is what is commonly called the pressure of the gas. In
fact if we were guided solely by the atomic hypothesis, we might suppose that
the pressure would be produced by the repulsions of the molecules. Although
Bernoulli’s scheme was able to account for the elementary properties of gases
(compressibility, tendency to expand, rise of temperature in a compression and
fall in an expansion, trend toward uniformity), no definitive opinion could be
passed on it until it was investigated quantitatively. The actual development of the
kinetic theory of gases was, accordingly, accomplished much later, in the nineteenth
century.

Frequently the molecules of a gas can be assumed to be perfectly elastic
spheres that move according to the laws of classical mechanics. Thus, e.g., if no
external force, such as gravity, is assumed to act on the molecules, each of them
will move in a straight line unless it happens to strike another sphere or a solid
wall. Systems of this kind are usually called billiards, for obvious reasons.

Although the rules generating the dynamics of these systems are easy to
prescribe, the phenomena associated with this dynamics are not so simple. They
are actually rather difficult to understand, especially if one is interested in the
asymptotic behavior of the system for long times (ergodic properties) or in the
case when the number of spheres is very large (kinetic and hydrodynamical limits).
Both aspects of the dynamics of hard spheres are relevant when dealing with a gas,
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but we shall now concentrate upon the problem of outlining the behavior of this
system when the number of the particles is very large. This is due to the fact that
there are about 2.7 · 1019 molecules in a cubic centimeter of a gas at atmospheric
pressure and a temperature of 0◦C.

Given the enormous number of particles to be considered, it would of course
be a perfectly hopeless task to attempt to describe the state of the gas by specifying
the so-called microscopic state, i.e., the position and velocity of every individual
particle, and we must have recourse to statistics. This is possible because in prac-
tice all that our observation can detect are changes in the macroscopic state of
the gas, described by quantities such as density, velocity, temperature, stresses,
heat flow, which are related to the suitable averages of quantities depending on
the microscopic state.

In 1866 James Clerk Maxwell (1831–1879) developed an accurate method24,
based on the so-called transfer equations, and discovered the particularly simple
properties of a model, according to which the molecules interact at a distance
with a force inversely proportional to the fifth power of the distance (nowadays
commonly called Maxwellian molecules). In the same paper he gave a justification
of his earlier formula for the velocity distribution function for a gas in equilibrium.

With his transfer equations, Maxwell had come very close to an evolution
equation for the distribution, but this step4 must be credited to Ludwig Boltz-
mann (1844–1906). The equation under consideration is usually called the Boltz-
mann equation and sometimes the Maxwell–Boltzmann equation (to recognize the
important role played by Maxwell in its discovery).

In the same paper, where he gave a heuristic derivation of his equation,
Boltzmann deduced an important consequence from it, which later came to be
known as the H-theorem. This theorem attempts to explain the irreversibility of
natural processes in a gas, by showing how molecular collisions tend to increase
entropy. The theory was attacked by several physicists and mathematicians in
the 1890s, because it appeared to produce paradoxical results. However, within a
few years of Boltzmann’s suicide in 1906, the existence of atoms had been firmly
established by experiments such as those on Brownian motion.

The paradoxes indicate, however, that some reinterpretation is necessary.
Boltzmann himself had proposed that the H-theorem be interpreted statistically;
later, Paulus Ehrenfest (1880–1933), together with his wife Tatiana, gave a brilliant
analysis of the matter, which elucidated Boltzmann’s ideas and made it highly
plausible, at least from a heuristic standpoint. A rigorous analysis, however, had
still to come.

In the meantime, the Boltzmann equation had become a practical tool for
investigating the properties of dilute gases. In 1912 the great mathematician David
Hilbert (1862–1943) indicated19 how to obtain approximate solutions of the Boltz-
mann equation by a series expansion in a parameter, inversely proportional to the
gas density. The paper is also reproduced as Chapter XXII of his treatise entitled
Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. The rea-
sons for this are clearly stated in the preface of the book (“Neu hinzugefügt habe
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ich zum Schluss ein Kapitel über kinetische Gastheorie. [. . .] erblicke ich in der
Gastheorie die glänzendste Anwendung der die Auflösung der Integralgleichungen
betreffenden Theoreme”).

