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Editorial Introduction

This volume of the Operator Theory: Advances and Applications series (OTAA)
is the first volume of a new subseries. This subseries is dedicated to connections
between the theory of linear operators and the mathematical theory of linear
systems and is named Linear Operators and Linear Systems (LOLS). As the ex-
isting subseries Advances in Partial Differential Equations (ADPE), the new sub-
series will continue the traditions of the OTAA series and keep the high quality of
the volumes. The editors of the new subseries are: Daniel Alpay (Beer–Sheva, Is-
rael), Joseph Ball (Blacksburg, Virginia, USA) and André Ran (Amsterdam, The´
Netherlands).

In the last 25–30 years, Mathematical System Theory developed in an essen-
tial way. A large part of this development was connected with the use of the state
space method. Let us mention for instance the “theory of H∞ control”. The state
space method allowed to introduce in system theory the modern tools of matrix
and operator theory. On the other hand the state space approach had an impor-
tant impact on Algebra, Analysis and Operator Theory. In particular it allowed
to solve explicitly some problems from interpolation theory, theory of convolution
equations, inverse problems for canonical differential equations and their discrete
analogs. All these directions are planned to be present in the subseries LOLS.
The editors and the publisher are inviting authors to submit their manuscripts for
publication in this subseries.

This volume contains five essays. The essay of D. Arov and O. Staffans,
State/signal linear time-invariant systems theory, part I: discrete time systems,
contains new results in classical system theory. The essays of D. Alpay and D.S. Ka-
lyuzhny̆ı-Verbovetzkĭ˘ ı, Matrix-J-unitary non-commutative rational formal power
series, and of J.A. Ball, G. Groenewald and T. Malakorn, Conservative structured
noncommutative multidimensional linear systems are dedicated to a new branch
in Mathematical system theory where discrete time is replaced by the free semi-
group with N generators. The essay of I. Gohberg, I. Haimovici, M.A. Kaashoek
and L. Lerer, The Bezout integral operator: main property and underlying abstract
scheme contains new applications of the state space method to the theory of Be-
zoutiants and convolution equations. The essay of D. Alpay and I. Gohberg Dis-
crete analogs of canonical systems with pseudo-exponential potential. Definitions
and formulas for the spectral matrix functions is concerned with new results and
formulas for the discrete analogs of canonical systems.

Daniel Alpay, Israel Gohberg



Operator Theory:
Advances and Applications, Vol. 161, 1–47
©c 2005 Birkhauser Verlag Basel/Switzerland¨

Discrete Analogs of Canonical Systems with
Pseudo-exponential Potential. Definitions and
Formulas for the Spectral Matrix Functions

Daniel Alpay and Israel Gohberg

Abstract. We first review the theory of canonical differential expressions in
the rational case. Then, we define and study the discrete analogue of canonical
differential expressions. We focus on the rational case. Two kinds of discrete
systems are to be distinguished: one-sided and two-sided. In both cases the
analogue of the potential is a sequence of numbers in the open unit disk
(Schur coefficients). We define the characteristic spectral functions of the dis-
crete systems and provide exact realization formulas for them when the Schur
coefficients are of a special form called strictly pseudo-exponential.

Mathematics Subject Classification (2000). 34L25, 81U40, 47A56.
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2 D. Alpay and I. Gohberg

1. Introduction

Canonical differential expressions are differential equations of the form

−iJ
∂Θ
∂x

(x, λ) = λΘ(x, λ) + v(x)Θ(x, λ), x ≥ 0, λ ∈ C, (1.1)

where

v(x) =
(

0 k(x)
k(x)∗ 0

)
, J =

(
InII 0
0 −InII

)
,

and where k ∈ Ln×n
1 (R+) is called the potential. Such systems were introduced by

M.G. Krĕın (see, e.g., [37], [38]).˘

Associated to (1.1) are a number of functions of λ, which we called in [10] the
characteristic spectral functions of the canonical system. These are:

1. The asymptotic equivalence matrix function V (λ).
2. The scattering function S(λ).
3. The spectral function W (λ).
4. The Weyl function N(λ).
5. The reflection coefficient function R(λ).

