

Arturo Molina
Pedro Ponce
Jhonattan Miranda
Daniel Cortés

Enabling Systems for Intelligent Manufacturing in Industry 4.0

Sensing, Smart and Sustainable Systems
for the Design of S³ Products, Processes,
Manufacturing Systems, and Enterprises

Enabling Systems for Intelligent Manufacturing in Industry 4.0

Arturo Molina · Pedro Ponce · Jhonattan Miranda ·
Daniel Cortés

Enabling Systems for Intelligent Manufacturing in Industry 4.0

Sensing, Smart and Sustainable Systems
for the Design of S³ Products, Processes,
Manufacturing Systems, and Enterprises

Springer

Arturo Molina
School of Engineering and Sciences
Tecnológico de Monterrey
Mexico City, Mexico

Jhonattan Miranda
School of Engineering and Sciences
Tecnológico de Monterrey
Mexico City, Mexico

Pedro Ponce
School of Engineering and Sciences
Tecnológico de Monterrey
Mexico City, Mexico

Daniel Cortés
School of Engineering and Sciences
Tecnológico de Monterrey
Mexico City, Mexico

ISBN 978-3-030-65546-4 ISBN 978-3-030-65547-1 (eBook)
<https://doi.org/10.1007/978-3-030-65547-1>

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

*In memory of my mom, Rosita, my dad,
Arturo and my sister, Paty.*

—Arturo Molina

*I would like to thank Tecnológico de
Monterrey, all my colleagues and students,
my mother, my brother, my wife and my
children for their constant support and love.*

*The opportunity to create a new product is
called innovation.*

—Pedro Ponce

*To Aurora Mendoza, for inspiring me through
the years with your experience, love and
unconditional support.*

—Jhonattan Miranda

*In gratitude with the Tecnológico de
Monterrey.*

*To my mother and father, Margarita and Juan
Carlos. To my brother and sister, Eliud and
Miriam. To my moon and stars, Patricia. For
all your patience, support and love.*

—Daniel Cortés

Preface

Nowadays, companies begin to reconceptualize and redesign their processes, applying new practices and operational strategies as well as using emerging technologies. One of the strategies is to use sensing, smart and sustainable technologies. The concept of sensing, smart and sustainable (S³) technologies and systems will be presented in this book to guide the integrated development of products, manufacturing process, production systems and enterprises.

This book focuses on introducing sensing, smart and sustainable system theory to support the process of development of products, process, manufacturing systems and enterprises, named S³ Systems. This new approach is embraced for the implementation of emergent information and communication technologies (ICTs) and artificial intelligence (AI) techniques. The book will introduce the reader about the relationship between intelligent manufacturing (IM), S³ Systems and Industry 4.0. Also, the book will present a review of current approaches to design and develop technology-based products. Finally, an approach to develop sensing, smart and sustainable systems will be presented and samples of smart, sensing and sustainable product, process, manufacturing systems and enterprise (S³ Systems) will be shown as case studies.

S³ Products, Processes, Manufacturing Systems and Enterprises provide added value to users and engineers by incorporating specific characteristics and functions. Therefore, today, companies are using ‘integrated product, process, manufacturing system and enterprise development’ as a strategy for remaining competitive in the marketplace; thus, they can provide a new generation of systems offering solutions to contemporary social problems and responding to changing consumer demands. This new generation of systems are mostly technology based and consider sustainable objectives.

The S³ concept gathers valuable information to react in agile and precise manners while the Integrated Product, Process and Manufacturing System Development reference model framework provides structure to respond to the challenges of the digital age. In the former, Sensing feature allows to collect data about the internal and external environment. Smart feature is the ability to control actuators, process data, generate information and sharing it to offer interconnectivity among stakeholders. Sustainable feature is measured as the positive impact of a company in three different areas: i) economic, ii) social, and iii) environmental. In the latter, the reference

model framework improves, among others, three opportunity areas for the learners: i) structured processes, ii) industrial environmental knowledge and iii) technological adoption, due to the documentation generated throughout the methodology.

On the other hand, new concepts and systems have been implemented in manufacturing products such as social products that allow establishing several communication channels as products–consumers and products–products. These short of social channels are designed for constructing societies of products and consumers. Thus, the social concept in designing products is expanded. Moreover, the concept of smart product is changing according to technological advances. A few years ago, products making decisions by decision trees were considered smart machines. Now, the consumers are expecting to solve complex functions into the smart product, so considering a product smart needs to comprehend the levels of smart products and how they are also changing the manufacturing process. For instance, now robots that have been deployed in the manufacturing process help to reduce the number of defect workpieces and just-in-time production but the production robots could also be social robots to describe human emotions as Baxter, a robot for working into production lines, that has a face represented by a display. This display allows it to show several facial expressions determined by its current status. This kind of communication by human expressions approaches the robots to humans' operators. As a result, artificial intelligence could be considered as a set of algorithms that allows product designers to create a new level of smart products. Besides, sustainability could be considered as a holistic approach for covering product design and intelligent manufacture. Hence, sustainability could be implemented into flexible intelligent manufacturing products and services to different levels of sustainability have to be considered. Finally, sensing is the main characteristic of designing products. In fact, sensing is linked with smart feature in designing products since sensing gives information about the environment that surrounds the product. This information about the environment could be captured by a different kind of sensor such as nano-sensors that spend a minimum amount of energy so the wireless sensor could be designed using nano-sensor, and they can sense using piezoelectric materials for generating its supply energy. Thus, sensing is also a key feature for designing novel products.

Purpose of This Book

The aim of this book is to provide a review of intelligent manufacturing and smart, sensing and sustainable systems which could be considered the next generation of systems. Moreover, an overview of the main development tools is presented in order to describe how a S³ is designed and achieved through taxonomies. In addition, each chapter is self-contained with all the main design tools and technical information that are required for giving the reader a complete description for each topic.

Audience

Researchers, engineering students (undergraduate and graduate) or practising engineers that are looking for practical guidance and hands-on tools for designing S³ Systems and understanding the concepts of intelligent manufacturing. Moreover, this book could be used as a textbook into innovative product design courses as well as engineering products design. In fact, this book could be used for persons interested in designing products as a reference book because the book depicts every stage required for designing the new generation of products.

