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Preface

As a satellite conference to the Fourth Congress of European Mathematics held at
Stockholm University in 2004, the International Conference on Pseudo-Differential
Operators and Related Topics was held at Växjö University in Sweden from June
22 to June 25, 2004. The conference was supported by Växjö University, the FIRB
Research Group on Microlocal Analysis of Università di Torino, and the Inter-
national Society for Analysis, its Applications and Computation (ISAAC). The
conference was well attended by about 50 mathematicians from Bulgaria, Canada,
Denmark, England, Finland, Germany, Italy, Japan, Mexico, Serbia and Montene-
gro, Russia and Sweden.

The conference covered a broad spectrum of topics related to pseudo-differential
operators such as partial differential equations, quantization, Wigner transforms
and Weyl transforms on Lie groups, mathematical physics, time-frequency analysis
and stochastic processes. The speakers were enthusiastic about the prospect of
publishing articles based on their presentations in a volume to be published in
Professor Israel Gohberg’s prestigious series entitled “Operator Theory: Advances
and Applications”.

All contributions from speakers have been carefully refereed and the articles col-
lected in this volume give a representative flavour of the mathematics presented
at the conference. This volume is a permanent record of the conference and a
valuable complement to the volume “Advances in Pseudo-Differential Operators”
published in the same series in 2004, which is devoted to the Special Session on
Pseudo-Differential Operators at the Fourth ISAAC Congress held at York Uni-
versity in August 2003.
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Strongly Elliptic Second Order Systems
with Spectral Parameter in Transmission
Conditions on a Nonclosed Surface

M.S. Agranovich

Abstract. We consider a class of second order strongly elliptic systems in Rn,
n ≥ 3, outside a bounded nonclosed surface S with transmission conditions on
S containing a spectral parameter. Assuming that S and its boundary γ are
Lipschitz, we reduce the problems to spectral equations on S for operators
of potential type. We prove the invertibility of these operators in suitable
Sobolev type spaces and indicate spectral consequences. Simultaneously, we
prove the unique solvability of the Dirichlet and Neumann problems with
boundary data on S.

Mathematics Subject Classification (2000). Primary 35P05; Secondary 35J50,
45C05.

Keywords. Strong ellipticity, transmission condition, spectral equation, Lip-
schitz surface, surface potential, variational approach, Wiener–Hopf method.

1. Introduction

1.1. Statement of the Problems

We consider the second order system of partial differential equations

Lω(∂)u(x) := L0(∂)u(x) + ω2u(x) = 0 (1.1)

in Rn \ S, where S is an (n − 1)-dimensional surface with (n − 2)-dimensional
boundary γ. More precisely, we assume that S is a part of a closed surface1 Γ; the
latter consists of two open parts S = Γ+ and Γ− without common points and of
their common boundary γ. By ∂ we denote the “vector” of partial derivatives ∂j =
∂/∂j, j = 1, . . . , n. The operator L0 is homogeneous with respect to differentiations
and has constant coefficients. The numerical parameter ω = ω1 + iω2 belongs to

The work was supported by the grant of RFFI No. 04-01-00914.
1A closed surface is a compact surface without boundary.
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the closed upper half-plane (ω2 ≥ 0) and is nonnegative if it is real. At infinity,
the solutions are subjected to natural radiation or decay conditions depending
on ω. The assumptions are formulated more precisely below in Subsection 1.2.
We assume that n ≥ 3 to avoid the consideration of logarithmic potentials. The
surface Γ divides the complement of itself into a bounded simply connected domain
Ω+ and an unbounded domain Ω−. The superscripts + and − will also be used
to denote the boundary values of functions on the inner and outer sides of Γ,
respectively. By ν = ν(x) we denote the unit outward normal at points x ∈ Γ.

Our main goal is to consider two spectral problems for (1.1) with transmission
conditions on S containing a spectral parameter λ. The corresponding spaces will
be specified later.

Problem I.
u+ = u−, Tu− − Tu+ = λu± on S. (1.2)

Problem II.
Tu+ = Tu−, Tu± = λ[u− − u+] on S. (1.3)

Here Tu is the conormal derivative, see (1.8) below. In the simplest case
of the Helmholtz equation, Tu is the normal derivative ∂νu. We wish to describe
some spectral properties of these problems. We will see shortly that they are closely
connected with the non-spectral Dirichlet and Neumann problems for system (1.1):

The Dirichlet problem.
u± = f on S. (1.4)

The Neumann problem.
Tu± = g on S. (1.5)

The surfaces Γ and γ are assumed to be either C∞ or Lipschitz; Γ is con-
nected, while γ can consist of several components. The normal ν(x) is defined
almost everywhere in the Lipschitz case.

In the case of a closed surface S = Γ, Problems I and II and some other
problems for the Helmholtz equation were posed by the physicists Katsenelenbaum
and his collaborators Sivov and Voitovich in the 60s. See the book [1] and its revised
English edition [2]. In [1], a mathematical supplement [3] is contained, written by
the author of the present paper, with the analysis of these and similar problems
in acoustics and electrodynamics by tools of the theories of surface potentials and
pseudo-differential operators. The surface was assumed to be smooth. The initial
results were obtained by the author in collaboration with his graduate student
Golubeva; see also her note [4]. Conditions (1.2) and (1.3) can be interpreted as
related to a half-transparent screen.

Similar problems with boundary and transmission conditions on a closed
Lipschitz surface for the Helmholtz equation were considered in [5] and for the
Lamé system in elasticity theory (and n = 3) in [6]. The general case of systems
(1.1) was considered in [7] and [8]. In [8], systems with variable coefficients were
included into consideration. More precisely, in the last three papers the surface is
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assumed to be either smooth or Lipschitz. Of course, no theory of elliptic pseudo-
differential operators exists in the case of a Lipschitz surface, but there is an
extensive theory of classical surface potentials and non-spectral problems; see [7, 8]
and numerous references therein.

In Section 2, we recall some definitions and technical tools from [7, 8] related
to the case of a closed surface. We also add some supplementary material. In
particular, we introduce the hypersingular operator and Calderón projections for
general systems (1.1) following, e.g., the paper [9] on the Laplace and Helmholtz
equations.