Direct problems consist in computing these functions from the potential k(x) while
inverse problems consist in recovering the potential from one of these functions.

In the present paper we study discrete counterparts of canonical differential expres-
sions. To present our approach, we first review various facts on the telegraphers’
equations. By the term telegraphers’ equations, one means a system of differential
equations connecting the voltage and the current in a transmission line. The case
of lossy lines can be found for instance in [45] and [18]. We here consider the case
of lossless lines and follow the arguments and notations in [16, Section 2], [19, p.
110–111] and [46]. The telegraphers’ equations which describe the evolution of the
voltage v(x, t) and current i(x, t) in a lossless transmission line can be given as:

∂v

∂x
(x, t) + Z(x)

∂i

∂t
(x, t) = 0

∂i

∂x
(x, t) + Z(x)−1 ∂v

∂t
(x, t) = 0.

(1.2)

In these equations, Z(x) represents the local impedance at the point x. A priori
there may be points where Z(x) is not continuous, but it is important to bear in
mind that voltage and current will be continuous at these points.

Let us assume that Z(x) > 0 and is continuously differentiable on an interval
(a, b), and introduce the new variables

V (x, t) = Z(x)−1/2v(x, t),

I(x, t) = Z(x)1/2i(x, t),
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and

WRW (x, t) =
V (x, t) + I(x, t)

2
,

WLW (x, t) =
V (x, t) − I(x, t)

2
.

Then the function

W (x, t) =
(

WRW (x, t)
WLW (x, t)

)
=

1
2

(
Z(x)−1/2 Z(x)1/2

Z(x)−1/2 −Z(x)1/2

)(
v(x, t)
i(x, t)

)
(1.3)

satisfies the differential equation, also called symmetric two components wave
equation (see [16, equation (2.6) p. 362], [46, p. 256], [19, equation (3.3) p.
111])

∂W (x, t)
∂x

= −J
∂W (x, t)

∂t
+
(

0 −κ(x)
−κ(x) 0

)
W (x, t),

where

J =
(

1 0
0 −1

)
and κ(x) =

Z ′(x)
2Z(x)

. (1.4)

We distinguish two cases:
(a) The case where Z(x) > 0 and is continuously differentiable on R+. Taking

the (inverse) Fourier transform f �→ f̂(λ) =
∫

R

∫∫
eiλtf(t)dt on both sides we get

to a canonical differential expressions (also called Dirac type system), with
k(x) = iκ(x) and Θ(x, λ) = Ŵ (x, λ). The theory of canonical differential
expressions is reviewed in the next section.

(b) The case where Z(x) is constant on intervals [nh, (n + 1)h) for some pre-
assigned h > 0. We are then lead to discrete systems.

The paper consists of three sections besides the introduction. In Section 2 we review
the main features of the continuous case. The third section presents the discrete
systems to be studied. These are of two kinds, one-sided and two-sided. Section
3 also contains a study of one-sided systems and of their associated characteristic
spectral functions. In Section 4 we focus on two-sided systems and we also present
an illustrative example.
In the parallel between the continuous and discrete cases a number of problems
remains to be considered to obtain a complete picture. In the sequel to the present
paper we study inverse problems associated to these first-order systems.
To conclude this introduction we set some definitions and notation. The open unit
disk will be denoted by D, the unit circle by T, and the open upper half-plane by
C+. The open lower half-plane is denoted by C− and its closure by C−. We will
make use of the Wiener algebras of the real line and of the unit circle. These are
defined as follows. The Wiener algebra of the real line Wn×n(R) = Wn×n consists
of the functions of the form

f(λ) = D +
∫ ∞

−∞

∫∫
eiλtu(t)dt (1.5)



4 D. Alpay and I. Gohberg

where D ∈ C
n×n and where u ∈ Ln×n

1 (R). Usually we will not stress the depen-
dence on R. The sub-algebra Wn×n

+ (resp. Wn×n
− ) consists of the functions of the

form (1.5) for which the support of u is in R+ (resp. in R−).
The Wiener algebra W(T) (we will usually write W rather than W(T)) of the unit
circle consists of complex-valued functions f(z) of the form

f(z) =
∑

Z

f�ff z�

for which
‖f‖W def.=

∑
Z

|f�ff | < ∞.