Outline

This book is organized in seven chapters below:

- Chapter 1 introduces the theory of sensing, smart and sustainable systems.
- Chapter 2 presents the integrated product, process, manufacturing system development (IPPMD) reference model framework. This reference model is used as a general model for the development of products, process, manufacturing systems and enterprises by implementing the theory of sensing, smart and sustainable systems.
- Chapter 3 gives a complete definition of sensing, smart and sustainable products, so the reader will understand how an S³ Products is defined and the levels of each design feature. In this chapter, the reader will see a set of examples about how to implement the theory of S³ in a product design. Finally, readers will analyse different examples of S³ Products.
- Chapter 4 describes as a generic manufacturing process and its fundamental components. Then, an explanation of how to sense those variables and how to control those variables using smart controls is presented. A taxonomy of S³ Manufacturing Process is presented to guide engineers in the process of adding functionalities of sensing, smartness and sustainability to manufacturing processes.
- Chapter 5 describes how S³ Manufacturing Systems can be designed, modelled and created using the IPPMD reference model framework. We will review the theory of integrated manufacturing system to understand the fundamentals that support our systematic approach. Then, we revise the functionalities of sensing, smart and sustainability that could be applied to a manufacturing system. Finally, we describe a methodology to design S³ Manufacturing Systems.
- Throughout Chap. 6, the best practices are identified and an easy to follow methodology is presented to guide individuals responsible for planning, designing and creating an enterprise. It provides a set of recommendations for the creation of a competitive enterprise concept including the definition of the business model, definition of strategies, use of performance measures, identification and evaluation

of core process and competencies and description of information and communication technologies that support the execution core processes to achieve the characteristics of sensing and smartness.

- Chapter 7 describes a novel methodology for creating new products. This novel methodology uses deep learning and adaptive neuro-fuzzy inference system (ANFIS) systems so the design process is partially autonomous. The methodology is explained gradually.
- Appendix A presents a review of relevant concepts related to Industry 4.0. Also, in this appendix, technologies and techniques used in this period are presented.
- Appendix B shows application of machine learning alternatives in manufacturing as well as a small description about the machine learning methodologies applied to manufacturing systems.

Chapters from 1 to 6 end with basic exercises for illustrating the presented concepts and designing tools.

Book						
Chapter 1	Chapter 2	Chapter 3	Chapter 4	Chapter 5	Chapter 6	Chapter 7
Introduction to the Intelligent Manufacturing concept and the S ³ Theory	Integrated Product Process and Manufacturing System Development Reference Model Framework	Sensing, Smart and Sustainable Products (S ³ Products)	Sensing, Smart and Sustainable Processes (S ³ Processes)	Sensing, Smart and Sustainable Manufacturing Systems (S ³ Manufacturing Systems)	Sensing, Smart and Sustainable Enterprise (S ³ Enterprise)	Evaluate S ³ Systems using Artificial Intelligence (AI)
Reader interested in basic concepts related to Intelligent Manufacturing				Reader interested in basic concepts related to Intelligent Manufacturing and Industry 4.0		
	Reader interested in reference models and engineering enterprise models	Reader interested in concepts related to emerging products	Reader interested in the design and development of S ³ Manufacturing Processes		Reader interested in enterprise creation	
	Examples of how to use the IPPMD Reference Model Framework are presented at the end of this chapter	Reader interested in existing products that provide sensing, smart and sustainable solutions	Exercises to design a manufacturing process are provided at the end of this chapter		Exercises to design a business model are provided at the end of this chapter	Reader interested in Artificial Intelligent in Manufacturing
Reader interested in the design of products with sensing, smart and sustainable features						
		Exercises to design a product are provided at the end of this chapter		Reader interested in the design of manufacturing systems with sensing, smart and sustainable features	Reader interested in the design of enterprise with sensing, smart and sustainable features	Reader interested about how Artificial Intelligence can be applied in New Product Development
			Reader interested in the design of the manufacturing system from the product idea with sensing, smart and sustainable features			

Mexico City, Mexico

Arturo Molina
Pedro Ponce
Jhonattan Miranda
Daniel Cortés

Acknowledgements The authors would like to acknowledge for their valuable contributions to Prof. Luis Camarinha-Matos of the NOVA University Lisbon, Portugal in Chap. 1 and Prof. François B. Vernadat of the University of Lorraine Metz, France, in Chap. 2 of the book.

Also, the authors would like to acknowledge Tecnologico de Monterrey, Mexico.

Contents

1	Sensing, Smart and Sustainable Systems Theory	1
1.1	What Are the Challenges of a World—Connected and Intelligent?	1
1.2	The S ³ System: Sensing, Smart and Sustainable	3
1.3	Sensing, Smart and Sustainable Systems to Enable Industry 4.0	11
1.4	User/Customer Centred Design in Industry 4.0 and S ³ Systems	11
1.4.1	Social Products Based on Sensing, Smart and Sustainable Features	14
1.4.2	Basic Topology for Designing Social Product	16
1.4.3	Case Study: A Smart Thermostat as Social Product	17
1.5	Technologies for S ³ Systems	20
1.6	Trends and Challenges for S ³ Systems	21
	References	25
2	Integrated Product, Process and Manufacturing System Development Reference Model Framework	29
2.1	The Use of Reference Models in Industry	29
2.2	Reference Model Framework and Methodology for Integrated Product, Process and Manufacturing System development (IPPMD)	32
2.2.1	Life Cycle Concepts	32
2.2.2	Enterprise Modelling Concepts	35
2.2.3	Instantiation Concepts	38
2.3	Methodology for Particular Model Configuration	44
2.3.1	Phase I—Project Definition	46
2.3.2	Phase II—Partial Model Definition	47
2.3.3	Phase III—Particular Model Definition	49