Non-spectral problems (Dirichlet, Neumann, and more general) with data on
a nonclosed surface for the Helmholtz equation and the Lamé system were first
considered by Stephan [10, 11] and then by Costabel and Stephan [12]. In elasticity
theory, a non-closed surface has the meaning of a crack. The Lamé system mod-
els an isotropic medium. Cracks in anisotropic elastic media were considered by
Duduchava, Natroshvili and Shargorodski [13] and by some other authors. More-
over, non-spectral problems in elasticity were considered with much more general
conditions on S and in much more general spaces than in the present paper, see
also, e.g., [14] and references therein.

These authors followed Vishik and Eskin (e.g., see [15], [16]) and Eskin [17]
and used the Wiener–Hopf method assuming that Γ and γ are sufficiently smooth.

In Section 3, the main in the present paper, we will show that it is possible
to consider Lipschitz surfaces Γ and γ using the simplest Sobolev type spaces
H±1/2(S) and H̃±1/2(S). (The spaces are defined in Subsection 2.5.) Instead of
the Wiener–Hopf method, a modification of the classical variational approach is
used (see our Propositions 3.2 and 3.4 for the case of pure imaginary ω). We prove
the unique solvability of the Dirichlet and Neumann problems for general systems
(1.1) and the invertibility of the potential type operators on S corresponding to
these problems. It seems to us that these non-spectral results are of interest even
for the Helmholtz and Lamé equations.

Exactly the same invertible operators occur in the spectral equations on S
corresponding to our spectral problems I and II. Thus the simplest spectral results
become available in the Lipschitz case; see Subsection 3.4.

In Section 4, we briefly mention some further results; they will be published
elsewhere.

1.2. Exact Statement of the Assumptions

(See [7] for details.) The operator L0(∂) is an m × m matrix. Replacing ∂ by
ξ = (ξ1, . . . , ξn), we obtain the principal symbol of the operator −L0(∂):

L0(ξ) =
∑∑

Ajkξjξk, Ajk = (ars
jk). (1.6)

Here the Ajk are real matrices satisfying the symmetry condition ars
jk = asr

kj . The
matrix L0(ξ) is assumed to be positive definite for ξ �= 0, which is the strong
ellipticity condition for the operator −L(∂). Besides, as in [7, 8], we impose the
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additional condition ∑
ars

jkξr
j ξs

k ≥ C1

∑
|ξr

j + ξj
r |2 (1.7)

for all real ξr
j ; here and below, the Cj are positive constants, and summation over

all indices is implied. If m �= n, then the ξr
j with j > n or r > m are assumed

to be zero. Condition (1.7) is satisfied, in particular, for the Helmholtz and Lamé
equations.

The conormal derivative at a point x of the boundary is the matrix operator

Tx =
∑

νj(x)Ajk∂k. (1.8)

If Γ is smooth, then it follows from (1.7) that the Neumann problems, interior
and exterior, are elliptic. As to the interior and exterior Dirichlet problems, their
ellipticity is the well-known consequence of the strong ellipticity. However, these
problems can be considered in Lipschitz domains as well. Here it is essential that,
under Condition (1.7), the expression{∫

Ω±

∑
Ajk∂ku · ∂ju dx + ‖u‖2

0,Ω±

}1/2

is equivalent to the usual norm ‖u‖1,Ω± in the Sobolev space H1(Ω±). This follows
from the well-known Korn inequalities (e.g., see [18]).

The conditions at infinity are connected with the choice of a fundamental
solution Eω(x). In all cases, this is a matrix function analytic outside the origin.

If ω = 0, then the fundamental solution is defined by the formula

E0(x) = −F−1L0(ξ), (1.9)

where F−1 is the inverse Fourier transform in the sense of distributions. This ma-
trix function is positively homogeneous of degree 2−n. Accordingly, the conditions
at infinity have the form

u(x) = O(|x|−n+2), ∂ku(x) = O(|x|−n+1) (1.10)

for all k.
If ω2 > 0, then the complete symbol ω2E − L0(ξ) of system (1.1) is a non-

degenerate matrix, and the fundamental solution is defined by the formula

Eω(x) = F−1[ω2E − L0(ξ)]. (1.11)

It decays exponentially, and accordingly the conditions at infinity have the form

u(x) = O(exp(−δ|x|)), ∂ku(x) = O(exp(−δ|x|)) (1.12)

for all k with some δ > 0.
If ω > 0, an additional condition is imposed on the matrix L0(ξ) for ξ �= 0.

Let dl(ξ) (l = 1, . . . , q) be all its pairwise distinct eigenvalues. They are positive.

Condition for ω > 0. The eigenvalues dl(ξ) have constant multiplicities. The sur-
faces Sl in Rn defined by the equations dl(ξ) = ω2 are, roughly speaking, convex.
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More precisely, they are star-shaped with respect to the origin, the principal cur-
vatures are positive at each point x ∈ Sl, and the radius vector drawn from the
origin to x ∈ Sl forms an acute angle with the outward normal to Sl at x.

Under this condition, the fundamental solution Eω(x) is defined as the limit
of Eω+iε(x) as ε ↓ 0. Its analysis leads to the following radiation conditions:

u(x) = u1(x) + · · ·+ uq(x), (1.13)

where

ul(x) = O(|x|−(n−1)/2), ∂kul(x)− iξl
k(α)ul(x) = O(|x|−(n+1)/2). (1.14)

Here α = x/|x| and ξl = ξl(α) is the radius vector drawn from the origin to the
point on Sl, at which the unit exterior normal vector coincides with α.

In all three cases, Eω(x) satisfies the corresponding conditions at infinity.
In the second and third cases, the difference Eω(x) − E0(x) has smaller order of
singularity at the origin than E0(x) and Eω(x), the difference of the orders being
equal to 1.

In what follows, the solutions of (1.1) in Ω− are subjected to conditions at
infinity just indicated.

2. Preliminary Material

Here we recall some facts and technical tools related to the case of a closed surface
S = Γ. The omitted details and proofs or references can be found mainly in [7]
and [8]. Subsections 2.2–2.4 contain the supplementary material used later in the
present paper. In Subsection 2.5, we recall the definitions and some properties of
the spaces Ht(S) and H̃t(S) in the case of a nonclosed S, cf., e.g., [17], Section 4,
and [19], Section 3.