2. Review of the continuous case

2.1. The asymptotic equivalence matrix function

We first review the continuous case, and in particular the definitions and main
properties of the characteristic spectral functions. See, e.g., [7], [11], [10] for more
information. We restrict ourselves to the case where the potential is of the form

k(x) = −2ceixa
(
IpII + Ω

(
Y − e−2ixa∗

Y e2ixa
))−1

(b + iΩc∗) , (2.1)

where (a, b, c) ∈ C
p×p × C

p×n × C
n×p is a triple of matrices with the properties

that
∩m

�=0 ker ca� = {0} and ∪m
�=0 Im a�b = C

p

for m large enough. In system theory, see for instance [30], the first condition
means that the pair (c, a) is observable while the second means that the pair (a, b)
is controllable. When both conditions are in force, the triple is called minimal.
See also [14] for more information on these notions. We assume moreover that the
spectra of a and of a× = a − bc are in the open upper half-plane. Furthermore
Ω and Y in (2.1) belong to Cp×p and are the unique solutions of the Lyapunov
equations

i(Ωa×∗ − a×Ω) = bb∗, (2.2)
−i(Y a − a∗Y ) = c∗c. (2.3)

This class of potentials was introduced in [7] and called in [26] strictly pseudo-
exponential potentials. Note that both Ω and Y are strictly positive since the
triple (a, b, c) is minimal, and that IpII + ΩY and IpII + Y Ω are invertible since

det(IpII + ΩY ) = det(IpII + Y Ω) = det(IpII +
√

Y Ω
√

Y ).

Note also that asymptotically,

k(x) ∼ −2ceixa(IpII + ΩY )−1 (b + iΩc∗) (2.4)

as x → +∞. Potentials of the form (2.1) can also be represented in a different
form; see (2.22).
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We first define the asymptotic equivalence matrix function. To that purpose (and
here we follow closely our paper [12]) let F, G and T be the matrices given by

F = i

(
−c 0
0 f1

)
, T =

(
ia 0
0 −ia∗

)
, G =

(
0 f∗

1

c∗ 0

)
, (2.5)

where f1 = (b∗ − icΩ)(IpII + Y Ω)−1.

Theorem 2.1. Let Q(x, y) be defined by

Q(x, y) = FexT (I2II p − exT ZexT )−1eyT G

where (F, G, T ) are defined by (2.5) and where Z is the unique solution of the
matrix equation

TZ + ZT = −GF.

Then the matrix function

U(x, λ) = eiλJx +
∫ ∞

x

∫∫
Q(x, u)eiλJudu

is the unique solution of (1.1) with the potential as in (2.1), subject to the condition

lim
x→∞

(
e−ixλInII 0

0 eixλInII

)
U(x, λ) = I2II n, λ ∈ R. (2.6)

Furthermore, the Cn×n-valued blocks in the decomposition of the matrix function
U(0, λ) = (UijUU (0, λ)) are given by

U11(0, λ) = InII + icΩ(λIpII − a∗)−1c∗,

U21UU (0, λ) = (−b∗ + icΩ)(λIpII − a∗)−1c∗,

U12(0, λ) = −c(IpII + ΩY )(λIpII − a)−1(IpII + ΩY )−1(b + iΩc∗),

U22UU (0, λ) = InII − (ib∗Y + cΩY )(λIpII − a)−1(IpII + ΩY )−1(b + iΩc∗).

See [9, Theorem 2.1].

Definition 2.2. The function V (λ) = U(0, λ) is called the asymptotic equivalence
matrix function.