2.4	Using the IPPMD Reference Model Framework to Achieve Specific Company Requirements	50
2.4.1	Product Transfer to Be Manufactured in a Mexican Manufacturing Facility	50
2.4.2	Automation of the Tool, Manufacturing and Assembly Process Planning for Slip Yoke	54
2.4.3	Dry Freight Van Case Study	57
2.5	IPPMD for Improving Engineer Students Education	59
2.6	Benefits of the IPPMD Reference Model Framework	61
2.7	The Use of IPPMD Reference Model Framework for Developing Sensing, Smart and Sustainable Systems	62
	Appendix	64
	References	68
3	Sensing, Smart and Sustainable Products (S³ Products)	71
3.1	Taxonomy of Levels of Sensing, Smartness and Sustainability in Products	74
3.1.1	Levels of Sensing Solutions in S ³ Products	75
3.1.2	Levels of Smartness Solutions in S ³ Products	77
3.1.3	Levels of Sustainability Solutions in S ³ Products	78
3.2	Design and Development of Sensing, Smart and Sustainable Products	79
3.2.1	The Sensing, Smart and Sustainable Product Development Reference Framework	79
3.3	Examples of S ³ Products: The Reconfigurable Micro-machine Tool (RmMT-1G)	103
3.3.1	Product Idea Stage: RmMT-1G	103
3.3.2	Concept Design and Target Specification Stage: RmMT-1G	108
3.3.3	Detailed and Engineering Design Stage: RmMT-1G	110
3.3.4	Prototyping Stage: RmMT-1G	111
3.4	Product Redesign: Development of Reconfigurable Micro-Machine Tool–Second Generation (RmMT-2G)	115
3.5	Other Examples of S ³ Products	120
3.5.1	The S ³ Portable Greenhouse	121
3.5.2	The S ³ Wheelchair for Mobility of Disabled Persons	123
3.6	Activities Chapter 3	130
	References	136
4	Sensing, Smart and Sustainable Manufacturing Processes	141
4.1	The Fundamentals of a Manufacturing Process	141
4.1.1	Generic Model of a Manufacturing Process (Material Transformation)	141
4.1.2	From Raw Materials to Final Products	143

4.2	Sensing, Smart and Sustainable Processes: Concepts	146
4.2.1	Sensing in a Manufacturing Process	146
4.2.2	Smartness in Manufacturing Processes	147
4.2.3	Sustainability in the Manufacturing Process	148
4.2.4	Usage of the S ³ Process Concept	149
4.3	Taxonomy of S ³ Processes	152
4.3.1	Importance of Defining a Taxonomy of Levels of S ³ Processes	153
4.3.2	Levels of Sensing Solutions in S ³ Processes	154
4.3.3	Levels of Smartness Solutions in S ³ Processes	156
4.3.4	Levels of Sustainability Solutions in S ³ Processes	158
4.4	Methodology for S ³ Process Development	161
4.4.1	Sensing Solutions	167
4.4.2	Smart Solutions	168
4.4.3	Sustainable Solutions	171
4.5	Examples of the S ³ Process Development	172
4.5.1	Micro-machine (RmMT-1G) Case Study	172
4.5.2	Micro-machine (RmMT-2G) Case Study	196
4.5.3	Micro-machine (RmMT-3G) Case Study	197
4.5.4	Description of the Foldable Water Glass Process in Terms of S ³ Process	201
4.5.5	Description of the Attachable Garment Process in Terms of S ³ Process	202
4.5.6	Description of the Aeroponics Plant Manufacturing Process in Terms of S ³ Process	210
4.6	Exercises	213
	References	224
5	Sensing, Smart and Sustainable Manufacturing Systems	227
5.1	The Theory of Integrated Manufacturing Systems	227
5.1.1	Transformational Aspect of an Integrated Manufacturing System	228
5.1.2	Structural Aspect of an Integrated Manufacturing System	230
5.1.3	Procedural Aspect of an Integrated Manufacturing System	232
5.1.4	New Digital Technologies for Integrated Manufacturing Systems	236
5.2	IPPMD Reference Model Framework to Design Integrated Manufacturing Systems	239
5.2.1	Case 1: Product Transfer	240
5.2.2	Case 2: Technology Transfer	241
5.2.3	Case 3: New Product Development/New Manufacturing Facility	241

5.3	A Taxonomy of S ³ Manufacturing Systems	243
5.3.1	Levels of Sensing in S ³ Manufacturing Systems	244
5.3.2	Levels of Smartness in S ³ Manufacturing Systems	247
5.3.3	Levels of Sustainability in S ³ Manufacturing System	249
5.4	Design of Sensing, Smart and Sustainable Manufacturing Systems	250
5.4.1	Designing Sensing Systems	251
5.4.2	Designing Smart Systems	253
5.4.3	Designing Sustainable Systems	253
5.4.4	A Methodology to Design S ³ Manufacturing Systems	254
	References	255
6	Sensing, Smart and Sustainable Enterprise	257
6.1	The Sensing, Smart and Sustainable Enterprise Reference Model (S ³ -ERM)	257
6.1.1	The Rationale of S ³ -RM Based on RM-ODP	259
6.1.2	The S ³ ERM: Models, Methodology and Tools	262
6.2	The Context to Use the S ³ ERM	263
6.2.1	External Drivers	264
6.2.2	Internal Enablers	266
6.2.3	Forces: Entrepreneurship, Leadership and Team Work	266
6.3	Enterprise Viewpoint—Business Concept, Strategies and Key Performance Indicators	268
6.3.1	Business Concept Creation—Canvas	269
6.3.2	Strategy Formulation	270
6.3.3	Enterprise Strategic Resources Definition	278
6.3.4	One Page Strategy Management Tool	285
6.3.5	Key Performance Indicator	286
6.4	Information Viewpoint—Product, Manufacturing and Knowledge Models	287
6.5	Computational Viewpoint—Business Process Models and Core Processes	288
6.6	Engineering Viewpoint—E-Services, E-Application and E-Technologies	290
6.7	Technology Viewpoint—Intelligent Manufacturing System	292
6.8	Using the IPPMD to Enable the Design S ³ Enterprises	292
6.9	Activities	299
	References	303
7	Evaluate S³ Products Using Artificial Intelligence	307
7.1	Artificial Intelligence in Manufacturing	307
7.2	Artificial Intelligence for Designing and Evaluating S ³ Products	309
7.2.1	Deep Proven Conceptual Product Design (DPCPD)	310
7.2.2	CNNs for Evaluating Products	318
7.2.3	Automatic Analysis Proposal	320

Contents	xvii
7.2.4 First Stage in the DPCPD	323
7.2.5 Second Stage in the DPCPD (Finding Attributes)	325
7.2.6 Finding Product Attributes	327
7.2.7 Comments and Trends	336
References	337
Appendix A: A Review of Industry 4.0	339
Appendix B: General Methods and Concepts About Machine Learning and Intelligent Manufacturing	363

About the Authors

Arturo Molina is Vice-Rector of Research and Technology Transfer and Professor from Tecnologico de Monterrey University in Mexico. He received the B.Eng. degree in computational systems and the M.Eng. degree in computational sciences from the Tecnologico de Monterrey and his Ph.D. degree in Manufacturing Engineering at Loughborough University of Technology and his University Doctor degree in Mechanical Engineering at the Technical University of Budapest, Hungary. He has co-authored more than 300 research articles and several inventions. His current research interests include concurrent engineering technologies and manufacturing, enterprise integration engineering, technology management. He has applied research and development for the economic sectors of automotive, construction and energy. He is a member of the Mexican National Researchers System, the Mexican Academy of Science and the Mexican Academy of Engineering.