2.1. Surface Potentials and Integral Formulas in the Case of a Smooth Closed
Boundary

In the first three subsections, we assume that Γ and all functions are infinitely
smooth. System (1.1) and boundary problems are considered in the classical set-
ting.

First, we note that the exterior Dirichlet and Neumann problems are uniquely
solvable. The corresponding classes of functions will be indicated in Subsection 2.3.

Using the fundamental solution described above, we introduce the single layer
potential (x ∈ Rn) and the double layer potential (x /∈ Γ):

Aωϕ(x) =
∫

Γ

Eω(x− y)ϕ(y) dSy , Bωψ(x) =
∫

Γ

[TyEω(x− y)]′ψ(x) dSy , (2.1)

where ′ stands for transposition. These functions are solutions of (1.1) in Ω± and
satisfy our conditions at infinity.

Denote by Aωϕ(x) the restriction of the single layer potential to Γ and by
Bωψ(x) the direct value of the double layer potential on Γ. The first of these
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operators is an integral operator with a weak singularity; it is an elliptic pseudo-
differential operator of order −1. The second operator is a pseudo-differential op-
erator of order not greater than 0; it can be a singular integral operator.

For the boundary values of these potentials and their conormal derivatives,
we have

(Aωϕ)± = Aωϕ, (Bωψ)± = (Bω ± 1
2I)ψ,

(TAωϕ)± = (B′
ω ∓ 1

2I)ϕ, (TBωψ)+ = (TBωψ)−.
(2.2)

Here the operator B′
ω is the transpose of Bω:

B′
ωψ =

∫
Γ

TxEω(x− y) dSy. (2.3)

It is again a pseudo-differential operator of order not greater than 0.
The following formulas for solutions of system (1.1) in Ω± are true:

Bωu+ −Aω(Tu+) =

{
u in Ω+,

0 in Ω−,

Aω(Tu−)− Bωu− =

{
u in Ω−,

0 in Ω+.

(2.4)

Passing to Γ in the upper formulas, we obtain the following relations between the
Cauchy data:

(1
2I −Bω)u+ = −Aω(Tu+), (1

2I + Bω)u− = Aω(Tu−). (2.5)

Under condition (1.7), the zero order pseudo-differential operators 1
2I ± Bω are

elliptic.

2.2. The Hypersingular Operator and Calderón Projections

Definition 2.1. We introduce the hypersingular operator

Dωψ = −(TBωψ)± (2.6)

on Γ. It is a pseudo-differential operator of order 1.

Applying the operator T to both sides of the upper formulas in (2.4), passing
to the boundary Γ, and using (2.2) and (2.5), we obtain

Tu+ = −Du+ + (1
2I −B′

ω)Tu+, Tu− = Du− + (1
2I + B′

ω)Tu−. (2.7)

The left-hand sides are replaced by zero if we interchange + and − in the right-hand
sides.

Definition 2.2. We introduce the matrix operators

P+ =
(

1
2I + Bω −A
−D 1

2I −B′
ω

)
, P− =

(
1
2I −Bω A

D 1
2I + B′

ω

)
. (2.8)

They possess the following properties.
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1. They are bounded operators in the space of column vectors (ϕ, ψ)′ with
components ϕ ∈ Ht(Γ), ψ ∈ Ht−1(Γ) for all t. (Here we mean that ϕ and ψ are,
in turn, column vectors of dimension m.) This space will be denoted by Ht(Γ).

2. If the vector w± = (u±, Tu±)′ consists of the Cauchy data of system (1.1)
in Ω±, then

P+w+ = w+, P+w− = 0, P−w− = w−, P−w+ = 0. (2.9)

This follows from (2.5) and (2.7). Here we can assume that w± ∈ Ht(Γ),
with t ≥ 3/2 in the classical setting of the Dirichlet and Neumann problems and
even with t > 1 if we additionally use the approach in [20]. The first and third
equalities in (2.9) are not only necessary but also sufficient for vectors w± ∈ Ht(Γ)
to consist of Cauchy data for (1.1) in Ω+ and Ω−. Indeed, if these relations are
satisfied, then the corresponding solutions are reconstructed by upper formulas in
(2.4).

3. The relations

P+ + P− = I2, (P+)2 = P+, (P−)2 = P−, P+P− = P−P+ = 0 (2.10)

are satisfied, where I2 is the unit operator in the space of vector functions in
question. These relations follow from (2.8) and (2.9).

Thus P± are the Calderón projections for system (1.1). (Concerning this
notion for general elliptic equations, e.g., see [21].) They define the decomposition
of the space Ht(Γ) into the direct sum of Cauchy data subspaces for system (1.1)
in Ω+ and Ω−.

It follows, say, from the relation (P+)2 = P+ that

(1
2I + Bω)(1

2I −Bω) = AωDω, AωB′
ω = BωAω, DωBω = B′

ωDω. (2.11)

The second of these relations was obtained in [7] in a different way. From the first
relation we see that the operator Dω is elliptic. Its principal symbol is expressed
by the formula

σDω = σ−1
Aω

σ1
2 I+Bω

σ1
2 I−Bω

. (2.12)

The right-hand side is known, see formulas for the principal symbols σAω and
σ1

2 I±B′
ω

in [7] or [8]. If Aω is invertible (has the inverse of order 1), then

Dω = A−1
ω (1

2I + Bω)(1
2I −Bω) (2.13)

(cf. (4.6) and (4.7) in [7]). However, in definition (2.6) we did not assume that Aω

is invertible.

2.3. The Dirichlet and Neumann Problems and Problems of the Form I and II in
the Case of a Smooth Closed Boundary

If u is a solution of system (1.1) outside S with u+ = u−, then it follows from (2.4)
that u = Aω(Tu− − Tu+). Therefore, the Dirichlet problems (1.1), (1.4) (interior
and exterior simultaneously) are reduced to the equation

Aωϕ = f (2.14)
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on Γ by the substitution

ϕ = [Tu] := Tu− − Tu+. (2.15)

Here f ∈ Ht(Γ), ϕ ∈ Ht−1(Γ), u ∈ Ht+1/2(Ω+), and u ∈ H
t+1/2
loc (Ω−),2 t > 1.