In about the same year (1916–1917) Sidney Chapman12 (1888–1970) in Eng-
land and David Enskog14 (1884–1947) in Sweden independently obtained approx-
imate solutions of the Boltzmann equation, valid for a sufficiently dense gas.
The results were identical as far as practical applications were concerned, but
the methods differed widely in spirit and detail. Enskog presented a systematic
technique generalizing Hilbert’s idea, while Chapman simply extended a method
previously indicated by Maxwell to obtain transport coefficients. Enskog’s method
was adopted by S. Chapman and T. G. Cowling in their book The Mathematical
Theory of Non-uniform Gases and thus became to be known as the Chapman–
Enskog method.

Then for many years no essential progress in solving the equation came.
Rather the ideas of kinetic theory found their way in other fields, such as radia-
tive transfer, the theory of ionized gases and, subsequently, in the the theory of
neutron transport. Almost unnoticed, however, the rigorous theory of the Boltz-
mann equation had started in 1933 with a paper5 by Tage Gillis Torsten Carleman
(1892–1949), who proved a theorem of global existence and uniqueness for a gas
of hard spheres in the so-called space homogeneous case. The theorem was proved
under the restrictive assumption that the initial data depend upon the molecular
velocity only through its magnitude. This restriction is removed in a posthumous
book by the same author6.

In 1949 Harold Grad (1923–1986) wrote a paper17, which became widely
known because it contained a systematic method of solving the Boltzmann equa-
tion by expanding the solution into a series of orthogonal polynomials. In the same
paper, however, Grad made a more basic contribution to the theory of the Boltz-
mann equation for molecules of diameter σ. In fact, he formulated a conjecture on
the validity of the Boltzmann equation. In his words: “From the preceding discus-
sion it is possible to see along what lines a rigorous derivation of the Boltzmann
equation should proceed. First, from equilibrium considerations we must let the
number density of molecules, N , increase without bound. At the same time we
would like the macroscopic properties of the gas to be unchanged. To do this we
allow m to approach zero in such a way that mN = ρ is fixed. The Boltzmann
equation for elastic spheres, (2.37) has a factor σ2/m in the collision term. If σ
is made to approach to zero at such a rate that σ2/m is fixed, then the Boltz-
mann equation remains unaltered. [. . .] In the limiting process described here, it
seems likely that solutions of Liouville’s equation attain many of the significant
properties of the Boltzmann equation.”

In the 1950s there were some significant results concerning the Boltzmann
equation. A few exact solutions were obtained by C. Truesdell28 in the U.S.A.
and by V. S. Galkin15,16 in the Soviet Union, while the existence theory was
extended by D. Morgenstern25, who proved a global existence theorem for a gas
of Maxwellian molecules in the space homogeneous case. His work was extended
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by L. Arkeryd1,2 in 1972.
In the 1960s, under the impact of the problems related to space research,

the main interest was in the direction of finding approximate solutions of the
Boltzmann equation and developing mathematical results for the perturbation of
equilibrium7,8. Important methods developed by H. Grad18 were brought to com-
pletion much later by S. Ukai, Y. Shizuta, K. Asano, T. Nishida and K. Imai26,27,29.

The problem of proving the validity of the Boltzmann equation was still
completely open. In 1972, C. Cercignani9 proved that taking the limit indicated
by Grad in the passage quoted above (now currently called the Boltzmann–Grad
limit) produced, from a formal point of view, a perfectly consistent theory, i.e., the
so-called Boltzmann hierarchy. This result clearly indicated that the difficulties of
the rigorous derivation of the Boltzmann equation were not of a formal nature
but were at least of the same order of difficulty as those of proving theorems
of existence and uniqueness in the space inhomogeneous case. Subsequently, O.
Lanford proved23 that the formal derivation becomes rigorous if one limits himself
to a sufficiently short time interval. The problem of a rigorous, globally valid
justification of the Boltzmann equation is still open, except for the case of an
expanding rare cloud of gas in a vacuum, for which the difficulties were overcome
by R. Illner and M. Pulvirenti20,21, after Illner and Shinbrot had provided the
corresponding existence and uniqueness theorem for the Boltzmann equation22.

More recently, R. Di Perna and P. L. Lions13 have proved a global existence
theorem for quite general data, but several important problems, such as proving
that energy is conserved or controlling the growth of density are still open.

1.2 The Boltzmann Equation

The phenomena associated with the dynamics of molecules are not so simple,
especially because the number of molecules usually considered is extremely large:
there are about 2.7 · 1019 in a cubic centimeter of a gas at atmospheric pressure
and a temperature of 0◦C.