The terminology asymptotic equivalence matrix function is explained in the fol-
lowing theorem:

Theorem 2.3. The asymptotic equivalence matrix function has the following prop-
erty: let x ∈ R and ξ0 and ξ1 in C2n. Let f0ff (x, λ) = eiλxJξ0 be the C2n-valued
solution to (1.1) corresponding to k(x) = 0 and f0ff (0, λ) = ξ0 and let f1(x, λ) cor-
responding to an arbitrary potential k of the form (2.1), with f1(0, λ) = ξ1. The
two solutions are asymptotic in the sense that

lim
x→∞ ‖f1(x, λ) − f0ff (x, λ)‖ = 0

if and only if ξ1 = U(0, λ)ξ0.

For a proof, see [10, Section 2.2].
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The asymptotic equivalence matrix function takes J-unitary values on the real
line:

V (λ)JV (λ)∗ = J, λ ∈ R.

We recall the following: if R be a C2n×2n-valued rational functions analytic at
infinity, it can be written as R(λ) = D + C(λImII − A)−1B, where A, B, C and D
are matrices of appropriate sizes. Such a representation of R is called a realization.
The realization is said to be minimal if the size of A is minimal (equivalently, the
triple (A, B, C) is minimal, in the sense recalled above). The McMillan degree of
R is the size of the matrix A in any minimal realization. Minimal realizations
of rational matrix-valued functions taking J-unitary values on the real line were
characterized in [5, Theorem 2.8 p. 192]: R takes J-unitary values on the real line
if and only if there exists an Hermitian invertible matrix H ∈ Cm×m solution of
the system of equations

i(A∗H − HA) = C∗JC (2.7)
C = iJB∗H. (2.8)

The matrix H is uniquely defined by the minimal realization of R and is called
the associated Hermitian matrix to the minimal realization matrix function. The
matrix function R is moreover J-inner, that is J-contractive in the open upper
half-plane:

R(λ)JR(λ) ≤ J for all points of analyticity in the open upper half-plane,

if and only if H > 0. The asymptotic equivalence matrix function V (λ) has no pole
on the real line, but an arbitrary rational function which takes J-unitary values
on the real line may have poles on the real line. See [5] and [4] for examples.

The next theorem presents a minimal realization of the asymptotic equivalence
matrix function and its associated Hermitian matrix.

Theorem 2.4. Let k(x) be given in the form (2.1). Then, a minimal realization of
the asymptotic equivalence matrix function associated to the corresponding canon-
ical differential system is given by V (λ) = I2II n + C(λI2II p − A)−1B, where

A =
(

a∗ 0
0 a

)
, B =

(
c∗ 0
0 (IpII + ΩY )−1(b + iΩc∗)

)
and

C =
(

icΩ −c(IpII + ΩY )
−b∗ + icΩ −ib∗Y − cΩY

)
,

and the associated Hermitian matrix is given by

H =
(

Ω i(IpII + ΩY )
−i(IpII + Y Ω) (IpII + Y Ω)Y

)
.

We now prove a factorization result for V (λ). We first recall the following: let as
above R be a rational matrix-valued function analytic at infinity. The factorization



Analogs of Canonical Systems with Pseudo-exponential Potential 7

R = R1R2 of R into two other rational matrix-valued functions analytic at infinity
(all the functions are assumed to have the same size) is said to be minimal if

deg R = deg R1 + deg R2.

Minimal factorizations of rational matrix-valued functions have been characterized
in [14, Theorem 1.1 p. 7]. Assume now that R takes J-unitary values on the
real line. Minimal factorizations of R into two factors which are J-unitary on
the real line were characterized in [5]. Such factorizations are called J-unitary
factorizations. To recall the result (see [5, Theorem 2.6 p. 187]), we introduce first
some more notations and definitions: let H ∈ C

p×p be an invertible Hermitian
matrix. The formula

[x, y]H = y∗Hx, x, y ∈ C
p

defines a non-degenerate and in general indefinite inner product. Two vectors
are orthogonal with respect to this inner product if [x, y]H = 0. The orthogonal
complement of a subspace M ⊂ Cp is:

M[⊥] = {x ∈ C
p ; [x, m]H = 0 ∀m ∈ M} .