Besides, the solution u is analytic inside Ω±. Once equation (2.14) is solved, the
corresponding solution of the Dirichlet problem is given by the formula

u = Aωϕ. (2.16)

The interior Dirichlet problem is uniquely solvable for all ω except for some positive
values ωj tending to +∞ (for which ω2 is an eigenvalue of the operator −L0(∂) in
Ω+ under the homogeneous Dirichlet condition u+ = 0).

The operator Aω has the inverse (a pseudo-differential operator of order 1)
precisely for non-exceptional ω. This inverse can also be defined as follows. We
find the solution u of the interior and exterior Dirichlet problems with u± = f and
set A−1

ω f = [Tu].
Problem I for eigenfunctions is reduced to the equation

ϕ = λAωϕ (2.17)

by the same substitution (2.15). In [7], the spectral properties of Aω are described.

If u is the solution of (1.1) outside S with Tu+ = Tu−, then it follows from
(2.4) that u = −Bω(u−−u+). Taking (2.6) into account, we see that the Neumann
problems (1.1), (1.5) (interior and exterior) are reduced to the equation

Dωψ = g (2.18)

by the substitution
ψ = [u] := u− − u+. (2.19)

Once this equation is solved, the corresponding solution of the Neumann problem
is given by the formula

u = −Bωψ. (2.20)

Here g ∈ Ht−1(Γ), ψ ∈ Ht(Γ), u ∈ Ht+1/2(Ω+), and u ∈ H
t+1/2
loc (Ω−) for t > 1.

Besides, the solution is analytic inside Ω±.
The interior Neumann problem is uniquely solvable for all ω except for some

nonnegative values ω = ω′
j tending to +∞ (such that (ω′

j)
2 is an eigenvalue of

−L0(∂) in Ω+ under the homogeneous Neumann condition Tu+ = 0).
The unique solvability of the interior Dirichlet problem is equivalent to the

invertibility of the operators Aω , 1
2I +Bω, and 1

2I +B′
ω, and the unique solvability

of the interior Neumann problem is equivalent to the invertibility of the operators
1
2I−Bω and 1

2I−B′
ω. In this case, the following formulas are true for the Neumann-

to-Dirichlet operators (see (2.5)):

u+ = −(1
2I −Bω)−1AωTu+, u− = (1

2I + Bω)−1AωTu−. (2.21)

2Here and below, the subscript loc may be omitted if ω2 > 0. We will not repeat this remark.
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However, as we already mentioned, the exterior Dirichlet and Neumann problems
are always uniquely solvable. The second formula in (2.21) can be modified if ω is
exceptional with respect to the interior Dirichlet problem. See [7].

The operator Dω has the inverse (a pseudo-differential operator of order
−1) for all ω except for ω = ω′

j. It can also be defined as follows. If u is the
solution of the interior and exterior Neumann problems with Tu± = g on Γ, then
ψ = D−1

ω g = [u].

Problem II for eigenfunctions is reduced to the equation

Dωψ = λψ (2.22)

on Γ by the substitution (2.19). Essentially, the spectral properties of Dω were
investigated in [7]. More precisely, the operator D−1

ω was there considered. Namely,
assuming that the interior Dirichlet and Neumann problems are uniquely solvable
for given ω and using (2.21), we considered the operator

u− − u+ = (1
2I + Bω)−1(1

2I −Bω)−1AωTu±. (2.23)

If ω is exceptional only for the interior Dirichlet problem, then the corresponding
generalization of the second formula in (2.21) can be used. However, it is easier to
consider Dω.

In conclusion, we note that Aω and Dω are analogs of the Neumann-to-
Dirichlet and Dirichlet-to-Neumann operators for the problems in question with
transmission conditions on Γ.

2.4. The Case of a Lipschitz Boundary

Here we again follow [7] and [8], see also references therein. We now assume that the
surface Γ is Lipschitz. (In particular, it can have edges and conical points.) Then
the Sobolev spaces Hτ (Γ) are defined in general only for |τ | ≤ 1. The Dirichlet
and Neumann problems remain meaningful in a generalized (weak) setting. The
solution belongs to Ht+1(Ω+) and Ht+1

loc (Ω−), |t| < 1/2 (but is analytic in Ω±).
The boundary values u± obviously belong to Ht+1/2(Γ), while the values of Tu±

are defined by Green’s formulas and belong to Ht−1/2(Γ). Namely, the following
Green formula in Ω+ is well known (cf., e.g., [22]):

−ω2

∫
Ω+

u · v dx = (Tu+, v+)0,Γ −
∫

Ω+
E(u, v) dx, (2.24)

where
E(u, v) =

∑
Ajk∂ku · ∂jv (2.25)

and (·, ·)0,Γ is the extension of the standard inner product in H0(Γ) to Ht−1/2(Γ)×
H−t+1/2(Γ) (the latter two spaces are dual with respect to this extension). As-
suming that u is a solution to (1.1) in Ht+1(Ω) and v is an arbitrary function in
H−t+1(Ω+), we define Tu+ ∈ Ht−1/2(Γ) as an anti-linear continuous functional on
the space H−t+1/2(Γ) of functions v+ on Γ. To define Tu−, we write out a similar
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formula for Ω−
R = Ω− ∩OR, where OR is a large ball containing Γ and centered at

the origin:

−ω2

∫
Ω−

R

u · v dx =
∫

SR

Tu · v dS − (Tu−, v−)0,Γ −
∫

Ω−
R

E(u, v) dx. (2.26)

If ω = 0 or ω2 > 0, then we can pass to the limit as R →∞ and use the formula

−ω2

∫
Ω−

u · v dx = −(Tu−, v−)0,Γ −
∫

Ω−
E(u, v) dx. (2.27)

Variational arguments are used for t = 0, and the unique solvability of the interior
Dirichlet and Neumann problems is proved for all ω except for some positive values
ωj → +∞ and nonnegative values ω′

j → +∞, respectively. These results admit
partial extensions to t with |t| ≤ 1/2 and complete extensions to t with |t| < 1/2.
Namely, in the case of the Dirichlet problem for all systems and in the case of the
Neumann problem for some systems, the value t = 1/2 can be considered by means
of the Rellich identities, which gives the results for |t| ≤ 1/2; see, e.g., [19]. In the
case of the Neumann problem for all systems, the extensions to t with |t| < 1/2
are obtained with the use of the Savaré theorem on the smoothness of solutions
to variational problems in Lipschitz domains. See [7, 8] and references therein,
starting from [23].