Given the vast number of particles to be considered, it would of course be
a hopeless task to attempt to describe the state of the gas by specifying the so-
called microscopic state, i.e., the position and velocity of every individual sphere;
we must have recourse to statistics. A description of this kind is made possible
because in practice all that our typical observations can detect are changes in the
macroscopic state of the gas, described by quantities such as density, bulk velocity,
temperature stresses, heat flow, which are related to some suitable averages of
quantities depending on the microscopic state.

The exact dynamics of N particles is a useful conceptual tool, but cannot
in any way be used in practical calculations because it requires a huge number of
real variables (of the order of 1020). This was realized by Maxwell and Boltzmann
when they started to work with the one-particle probability density, or distribution
function P (1)(x, ξ, t). The latter is a function of seven variables, i.e., the compo-
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nents of the two vectors x and ξ and time t. In particular, Boltzmann wrote an
evolution equation for P (1) by means of a heuristic argument, which we shall try
to present in such a way as to show where extra assumptions are introduced.

Let us first consider the meaning of P (1)(x, ξ, t); it gives the probability
density of finding one fixed particle (say, the one labelled by 1) at a certain point
(x, ξ) of the six-dimensional reduced phase space associated with the position and
velocity of that molecule. In order to simplify the treatment, we shall for the
moment assume that the molecules are hard spheres, whose center has position
x. When the molecules collide, momentum and kinetic energy must be conserved;
thus the velocities after the impact, ξ′

1 and ξ′
2, are related to those before the

impact, ξ1 and ξ2, by
ξ′
1 = ξ1 − n[n · (ξ1 − ξ2)],

ξ′
2 = ξ2 + n[n · (ξ1 − ξ2)] (1.2.1)

where n is the unit vector along ξ1 − ξ′
1. Note that the relative velocity

V = ξ1 − ξ2 (1.2.2)

satisfies
V′ = V − 2n(n ·V) (1.2.3)

i.e., undergoes a specular reflection at the impact. This means that if we split
V at the point of impact into a normal component Vn, directed along n and a
tangential component Vt (in the plane normal to n), then Vn changes sign and
Vt remains unchanged in a collision. We can also say that n bisects the directions
of V and −V′ = −(ξ′

1 − ξ′
2) (see Fig. 1.1).

x�

��

�
� ��

�

�
�
� �

�

x�

n

Figure 1.1: The directions of the relative velocities before and after the impact are
bisected by the unit vector n.
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Let us remark that, in the absence of collisions, P (1) would remain unchanged
along the trajectory of a particle and would satisfy

∂P (1)

∂t
+ ξ1 · ∂P (1)

∂x1
+ X1 · ∂P (1)

∂ξ1
= 0

where X1 is any external force per unit mass, such as gravity, acting on the
molecule, which will be neglected in the rest of the book.

We must now evaluate the effects of collisions on the time evolution of P (1).
Note that the probability of occurrence of a collision is related to the probability
of finding another molecule with a center at exactly one diameter from the center
of the first one, whose distribution function is P (1). Thus, generally speaking, in
order to write the evolution equation for P (1) we shall need another function,
P (2), which gives the probability density of finding, at time t, the first molecule
at x1 with velocity ξ1 and the second at x2 with velocity ξ2; obviously P (2) =
P (2)(x1,x2, ξ1, ξ2, t). Hence P (1) satisfies an equation of the form

∂P (1)

∂t
+ ξ1 · ∂P (1)

∂x1
= G − L. (1.2.4)

Here Ldx1dξ1dt gives the expected number of particles with position between x1

and x1 + dx1 and velocity between ξ1 and ξ1 + dξ1 which disappear from these
ranges of values because of a collision in the time interval between t and t + dt,
and Gdx1dξ1dt gives the analogous number of particles entering the same range
in the same time interval. The count of these numbers is easy, provided we use the
trick of imagining particle 1 as a sphere at rest and endowed with twice the actual
diameter σ and the other particles to be point masses with velocity (ξi−ξ1) = Vi.
In fact, each collision will send particle 1 out of the above range and the number
of the collisions of particle 1 will be the number of expected collisions of any other
particle with that sphere. Since there are exactly (N − 1) identical point masses
and multiple collisions can be disregarded (because they form a set of measure
zero in the set of collisions), G = (N − 1)g and L = (N − 1)l, where the lower
case letters indicate the contribution of a fixed particle, say particle 2. We shall
then compute the effect of the collisions of particle 2 with particle 1. Let x2 be
a point of the sphere such that the vector joining the center of the sphere with
x2 is σn, where n is a unit vector. A cylinder with height |V · n|dt (where we
write just V for V2) and base area dS = σ2dn (where dn is the area of a surface
element of the unit sphere about n) will contain the particles with velocity ξ2