Pedro Ponce is a Senior Researcher Scientist and member of the Product Innovation Research Group at Tecnologico de Monterrey University in Mexico. He received the B.Eng. degree in Automation and Control, the M.Sc. and Ph.D. degree in Electrical Engineering focused on Automatic Control Systems, respectively. He worked for more than 12 years as a field and design engineer in Control Systems and Automation. Also, he has authored and co-authored more than 100 research articles, 14 books, and 6 inventions, including one US Patent. His research interests include mechatronics, control systems, smart grids, machine learning, product design, optimization, electric engineering, education

and artificial intelligence. He is a member of the Mexican National Researchers System, and Mexican Academy of science. Besides, he is an associate editor in the international journal of advanced robotics systems and the international journal on interactive design and manufacturing.

Jhonattan Miranda is a Researcher in the Product Innovation Research Group and Coordinator of the Open Innovation Laboratory at Tecnológico de Monterrey University in Mexico. He received the B.Eng. degree in Mechatronics from the Tecnológico Nacional de México, Cd. Hidalgo Campus and the M.Sc. and Ph.D. degrees in Engineering Sciences with a concentration in Manufacturing Systems and Product Design from the Tecnológico de Monterrey, respectively. He has co-authored different research articles in the areas of product design and innovation and concurrent engineering applied to the education and manufacturing sectors and has an invention in the area of machine tools. He is member of the Mexican National Researchers System.

Daniel Cortés Mexico City, 1993. He received the B.Eng. degree in Industrial Chemical Engineer and the M.Sc. in Business Administration. He has worked in the manufacturing sector for 3 years. He has worked in the development of innovative products at Tecnológico de Monterrey, co-authoring research articles. His research interests include discrete event simulation, product design, process design, manufacturing system design and enterprise business models.

Abbreviations and Acronyms

1G	First generation
2G	Second generation
3BL	Triple bottom line
3G	Third generation
3R	Reusable, recyclable, renewable
AF	Additional facility
AGV	Automated guided vehicle
AHP	Analytic hierarchy process
AI	Artificial intelligence
ANFIS	Adaptive neuro-fuzzy inference system
ANN	Artificial neural networks
AR	Augmented reality
ARIS	Architecture of integrated information systems
ASIC	Application-specific integrated circuit
ATO	Assemble to order
BOM	Bill of materials
BP	Back propagation
BPM	Business process management
BPMN	Business process management notation
BRIC	Brazil, Russia, India, and China
BTO	Build to order
CAD	Computer-aided system
CAE	Computer-aided engineering
CAM	Computer-aided manufacturing
CBL	Case-based learning
CC	Cloud computing
CE	Concurrent engineering
CIM	Computer-integrated manufacturing
CIMOSA	Computer-integrated manufacturing open system architecture
CITRIS	Center for Information Technology Research in the Interest of Society
CM	Cloud manufacturing
CNC	Computer numerical control

CNN	Convolutional neural network
CNO	Collaborative networked organizations
CO ₂	Carbon dioxide
CoS	Configuration of services
CP	Commodity products
CPPS	Cyber-physical production systems
CPS	Cyber-physical systems
CPU	Central processing unit
CRM	Customer relationship management
CSCW	Computer-supported cooperative working
CTO	Configure to order
DAQ	Data acquisition
DAS	Data acquisition system
DDB	Distributed data base
DfA	Design for assembly
DfE	Design for environment
DfM	Design for manufacture
DfS	Design for sustainability
DfX	Design for excellence
DoS	Design of services
DP	Declining products
DPCPD	Deep proven conceptual product design
E/E	Electrical/electronical
ECM	Enterprise content management
EF	Enlarge facility
EIE	Enterprise integration engineering
EM	Enterprise model
EPS	Electronic Procurement Systems
ERM	Enterprise reference model
ERP	Enterprise resource planning
ETO	Engineered to order
FEA	Finite element analysis
FIFO	First in first out
FMEA	Failure mode and effects analysis
FMP	Few major products
FMS	Fleet management system
FN	False negative
FP	False positive
FPGA	Field-programmable gate array
GDP	Gross domestic product
GE	General electric
GERAM	Generalised enterprise reference architecture and methodology
GIM	GRAI integrated methodology
GP	Growing products
GPU	Graphics processing unit