This approach should be compared with that based on the use of potentials
(cf. [22]). Formulas (2.2) remain true for ϕ ∈ H−1/2+t(Γ) and ψ ∈ H1/2+t(Γ) with
|t| < 1/2. For solutions in H1+t(Ω+) and H1+t

loc (Ω−), |t| < 1/2, the integral repre-
sentations (2.4) and relations (2.5) on Γ remain true. The formulas for the Calderón
projections also remain true. Of course, we have no calculus of pseudo-differential
operators. However, Aω is a bounded operator from Ht−1/2(Γ) to Ht+1/2(Γ) and
is invertible for all ω except for ωj. Similarly, Dω is a bounded operator from
Ht+1/2(Γ) to Ht−1/2(Γ) and is invertible for all ω except for ω′

j . All this is always
true for |t| < 1/2; the values t = ±1/2 will not be used in the present paper.

Now assume that t = 0 and ω = iτ , τ > 0. For the solution of the Dirichlet
problems, we have the formulas

u = AωA−1
ω u± (2.28)

and the two-sided estimates

‖u±‖1/2,Γ ≤ C1‖u‖1,Ω± ≤ C2‖u±‖1/2,Γ. (2.29)

Here the first inequality is well known for all u ∈ H1(Ω±) and the second follows
from (2.28).

Similarly, for the solution of the Neumann problems we have the formulas

u = −BωD−1
ω Tu± (2.30)

and the two-sided estimates

‖Tu±‖−1/2,Γ ≤ C3‖u‖1,Ω± ≤ C4‖Tu±‖−1/2,Γ. (2.31)
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Here the second inequality follows from (2.30). Let us explain the first inequality
in (2.31). We have

‖Tu±‖−1/2,Γ ≤ C5 sup
v:‖v±‖1/2,Γ=1

|(Tu±, v±)0,Γ|.

Define v as the solution to the Dirichlet problems for system (1.1) with given v±.
Then the right-hand side is not greater than

C6‖u‖1,Ω± sup ‖v‖1,Ω± ≤ C7‖u‖1,Ω±

(in view of (2.29) for v), which yields the desired inequality.
The operators Aω and Dω with ω1 = 0 are self-adjoint in the following sense:

(Aωϕ1, ϕ2)0,Γ = (ϕ1, Aωϕ2)0,Γ (ϕj ∈ H−1/2(Γ)), (2.32)

(Dωψ1, ψ2)0,Γ = (ψ1, Dωψ2)0,Γ (ψj ∈ H1/2(Γ)). (2.33)

Indeed, (2.32) is true for these ω and ϕj ∈ H0(Γ), since the matrix Eω(x) is
real symmetric, and it is carried over ϕj ∈ H−1/2(Γ) by a passage to the limit.
Formula (2.33) follows from the self-adjointness of the operators (2.21) for pure
imaginary ω.

2.5. The Spaces Hτ (S) and H̃τ (S) on a Nonclosed Surface S

The space Hτ (S) consists, by definition, of the restrictions to S of functions3

belonging to Hτ (Γ). Here S is considered as an open part of Γ, and for τ < 0
the restriction is understood in the sense of distributions. The norm in Hτ (S) is
defined by the formula

‖ψ‖τ,S = inf{‖φ‖τ,Γ : φ ∈ Hτ (Γ), φ|S = ψ}. (2.34)

The space H̃τ (S) is defined as the subspace of Hτ (Γ) consisting of functions
supported in S. The norm in this space is defined by the formula

‖ψ‖ eHτ (S) = ‖ψ‖τ,Γ. (2.35)

The spaces Hτ (Γ−) and H̃τ (Γ−) are defined similarly.
The space Hτ (S) is the factor space Hτ (Γ)/H̃τ (Γ−).
If Γ and γ are Lipschitz, then these spaces are defined only for |τ | ≤ 1.

However, even in the case of smooth Γ and γ we need these spaces only for |τ | < 1.
If τ1 < τ2, then Hτ1(S) ⊃ Hτ2(S) and H̃τ1(S) ⊃ H̃τ2(S), the corresponding

embeddings are compact, and the spaces with index 2 are dense in the correspond-
ing spaces with index 1.

Obviously, for τ ≥ 0 we may view the spaces Hτ (S) and H̃τ (S) as spaces
of functions defined on S. For τ < 0, the space Hτ (S) consists of distributions
defined in S, and H̃τ (S) consists of distributions on Γ with supports lying in S.
We allow ourself to say that these distributions are functions defined on S.

For |τ | < 1/2, the spaces Hτ (S) and H̃τ (S) can be identified. For 0 ≤
τ < 1/2, this follows from the fact that the continuation by zero on Γ− is a

3Usual functions or generalized functions, i.e. distributions.
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bounded operator from Hτ (S) to Hτ (Γ) giving a function in H̃τ (Γ) with norm
equivalent to the norm of the original function in Hτ (S). For −1/2 < τ < 0, the
possibility of identifying these spaces follows from duality arguments (see below).
In [17], it was shown that for |τ | < 1/2 the space Hτ (Γ) is the direct sum of the
subspaces H̃τ (Γ+) and H̃τ (Γ−). This result for the smooth case is carried over to
the Lipschitz case by means of a Lipschitz diffeomorphism.

If the surfaces Γ and γ are smooth, then the linear manifolds C∞
0 (S) and

C∞(S) are dense in H̃τ (S) and Hτ (S), respectively. Besides, C∞
0 (S) is dense in

Hτ (S) for τ < 1/2. (Indeed, the space Hτ2(S) is dense in Hτ1(S) for τ1 < τ2, while
C∞

0 (S) is dense in Hτ2(S) = H̃τ2(S) for τ2 ∈ (−1/2, 1/2).) In the case of Lipschitz
Γ and γ, the first assertion is true for linear manifolds of functions satisfying the
Lipschitz condition on S and S, respectively, with supports in S in the first case.