hitting the base dS in the time interval (t, t + dt) (see Fig. 1.2); its volume is
σ2dn|V · n|dt. Thus the number of collisions of particle 2 with particle 1 in the
ranges (x1,x1+dx1), (ξ1, ξ1+dξ1), (x2,x2+dx2), (ξ2, ξ2+dξ2), (t, t+dt) occurring
at points of dS is P (2)(x1,x2, ξ1, ξ2, t)dx1dξ1dξ2xσ2dn|V · n|dt. If we want the
number of collisions of particle 1 with 2, when the range of the former is fixed
but the latter may have any velocity ξ2 and any position x2 on the sphere (i.e.,
any n), we integrate over the sphere and all the possible velocities of particle 2 to
obtain:
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Figure 1.2: Calculation of the number of collisions between two molecules.

ldx1dξ1dt = dx1dξ1dt

∫
R3

∫
B−

P (2)(x1,x1 + σn, ξ1, ξ2, t)|V · n|σ2dndξ2 (1.2.5)

where B− is the hemisphere corresponding to V · n < 0 (the particles are moving
one toward the other before the collision). Thus we have the following result:

L = (N − 1)σ2

∫
R3

∫
B−

P (2)(x1,x1 + σn, ξ1, ξ2, t)|(ξ2 − ξ1) · n|dξ2dn. (1.2.6)

The calculation of the gain term G is exactly the same as the one for L, except for
the fact that we have to integrate over the hemisphere B+, defined by V · n > 0
(the particles are moving away one from the other after the collision). Thus we
have:

G = (N − 1)σ2

∫
R3

∫
B+

P (2)(x1,x1 + σn, ξ1, ξ2, t)|(ξ2 − ξ1) · n|dξ2dn. (1.2.7)

We thus could write the right-hand side of Eq. (1.2.4) as a single expression:

G − L = (N − 1)σ2

∫
R3

∫
B

P (2)(x1,x1 + σn, ξ1, ξ2, t)(ξ2 − ξ1) · ndξ2dn (1.2.8)

where now B is the entire unit sphere and we have abolished the bars of absolute
value in the right-hand side.

Eq. (1.2.8), although absolutely correct, is not so useful. It turns out that
it is much more convenient to keep the gain and loss terms separated. Only in
this way, in fact, can we insert in Eq. (1.2.4) the information that the probability
density P (2) is continuous at a collision; in other words, although the velocities of
the particles undergo the discontinuous change described by Eqs. (1.2.1), we can
write:

P (2)(x1, ξ1,x2, ξ2, t) = P (2)(x1, ξ1 − n(n ·V),x2, ξ2 + n(n · V), t),

if |x1 − x2| = σ. (1.2.9)
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For brevity, we write (in agreement with Eq. (1.2.1):

ξ′
1 = ξ1 − n(n · V) ξ′

2 = ξ2 + n(n ·V). (1.2.10)

Inserting Eq. (1.2.8) in Eq. (1.2.5) we thus obtain:

G = (N − 1)σ2

∫
R3

∫
B+

P (2)(x1,x1 + σn, ξ′
1, ξ

′
2, t)|(ξ2 − ξ1) · n|dξ2dn (1.2.11)

which is a frequently used form. Sometimes n is changed into −n in order to have
the same integration range as in L; the only change (in addition to the change in
the range) is in the second argument of P (2), which becomes x1 − σn.

At this point we are ready to understand Boltzmann’s argument. N is a
very large number and σ (expressed in common units, such as, e.g., centimeters)
is very small; to fix the ideas, let us consider a box whose volume is 1 cm3 at
room temperature and atmospheric pressure.Then N ∼= 1020 and σ ∼= 10−8cm.
Then (N − 1)σ2 ∼= Nσ2 ∼= 104cm2 = 1m2 is a sizable quantity, while we can
neglect the difference between x1 and x1 + σn. This means that the equation to
be written can be rigorously valid only in the so-called Boltzmann–Grad limit,
when N → ∞, σ → 0 with Nσ2 finite.