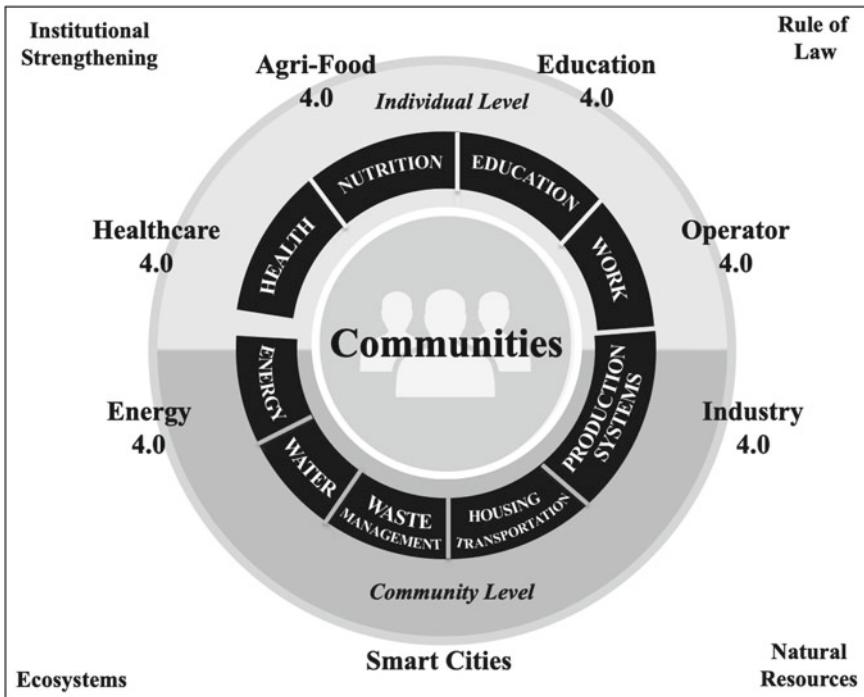
GRAI	Graphs with results and activities interrelated
GSM	Global system for mobile communications
HA	Highly automated
HMI	Human–machine interface
HP	High variety
HV	High volume
ICAD	Integrated computer-aided design
ICT	Information and communications technology
ID	Identification
IDEF0	Integration definition for function modeling
IIoT	Industrial Internet of Things
IM	Intelligent manufacturing
IMS	Integrated manufacturing system
IN	Innovation networks
INEGI	Instituto Nacional de Estadística y Geografía
IoT	Internet of Things
IP	Intellectual property
IPD	Integrated product development
IPPD	Integrated product and process development
IPPMID	Integrated product, process and manufacturing system development
IS	Increase shifts
ISO	International Organization for Standardization
JTBD	Jobs To Be Done
KPI	Key performance indicator
LA	Low automated
LAN	Local area network
LCA	Life cycle assessment
LIFO	Last in first out
LPD	Lean product development
LTE	Long-term evolution
LV	Low volume
M2M	Machine to machine
MAC	Manufacturing alliance of communities
MEMs	Microelectromechanical systems
MES	Manufacturing execution system
MHS	Material handling systems
MLP	Multilayer perceptron
mm	Millimeters
MNS	Matrix of needs and satisfiers
MOOC	Massive open online course
MP	Multiple products
MPD	Manufacturing process development
MTO	Make to order
MTS	Make to stock
NFC	Near-field communication

NP	New products
NPD	New product development
NTP	Non-traditional processes
ODP	Open distributed processing
OE	Outcome expectation
OKP	One of a kind product
OS	Operating system
PA	Partial automated
PAL	Permissive action link
PBL	Problem-based learning
PCB	Printed circuit board
PDM	Product development management
PEM	Partial enterprise model
PERA	Purdue enterprise reference architecture
PID	Proportional–integral–derivative
PLC	Programmable logic controller
PLM	Product lifecycle management
POL	Project-oriented learning
PPMD	Product, process and manufacturing system development
QFD	Quality function deployment
RFID	Radio frequency identification
RFLP	Requirements, functional, logical, physical
RM	Reference model
RmMT	Reconfigurable micro-machine tool
RP	Rapid prototyping
S ³	Sensing, smart and sustainable
SaaS	Software as a service
SBOM	System bill of material
SBU	Strategic business units
SCADA	Supervisory control and data acquisition
SCI	Supply chain integration
SM	Smart manufacturing
SME	Small- and medium-sized enterprise
SoC	Service on catalogue
SPC	Statistical Process Control
SPPS	Smart product–service system
SRM	Supplier relationship management
TCM	Tool condition monitoring
TN	True negative
TP	True positive
TRIZ	Theory of inventive problem solving (Russian acronym Tieoriya Riesheniya Izobriatelskij Zadach)
TTSR	Time on task and success rate
UC	University of California
UML	Unified Modeling Language

UN	United Nations
USA	United States of America
USB	Universal Serial Bus
USB-C	Universal Service Bus Type C
USD	United States Dollar
UWB	Ultra-wide bandwidth
VHDL	Very high-speed integrated circuit hardware description language
VLSI	Very large-scale integration
VP	Virtual prototype
VR	Virtual reality
WAN	Wireless area network
WON	Wireless office network
WP	Working prototype
WSN	Wireless sensor network

Chapter 1

Sensing, Smart and Sustainable Systems Theory

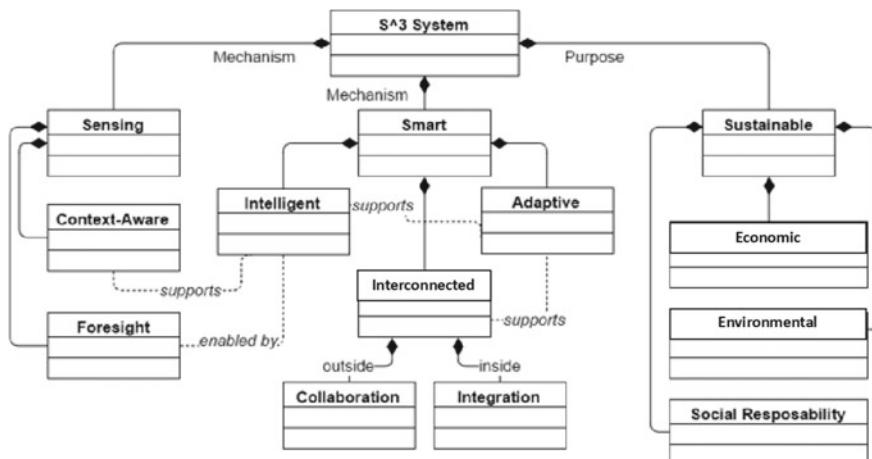

The world is flat, hot and crowded but also it is connected [1]. The generalized use of technologies such as Internet, mobile technologies, cloud computing, big data analytics, cyber-physical systems, digital systems and sensors leads to a connected world. In this chapter, you will be able to understand the new challenges faced by a connected world supposed to be supported by intelligent system to enhance living standards of people around the planet. The concept of sensing, smart and sustainable (S³) Systems will be introduced to tackle the challenges faced by communities around the world. These new types of systems driven by technologies enable the creation of intelligent systems, also named smart and connected systems and products [2]. Porter and Heppelmann state that smart, connected technologies will create a new path of innovation and will transform all industries because companies will have to re-invent their products, services and value-added offers. The chapter proposes the adoption of the S³ concepts in communities and cities, in any human-designed system, e.g. products, processes, manufacturing systems and enterprises. We call this vision as the S³ of everything [3, 4]. The creation of S³ Systems will promote and rely on collaboration, information access, open innovation and sustainable development.