The spaces Hτ (S) and H̃−τ (S) are dual to each other with respect to the
continuation of the inner product (ϕ, ψ)0,S in H0(S) from functions belonging to
the dense linear manifolds just indicated to the direct product of these spaces. See,
e.g., [19].

The spaces Hτ (S) and H̃τ (S) form two interpolation scales with respect to
the real and complex interpolation methods. This means that if we take two points
τ1 and τ2, then in each of these scales the space Xτ with intermediate index τ is
obtained from the spaces with indices τ1 and τ2 by the interpolation rules: for
0 ≤ θ ≤ 1,

[Xτ1 , Xτ2]θ = [Xτ1 , Xτ2]θ,2 = X(1−θ)τ1+θτ2 . (2.36)
See, e.g., [24].

However, there are two more interpolation scales obtained by pasting to-
gether: 1) The scale consisting of H̃τ (S) for τ ≤ θ and Hτ (S) for τ ≥ θ; 2) the
scale consisting of Hτ (S) for t ≤ θ and H̃τ (S) for τ ≥ θ. Here the point θ of
pasting together is an arbitrary point in (−1/2, 1/2). The possibility of pasting
together follows from Wolff’s theorem (see [25])4 and the reiteration theorem [24].

Similar spaces are defined in the case of the space and the half-space instead
of Γ and S, respectively.

3. Problems with Transmission Conditions on a Lipschitz
Nonclosed Surface in the Simplest Spaces

3.1. The Contents of This Section

In this section, assuming that Γ and γ are Lipschitz, we reduce the Dirichlet and
Neumann problems to equations on S and prove the invertibility of the correspond-
ing operators Aω,S and Dω,S. We use only the spaces H±1/2(S) and H̃±1/2(S)
and apply a version of the variational approach (cf., e.g., [19] and see references

4I obtained this information from V.I. Ovchinnikov and use here a possibility to express him my
sincere gratitude.
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therein). At the end of the section, we discuss the spectral properties of these op-
erators. They are analogs of the Neumann-to-Dirichlet and Dirichlet-to-Neumann
operators for problems in question.

Note that if system (1.1) is satisfied outside S, then

[u] = 0 and [Tu] = 0 on Γ−. (3.1)

We denote by p+ the operator of restriction of functions defined on Γ to S and by
E0 the operator of continuation of functions defined on S to Γ by zero outside S.

3.2. The Dirichlet Problem and Problem I

We introduce the operator
Aω,S := p+Aω. (3.2)

It will be applied to functions defined on Γ and equal to zero on Γ−. We also can
consider it as acting on functions defined on S and extended by zero on Γ−. Then
the right-hand side of (3.2) should be rewritten in the form p+AωE0.

If u is the solution to the Dirichlet problem (1.1), (1.4) in H1
loc(R

n \S), then
we set

ϕ = [Tu] (3.3)

as in (2.15), but now this is a function in H̃−1/2(S), for which we obtain the
equation

Aω,Sϕ = f on S, (3.4)

similar to (2.14). The operator Aω,S acts boundedly from H̃−1/2(S) to H1/2(S).
For u we have the formula

u = Aωϕ. (3.5)
All this follows from the discussion in Subsection 2.4. Conversely, if f ∈ H1/2(S)
and ϕ is the solution to equation (3.4) in H̃−1/2(S), then (3.5) is the solution
of the Dirichlet problem (1.1), (1.4) in H1

loc(R
n \ S). Thus, we have equivalently

reduced the Dirichlet problem (1.1), (1.4) to equation (3.4) on S.
Passing to the spectral problem I, we see that if u is an eigenfunction of this

problem with eigenvalue λ, then ϕ satisfies the equation

ϕ = λAω,Sϕ on S, (3.6)

similar to (2.17). Here we mean that ϕ in the left-hand side is restricted to S.
Conversely, if ϕ is a solution in H̃−1/2(S) to this equation, then (3.5) is a solution
of Problem I. We add that taking our identifications into account, we have

H1/2(S) ⊂ H0(S) = H̃0(S) ⊂ H̃−1/2(S). (3.7)

Thus we can treat Aω,S as a bounded operator in H̃−1/2(S) with range contained in
H1/2(S) (we will see that actually the range coincides with this space) and hence
lying in H̃−1/2(S). Therefore, the spectral equation (3.6) make sense. (Another
point of view is also possible: in (3.6), we can replace the operator Aω,S = p+Aω

by θ+Aω, where θ+(x) is the characteristic function of S on Γ. Then ϕ can be
treated as equal to zero in Γ− on both sides in (3.6).)
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Like (2.17), equation (3.6) relates only to eigenfunctions; if Aω,D has as-
sociated functions, their relation to the corresponding solutions of Problem I is
somewhat more complicated. We do not discuss it and further will discuss the
spectral properties of the operator Aω,S . Thus Problem I for eigenfunctions is
equivalently reduced to equation (3.6) on Γ.

The following theorem is known in the case of smooth S and γ at least for
the Helmholtz equation, the Lamé system, and the system of anisotropic elasticity
for n = 3. See additional references in Section 4.

Theorem 3.1. The Dirichlet problem (1.1), (1.4) with f ∈ H1/2(S) has a unique
solution in H1

loc(R
n \ S), and the operator Aω,S : H̃−1/2(S) 
→ H1/2(S) is invert-

ible.

Proof. First, we check the uniqueness in the Dirichlet problem. For ω = 0 or
Im ω > 0, we use the standard arguments. We set v = u in (2.24) and (2.27) and
assume that this function belongs to H1(Rn \ S) and has zero values u± on S.
Adding left- and right-hand sides and taking (3.1) into account, we obtain

−ω2

∫
Rn

|u|2dx = −
∫

Rn

E(u, u) dx. (3.8)

If Imω > 0, then
∫ |u|2dx = 0 and hence u = 0. If ω = 0, then

∫
E(u, u) dx = 0

and hence (cf. [18], Section 3) u = const = 0. The case ω > 0 is somewhat more
complicated. In this case, from (2.24) and (2.26) we obtain

−ω2

∫
OR

|u|2dx =
∫

SR

Tu · u dS −
∫

OR

E(u, u) dx,

and hence

Im
∫

SR

Tu · udx = 0. (3.9)

Now the arguments from [7] can be applied, and we find that u = 0 in Ω−. Since
u is an analytic function outside S, it vanishes identically.