In addition, the collisions between two preselected particles are rather rare
events. Thus two spheres that happen to collide can be thought to be two randomly
chosen particles and it makes sense to assume that the probability density of
finding the first molecule at x1 with velocity ξ1 and the second at x2 with velocity
ξ2 is the product of the probability density of finding the first molecule at x1 with
velocity ξ1 times the probability density of finding the second molecule at x2 with
velocity ξ2. If we accept this we can write (assumption of molecular chaos):

P (2)(x1, ξ1,x2, ξ2, t) = P (1)(x1, ξ1, t)P (1)(x2, ξ2, t) (1.2.12)

for two particles that are about to collide, or:

P (2)(x1, ξ1,x1 + σn, ξ2, t) = P (1)(x1, ξ1, t)P (1)(x1, ξ2, t)

for (ξ2 − ξ1) · n < 0. (1.2.13)

Thus we can apply this recipe to the loss term (1.2.4) but not to the gain term in
the form (1.2.5). It is possible, however, to apply Eq. (1.2.13) (with ξ′

1, ξ
′
2 in place

of ξ1, ξ2) to the form (1.2.9) of the gain term, because the transformation (1.2.10)
maps the hemisphere B+ onto the hemisphere B−.

If we accept all the simplifying assumptions made by Boltzmann, we obtain
the following form for the gain and loss terms:

G = Nσ2

∫
R3

∫
B−

P (1)(x1, ξ
′
1, t)P

(1)(x1, ξ
′
2, t)|(ξ2 − ξ1) · n|dξ2dn, (1.2.14)

L = Nσ2

∫
R3

∫
B−

P (1)(x1, ξ1, t)P (1)(x1, ξ2, t)|(ξ2 − ξ1) · n|dξ2dn. (1.2.15)
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By inserting these expressions in Eq. (1.2.6) we can write the Boltzmann equation
in the form

∂P (1)

∂t
+ ξ1 · ∂P (1)

∂x1
= Nσ2

∫
R3

∫
B−

[P (1)(x1, ξ
′
1, t)P

(1)(x1, ξ
′
2, t)

−P (1)(x1, ξ1, t)P (1)(x1, ξ2, t)]|(ξ2 − ξ1) · n|dξ2dn. (1.2.16)

We remark that the expressions for ξ′
1 and ξ′

2 given in Eq. (1.2.1) are by no means
the only possible ones. In fact we might use a different unit vector ω, directed as
V′, instead of n. Then Eq. (1.2.1) is replaced by:

ξ′
1 = ξ +

1
2
|ξ1 − ξ2|ω,

ξ′
2 = ξ − 1

2
|ξ1 − ξ2|ω (1.2.17)

where ξ = 1
2 (ξ1 + ξ2) is the velocity of the center of mass. The relative velocity V

satisfies
V′ = ω|V|. (1.2.18)

The Boltzmann equation is an evolution equation for P (1), without any reference
to P (2). This is its main advantage. However, it has been obtained at the price of
several assumptions; the chaos assumption present in Eqs. (1.2.12) and (1.2.13) is
particularly strong and requires to be discussed.

The molecular chaos assumption is clearly a property of randomness. Intu-
itively, one feels that collisions exert a randomizing influence, but it would be
completely wrong to argue that the statistical independence described by Eq.
(1.2.12) is a consequence of the dynamics. It is quite clear that we cannot expect
every choice of the initial distribution of positions and velocities of the molecules
to give a P (1) which agrees with the solution of the Boltzmann equation in the
Boltzmann–Grad limit. In other words molecular chaos must be present initially
and we can only ask whether it is preserved by the time evolution of the system
of hard spheres.

It is evident that the chaos property (1.2.12), if initially present, is almost
immediately destroyed, if we insist that it should be valid everywhere. In fact, if
it were strictly valid everywhere, the gain and loss terms, in the Boltzmann–Grad
limit, would be exactly equal. As a consequence, there would be no effect of the
collisions on the time evolution of P (1). The essential point is that we need the
chaos property only for molecules which are about to collide, i.e., in the precise
form stated in Eq. (1.2.13). It is clear then that even if P (1) as predicted by the
exact dynamics converges nicely to a solution of the Boltzmann equation, P (2)

may converge to a product, as stated in Eq. (1.2.11), only in a way which is in a
certain sense very singular. In fact, it is not enough to show that the convergence
is almost everywhere, because we need to use the chaos property in a zero measure
set. On the other hand we cannot try to show that convergence holds everywhere,