1.1 What Are the Challenges of a World—Connected and Intelligent?

People and its communities around the world are in need of basic products and services in order to improve their standards of living (well-being and health). We recognized that countries and governments are facing challenges to cope with provision of systems that gives citizens conditions to improve its way of life. A government receives from citizens tax payments to provide health, educational and security systems. Also, it is their responsibility to protect nation's natural resources and bio-ecosystems that are at risk because of climate changes. Companies receive from their

customer payment for products and services that allows them to have a comfortable life. However, governments and enterprises are failing to satisfy worldwide demands from people to have, as individual, access to better health, education, nutrition and work. Also, people's communities are lacking of clean energy, potable water, high quality waste management systems, sustainable housing and transportation and production systems to have suitable work to improve their income. In the world today of 7+ billion people, there are 4 billion that live with less than 8 USD a day with very poor conditions regarding drinking water, transportation, eating, cooking and living [5]. There is a need that new technologies (nano-bio-info-cogno) improve the conditions of all people around the world [6]. The new revolution of Information Technologies and Cogno Sciences is creating new concepts that are expected to reduce cost, time to market, improve quality and increase availability of products and services: Healthcare 4.0 [7], Agri-Food 4.0 [8], Education 4.0 [9], Operator 4.0 [10], Energy 4.0 [11], Industry 4.0 [12] and Smart Cities [3] (Fig. 1.1).

The proposal is to design and create 4.0 concepts by using the theory of S^3 Systems. The theory of S^3 Systems can promote an increase innovation and productivity because they boost the creation of knowledge and its rapid application to product and services. Having access to the right information at the right time gives enterprises the ability to better compete and sustain their operations [13]. Also, government can satisfy citizen's demands by improving public services.


Fig. 1.1 Challenges and solutions of individual and communities

1.2 The S³ System: Sensing, Smart and Sustainable

Figure 1.2 captures the S³ characteristics of a generic systems based on such definitions. The conceptual model proposed details the S³ System definition, and each of the characteristics are explained next.

Sensing: **Context-awareness** is a key functionality of any intelligent system which refers to the acquisition of relevant data and information for decision-making. Sensing is based on the use of sensors that could measure simple variables among other things temperature, vibration, noise, pressure, flow, proximity and acceleration. Also, a network of sensors can build to monitor more complex systems such as industrial environments, local or large transportation systems, environmental condition in close or open areas, security conditions in private or public areas, health care of individuals or communities or threat detection on national borders, buildings and cities. The monitoring activities of any sensing system must be directed towards reliability and usability. Reliability guarantees the level of trust needed to make decisions based on data and information, while usability gives a purpose that helps designers or engineers in prioritizing monitoring efforts. Other key functionality in sensing is **Foresight**. To anticipate its future, the system must have a reasoning mechanism that makes inferences. Predictions are enhanced when the data and information is captured in real time. The foresight capability is based on data and information collected and processed by analytics algorithms using the computing capacity of the sensor network / Internet of thing (IoT) / cloud computing. The decision of where the computing processing is being executed either in the sensor network or cloud will depend on the intelligent system designed capabilities.

Smart: A smart system is built based on **intelligent systems** using artificial intelligent techniques, which implies the use of data/information and automated reasoning

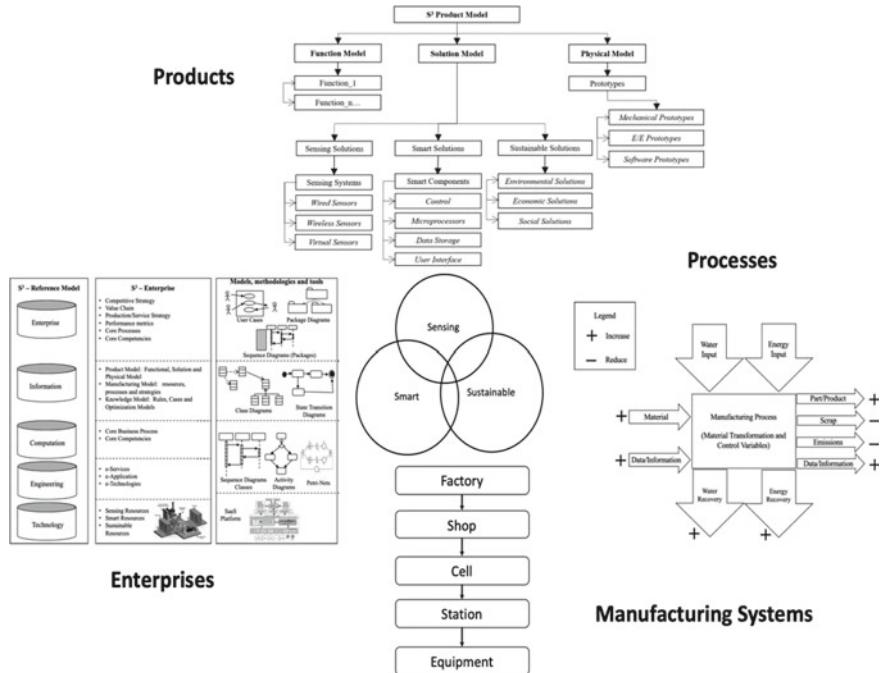
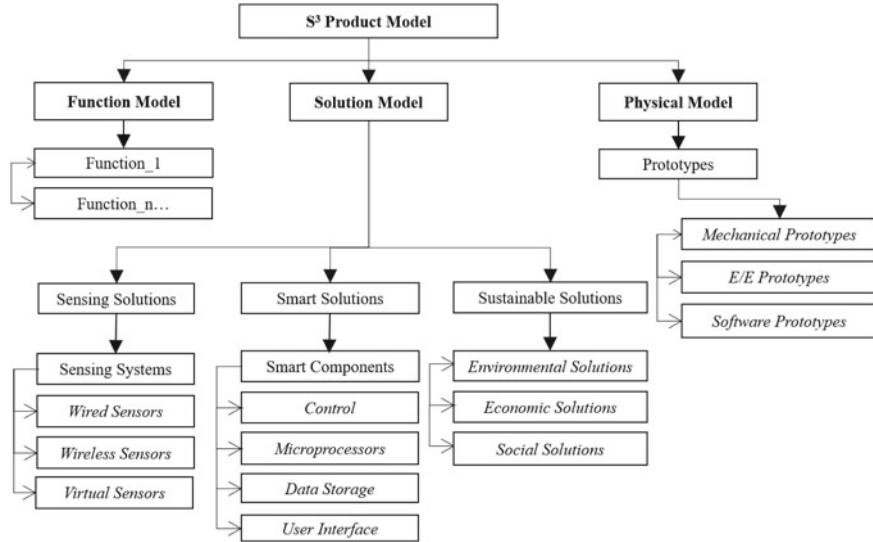