It follows from the uniqueness in the Dirichlet problem that Aω,S annihilates
only the zero function.

The form

〈ϕ1, ϕ2〉−1/2,S = −(Aω,Sϕ1, ϕ2)0,S = −(Aωϕ1, ϕ2)0,Γ (3.10)

is defined and bounded on the space H̃−1/2(S). To check the latter equality, it
suffices to approximate ϕ2 by functions with supports lying inside S. We now
need the following assertion (cf. Proposition 7.10 in [7]):

Proposition 3.2. For ω = iτ , τ > 0, the form (3.10) is an inner product in
H̃−1/2(S), the corresponding norm being equivalent to ‖ϕ‖ eH−1/2(S).

Proof. From (3.10) and (2.32), we have

〈ϕ1, ϕ2〉−1/2,S = −(Aiτϕ1, ϕ2)0,Γ = −(ϕ1, Aiτϕ2)0,Γ = 〈ϕ2, ϕ1〉−1/2,S
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for ϕj ∈ H̃−1/2(S).
It remains to estimate 〈ϕ, ϕ〉−1/2,S by ‖ϕ‖2

eH−1/2(S)
from below. We define the

function u by (3.5). This is a solution to (1.1) outside S belonging to H1(Rn \ S),
and we have

[Tu] = ϕ and u± = Aiτϕ on Γ. (3.11)

From (2.24), (2.27) with v = u and (3.10), we obtain

〈ϕ, ϕ〉−1/2,S =
∫

Rn

[τ2|u|2 + E(u, u)] dx ≥ C1‖u‖2
1,Rn\Γ. (3.12)

On the other hand, from the same formulas (2.24), (2.27) with v+ = v− on Γ, we
have

τ2

∫
Rn

u · v dx = −([Tu], v)0,Γ −
∫

Rn

E(u, v) dx. (3.13)

Assuming that
‖v‖1,Rn ≤ C2‖v±‖1/2,Γ ≤ C′

2‖v‖1,Rn

(we construct v as the solution of the Dirichlet problems in Ω± with given v±, see
(2.29)) and using the left inequality in (2.31), we obtain

‖ϕ‖−1/2,Γ = sup
v:‖v±‖1/2,Γ=1

|([Tu], v±)0,Γ| ≤ C3‖u‖1,Rn\Γ sup ‖v‖1,Rn ≤ C4‖u‖1,Rn\Γ.

Combining this with (3.12), we obtain the desired estimate. �

Now we return to the proof of the theorem.
If we take f in H1/2(S), then the relation

〈ϕ1, ϕ2〉−1/2,S = −(f, ϕ2)0,S (ϕ2 ∈ H̃−1/2(S))

uniquely determines ϕ1 ∈ H̃−1/2(S) by the Riesz theorem. Thus we have shown
that the equation Aiτ,Sϕ1 = f has a solution in H̃−1/2(S). We see that the operator
Aω,S is invertible for pure imaginary ω.

For other ω, this operator is a weak perturbation of the operator just in-
vestigated, since the difference of their kernels is by order one less singular and
hence is the kernel of a compact operator from H̃−1/2(S) to H1/2(S). (Moreover,
its range lies even in H1(S).) Therefore, Aω,S is a Fredholm operator for each ω
and its index is zero. Since KerAω,S is trivial, we conclude that Aω,S is invertible.
Simultaneously, we have proved the unique solvability of the Dirichlet problem. �

In addition, we note that for ω = iτ , τ > 0, if we make the substitution
ϕj = A−1

ω,Sψj (j = 1, 2) in (3.10), then we obtain an inner product

〈ψ1, ψ2〉1/2,S = −(ψ1, A
−1
ω,Sψ2)0,S (3.14)

in H1/2(S). The corresponding norm is equivalent to the usual norm in this space.
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3.3. The Neumann Problem and Problem II

Here our considerations are similar to those in the previous subsection (but the
results do not follow from the results obtained there).

We introduce the operator

Dω,Sψ = p+Dωψ. (3.15)

Here ψ is a function on Γ equal to zero on Γ−. We also can apply this operator to
functions defined on S and extended by zero to Γ−. Then we rewrite the right-hand
side in (3.15) in the form p+DωE0ψ.

If u is a solution to the Neumann problem (1.1), (1.5) in H1
loc(R

n \ S), then
we set

ψ = [u] (3.16)

as in (2.19), but now this function belongs to H̃1/2(S). By (2.4) and (2.7), we have

u = −Bωψ. (3.17)

According to definitions (2.6) and (3.15), we obtain the equation

Dω,Sψ = g on S (3.18)

for ψ. The operator Dω,S acts boundedly from H̃1/2(S) to H−1/2(S).
Conversely, if g ∈ H−1/2(S) and ψ is a solution to equation (3.18) in H̃1/2(S),

then the function (3.17) is a solution to the Neumann problem (1.1), (1.5) in
H1

loc(R
n \ S). Thus, the Neumann problem (1.1), (1.5) is equivalently reduced to

equation (3.18) on S, similar to equation (2.18) in the case of a closed surface.
Problem II for eigenfunctions is equivalently reduced to the equation

Dω,Sψ = λψ on S, (3.19)

similar to equation (2.22) in the case of a closed surface. Here we mean that ψ
in the right-hand side is restricted to S. The operator Dω,S can be considered as
acting in the space H−1/2(S) and having the domain H̃1/2(S). It lies in H−1/2(S),
since with our identifications we have

H̃1/2(S) ⊂ H̃0(S) = H0(S) ⊂ H−1/2(S). (3.20)

Therefore, the spectral equation (3.19) make sense. (Another possible point of
view is that we can replace the operator Dω,S = p+Dω by θ+Dω. Then ψ on both
sides in (3.19) will be equal to zero in Γ−.) The following theorem is also known
in the case of smooth surfaces for the Helmholtz equation, the Lamé system and
the system of anisotropic elasticity (for n = 3). See also Section 4 for additional
references.

Theorem 3.3. The Neumann problem (1.1), (1.5) with g ∈ H−1/2(S) has a unique
solution in H1

loc(R
n \ S), and the operator Dω,S : H̃1/2(S) 
→ H−1/2(S) is invert-

ible.
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Proof. The uniqueness in the Neumann problem is checked literally in the same
way as in the Dirichlet problem. It follows that the operator Dω,S annihilates only
the zero function.

The form

< ψ1, ψ2 >1/2,S= −(Dω,Sψ1, ψ2)0,S = −(Dωψ1, ψ2)0,Γ (3.21)

is defined and bounded on the space H̃1/2(S). The latter equality is true because
of possibility to approximate ψ2 by functions with supports lying inside S.

Proposition 3.4. For ω = iτ , τ > 0, the form (3.21) is an inner product in H̃1/2(S).
The corresponding norm is equivalent to the original norm in H̃1/2(S).

Proof. From (3.21) and (2.33), we have

< ψ1, ψ2 >1/2,S= −(Dωψ1, ψ2)0,Γ = −(ψ1, Dωψ2)0,Γ = < ψ2, ψ1 >1/2,S .

Now we estimate < ψ, ψ >1/2,S from below by ‖ψ‖2
eH1/2(S)

. We define the function
u by (3.17). Then, according to the second formula in (2.2) and definitions (2.6)
and (3.15), we have

[u] = ψ and Tu± = Dωψ on Γ. (3.22)

From (2.24), (2.27) with v = u, and (3.21) we have

< ψ, ψ >1/2,S=
∫

Rn

[
τ2|u|2 + E(u, u)

]
dx ≥ C5‖u‖2

1,Rn\Γ. (3.23)

On the other hand, from (2.24) and (2.27), by interchanging the letters u and v,
we obtain

τ2

∫
Rn

v · u dx = −(Tv±, [u])0,S −
∫

Rn

E(v, u) dx. (3.24)

Here we assume that v belongs to H1(Rn \ S) and satisfies the conditions

Tv+ = Tv− and ‖v‖1,Ω± ≤ C6‖Tv±‖−1/2,Γ ≤ C7‖v‖1,Ω±

on Γ (v is constructed as the solution to the Neumann problems in Ω± with given
Tv±; see (2.31)). Hence

‖ψ‖1/2,Γ = supv:‖Tv±‖−1/2,Γ=1 |(Tv±, [u])0,Γ| ≤ C8‖u‖1,Rn\Γ sup ‖v‖1,Rn\Γ
≤ C9‖u‖1,Rn\Γ,

and, using (3.23), we obtain the desired estimate

< ψ, ψ >1/2,S≥ C10‖ψ‖2
eH1/2(S)

. �

Now we finish the proof of Theorem 3.3 in the same way as the proof of
Theorem 3.1. For ω = iτ , τ > 0, taking g ∈ H−1/2(S), we define a function
ψ1 ∈ H̃1/2(S) by the relation

< ψ1, ψ2 >1/2,S= −(g, ψ2)0,S (ψ2 ∈ H̃1/2(S)). (3.25)

It is a solution of the equation Dω,Sψ1 = g. Thus the operator Dω,S is invertible
for ω = iτ , τ > 0. For other ω, we obtain the invertibility treating Dω,S as a weak
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perturbation of Diτ,S . Simultaneously, we conclude that the Neumann problem is
uniquely solvable. �

The substitution ψj = D−1
ω,Sϕj transforms the form (3.21) into the inner

product
< ϕ1, ϕ2 >−1/2,S= −(ϕ1, D

−1
ω,Sϕ2)0,S (3.26)

in H−1/2(S). The corresponding norm is equivalent to the original norm in this
space.

3.4. The Spectral Properties of the Operators Aω,S and Dω,S

We list and comment these properties without trying to formulate a cumbersome
theorem. In 6 and 7, we mention some expected results.

1. For ω = iτ , τ > 0, the operator Aω,S is a self-adjoint compact operator in
the space H̃−1/2(S) with inner product (3.10). Hence there exists an orthonormal
basis {ej} in this space consisting of eigenfunctions. Since this operator maps this
space continuously onto H1/2(S) and has a bounded inverse, it follows that the
functions ej belong to H1/2(S) and form an orthogonal basis there with respect to
the inner product (3.14). More precisely, if Aω,Sej = λjej, then {λjej} is a basis
in H1/2(S) orthonormal with respect to (3.14).

The power (−Aω,S)θ, 0 < θ < 1, defines a continuous invertible mapping of
H̃−1/2(S) onto Hθ−1/2(S) = H̃θ−1/2(S). Therefore, the same eigenfunctions form
a basis in these spaces too. It is orthogonal with respect to the inner product

〈ϕ1, ϕ2〉θ−1/2,S = ((−Aω,S)1−2θϕ1, ϕ2)0,S .

In particular, in L2(S) it is the usual inner product. Here |λj |1/2ej form an or-
thonormal basis.

2. Passing to other ω, we can treat Aω,S in H̃−1/2(S) as a weak perturbation
of the operator Aiτ,S just considered. Unfortunately, we cannot go beyond the
spaces with indices from −1/2 to 1/2 and therefore can only state that Aω,S is a
relatively compact perturbation of the operator Aiτ,S . This property is inherited
in all spaces Ht(S), −1/2 < t ≤ 1/2.

3. The s-numbers of these operators admit the estimate

sj ≤ Cj−1/(n−1) (3.27)

(see, e.g., [26]).
4. It follows from Assertions 2 and 3 that it is possible to form a basis for the

Abel–Lidskii method of summability with brackets of order n− 1 + ε in H̃−1/2(S)
with arbitrarily small ε > 0 consisting of root functions (see formulations and
references in [27]). This property is inherited by the same system of root functions
in all spaces Ht(S), −1/2 < t ≤ 1/2.

5. It also follows from Assertion 2 that the characteristic numbers (i.e. the
inverses of the eigenvalues) of the non-self-adjoint operator Aω,S lie in the union
of an arbitrarily narrow sectorial neighborhood of the ray R− and a neighborhood