Fig. 1.2 Conceptual model of a sensing, smart and sustainable system

for decision-making. There are different artificial intelligent techniques such as genetic algorithms, artificial neural networks, fuzzy logic, depth neural networks and artificial organic networks [14, 15]. Depending on the application (design, classification, recognition, planning, scheduling, optimization, monitoring), alternative techniques can be used. Another characteristic of smart systems is **interconnected** that can be approached at two levels of **integration**: external (horizontal) and internal (vertical). At the external level (horizontal), it refers to the interoperability with other systems whose interaction provides value to the system tasks. At the internal level (vertical), interconnectivity is used to provide integration of the system's parts. In a product: physical, digital and electronic components; in a process: materials, energy, control and information; in a manufacturing system: manufacturing resources, information, knowledge and control strategies; in an enterprise: core processes, core competencies, information technologies and applications both levels suggest the creation of intelligent collaborative networks. Using the internetworking and automated reasoning capacities, a smart system must be able to adapt to disruptions on its environment. **Collaboration** is also an important functionality of the smartness of a system. This collaboration can be achieved with different approaches such as intelligent agents, collaborative networks and interoperability standards [16, 13]. The **adaptability** of a system can be enhanced by having the capacity of reconfigurability meaning to change its type of operations to react to a dynamic environment and also by having a robust design (intelligent control and automation) so it can adapt to a wide range of operating conditions based on data/information of sensing systems.


Sustainability: The notion of sustainability is typically divided into three pillars. The **economic** dimension is maintained when the system produces more than what it costs, it is profitable. Therefore, the goals must be to minimize operational costs while increasing productivity or value generation. In addition, a sustainable system must participate in the cocreation of a world where humans survive and thrive. Being **social responsible** is therefore an obligation. Moreover, the concept of social capitalism has been discussed to achieve economic and social impact at the same time [17]. Finally, **environment sustainability** refers to a resource consumption rate that allows the environment to restore itself. The concept of earth as our space ship with limitation of resources that must be reused/recycle/ restored. Complementarily, the production rate of wastes must be less than the absorption capacity of the ecosystem. In this regard, life cycle assessment has been introduced by many companies to redesign raw material acquisition, product (reduce, recycling, reuse), green manufacturing process, distribution channels and logistics, product use and post-service, product end-life [18, 19, 20]. The importance of measuring the footprint of all operations in a company has been arised by the sustainable development goals proposed by the United Nations (UN). The future concept has been defined as circular economy which allows networks of companies in collaboration with governments to achieve full sustainability in a product value chain [21].

As shown in Fig. 1.3, we will apply the S³ concept to products, processes, manufacturing systems and enterprises in order to improve their functionality and behaviour when they become sensing, smart and sustainable systems. Let us now have a closer look at each of them.

Fig. 1.3 Sensing, smart and sustainable products, processes, manufacturing systems and enterprises

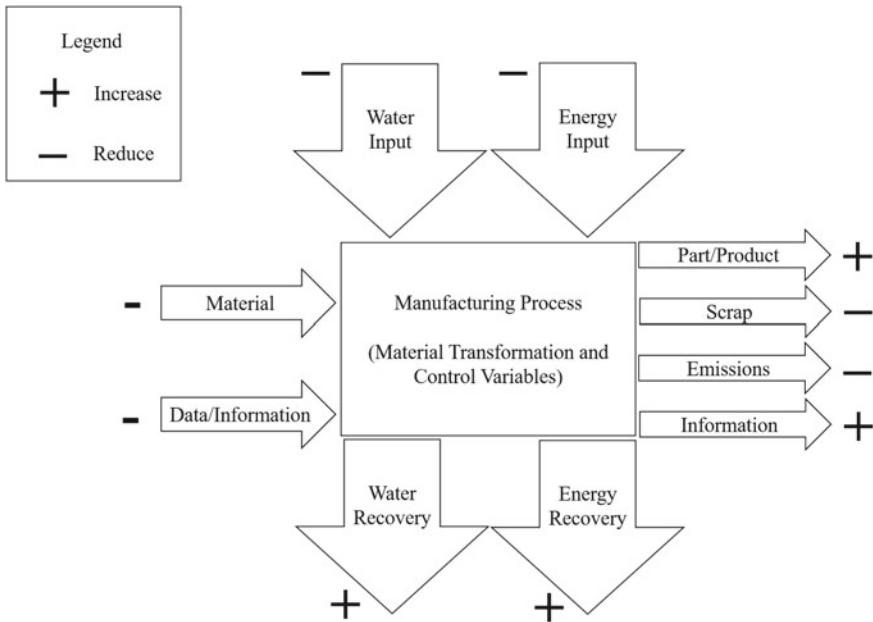

S³ Products. Novel products require more sophistication compared with traditional ones; the production of them must cover different aspects expected from prosumers and generate solutions in different schemes, especially those related to sustainability. Customisation, sustainable impact, reputation and contact are some of the characteristics expected from novel products. Integrating sensing, smart and sustainable characteristics to the product, it generates manufacturing goods which cover the expected outcomes of the potential consumers. Thus, S³ Products are sustained in a methodology to create, including the consumers in early phases of the development for new innovative products, and validating the opinion when redesigning existing ones. S³ Products are supported with the integration of value chain and collaboration from the suppliers, enterprise operations and consumer and at the same time, including technology, resource and information channels to accomplish financial objectives from the enterprise. As explained by Porter and Heppelmann [2], smart and connected products will change forever the perception of what a product's functionality is and what we can expect from them. In [22], we have proposed the product model for the S³ Products based on different approaches such as smart products where computational technologies are utilized to join physical processes with cyber-representations (See Fig. 1.4). These products have a mechatronics functionality since they integrate mechanical, electronic and information technology components. But they have more interaction with geographically distributed

Fig. 1.4 Sensing, smart and sustainable product model

parts and even relying on external components or services to provide product's functionality. The sensing characteristic of S³ Products involves all types of sensors which provide additional information to enhance context-awareness and self-description. The smartness characteristic is divided into the physical and smart components and connectivity. For physical components, new smart materials need to be introduced to provide proactive behaviour. The smart components, conformed by processing, storage and user interfaces, must be enhanced towards intelligent control, artificial intelligence planning and machine learning, in order to provide the product functionality in different conditions and following customer's needs. Finally, the connectivity components are for interaction of the products with other products or processes and different actors during the product life cycle. The sustainable characteristic is realized by adopting sustainable product development which includes traditional product requirements criteria (economic, quality, market, technical feasibility) but adds environmental and social impacts [23]. Thus, the S³ Products must produce benefits such as reduced volume of hazardous material and raw material in general, reduced energy consumption and elimination/reduction of waste. For developing sustainable products, the life cycle approach is currently used to measure their economic, social and environmental impacts [24]. Adding sustainable considerations to the smart and connected products concept is a step towards S³ Products. Chapter 3 will describe in more detail the taxonomy of S³ Products and its development process.

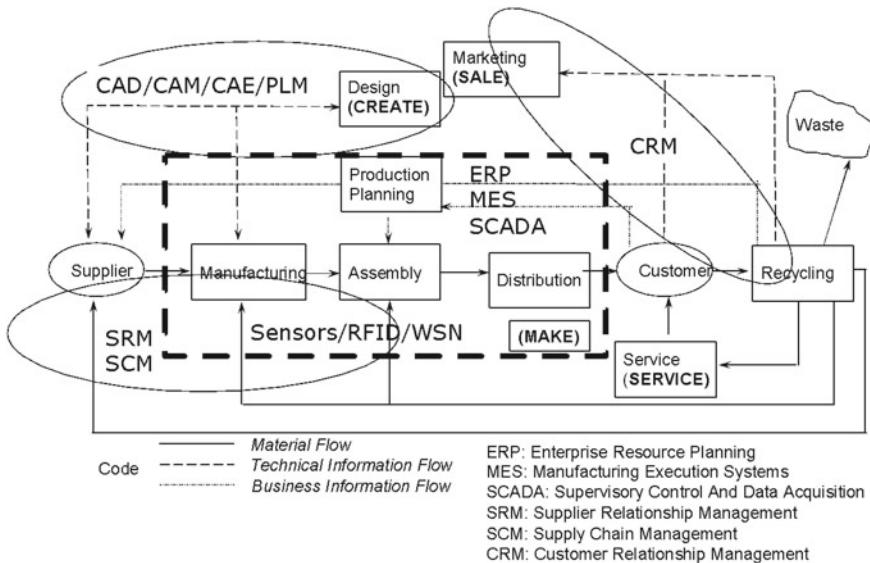

S³ Processes. In today's world, innovation drives economy, and therefore, new products are being introduced at a faster and faster pace. The processes (manufacturing and business) need to adapt to this rate. We propose the S³ Processes as solutions for the ever-changing environment in the digital economy. Figure 1.5 shows an

Fig. 1.5 Sensing, smart and sustainable manufacturing processes

S³ material transformation process using the morphological definition to illustrate what is expected in a S³ Manufacturing Processes. The processes should become smart and sensing, which implies that there is a continuous monitoring of operations which gives processes the ability to create the desired products in efficient and flexible ways. The production processes used by most industries have not achieved the desirable sustainability [19]. In fact, traditional industrial production is linked to environmental disruptions, such as global warming and pollution and consumption of non-renewable resources. However, in S³ Processes, the energy and material utilizations should be minimized, and the production waste reduced to almost zero seeking sustainable production [23]. Intelligent technologies for sustainable energy management are been developed to support in this endeavour [11].

Figure 1.6 depicts traditional business core process of what a company must do: create, make and sale products, also offer after sales services to customer. These processes are usually supported by technologies and applications. For products creation CAD/CAM/CAE/PLM. For products manufacturing (make) ERP/MES/SCADA and shop floor technologies such as sensors/RFID/wireless sensor networks (WSN) and real-time control systems. For sales and customer services usually CRM—customer relationship management systems. To achieve an improved level of continuous monitoring, processing and smart decision-making emerging technologies are being integrated such as Internet of things, Internet of services, cloud computing, big data and analytics. Autonomous cooperative elements will connect in situation dependant ways, conforming Cyber-Physical Production

Fig. 1.6 Enterprise business process and some examples of enabling technologies

Systems (CPPS). Later, we will discuss how all these new technologies support the concept of Industry 4.0 and S³ Systems where the cooperative interconnectivity will also affect the business processes and the data must be trusted without always knowing their origin. As a consequence, the benefits of such scenarios anticipation are both: increased resources efficiency and reduction of risks. Business and engineering processes in Industry 4.0 are promoting sustainability [25]. Chapter 4 will be focused on describing in detail the taxonomy of S³ Process and how they can be designed and develop.

S³ Manufacturing Systems. The S³ Manufacturing System is concerned with all levels automation (enterprise, factory, shop, cell, station, equipment) in order to include technologies to sense and make decision intelligently. Figure 1.7 shows the hierarchical levels together with some sensing requirements and decisions to be considered in a S³ Manufacturing System and enterprise. The right selection of smart machine, material handling equipment, tooling, CNC, PLC and real-time controls, monitoring and scheduling strategies is key to achieve a high-level intelligent system. Also, it is important to design the concept of dual twins (digital and physical) to extend the capacities of flexibility and reconfigurability of the manufacturing system. These are the foundations to design a next generation of intelligent manufacturing system. Chapter 5 will present all the functionalities and characteristics of S³ Manufacturing Systems and how an intelligent manufacturing system can be designed using the concepts of sensing, smart and sustainable systems.

S³ Enterprises. The S³ Enterprise is concerned with design of a business model, strategies, its information models, definition of core processes and core competencies, integration of computational resources and manufacturing technologies to