We refer to [29] for more information on finite-dimensional indefinite inner product
spaces.

Theorem 2.5. Let R be a rational matrix-valued function analytic at infinity and
J-unitary on the real line, and let R(λ) = D + C(zIpII − A)−1B be a minimal
realization of R, with associated matrix H. Let M be a A-invariant subspace of Cp

non-degenerate with respect to the inner product [·, ·]H . Let π denote the orthogonal
(with respect to [·, ·]H) projection such that

kerπ = M, Im π = M[⊥]

and let D = D1D2 be a factorization of D into two J-unitary constants. Then
R = R1R2 with

R1(z) = D1 + C(zIpII − A)−1(IpII − π)BD−1
2

R2(z) = D2 + D−1
1 Cπ(zIpII − A)−1BD2

is a minimal J-unitary factorization of R. Conversely, every J-unitary factoriza-
tion of R is obtained in such a way.

As a consequence we have:

Theorem 2.6. Let V (λ) be the asymptotic equivalence matrix function of a canon-
ical differential expression (1.1) with potential of the form (2.1). Then it admits a
minimal factorization

V (λ) = V1VV (λ)V2VV (λ)−1

where V1VV and V2VV are J-inner and of same degree.
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To prove this result we consider the realization of V (λ) given in Theorem 2.4
and note that the space

(
C

p

0

)
is A-invariant and H-non-degenerate (in fact, H-

positive). The factorization follows from Theorem 2.5. The fact that V2VV is inner
follows from

H =
(

IpII 0
−i(IpII + Y Ω)Ω−1 IpII

)(
Ω 0
0 −Ω−1 − Y

)(
IpII 0

−i(IpII + Y Ω)Ω−1 IpII

)∗
.

To prove this last formula we have used the formula for Schur complements:(
A11 A12

A21 A22

)
=
(

I 0
A21A

−1
11 I

)(
A11 0
0 A22 − A21A

−1
11 A12

)(
I A−1

11 A12

0 I

)
for matrices of appropriate sizes and A11 being invertible. See [20, formula (0.3)
p. 3].

One could have started with the space
(

0
C

p

)
, which is also A-invariant and H-

positive. In particular, the above factorization is not unique.

2.2. The other characteristic spectral functions

In this section we review the definitions and main properties of the characteristic
spectral functions associated to a canonical differential expression.
It follows from Theorem 2.4 that U(0, λ) has no pole on the real line and that,
furthermore:

U11(0, λ)U11(0, λ)∗ − U12(0, λ)U12(0, λ)∗ = InII

U22UU (0, λ)U22UU (0, λ)∗ − U21UU (0, λ)U21UU (0, λ)∗ = InII

and
U11(0, λ)∗U12(0, λ) = U21UU (0, λ)∗U22UU (0, λ)

for real λ.
In particular, U11(0, λ) is invertible on the real line and U21UU (0, λ)U11(0, λ)−1 is well
defined and takes contractive values on the real line.

Definition 2.7. The function

R(λ) = (U21UU (0, λ)U11(0, λ)−1)∗ = U12(0, λ)U22UU (0, λ)−1, λ ∈ R,

is called the reflection coefficient function.

To present an equivalent definition of the reflection coefficient function, we need
some notation: if

Θ =
(

A B
C D

)
∈ C

(p+q)×(p+q), A ∈ C
p×p, and X ∈ C

p×q

we set
TΘTT (X) = (AX + B)(CX + D)−1.

Note that
TΘTT 1Θ2(X) = TΘTT 1(TΘTT 2(X)) (2.9)

when all expressions are well defined.
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Theorem 2.8. Let Θ(x, λ) = U(x, λ)U(0, λ)−1. Then, Θ(x, λ) is also a solution of
(1.1). It is an entire function of λ. It is J-expansive in C+,

J − Θ(x, λ)JΘ(x, λ)∗
{

= 0, λ ∈ R

≤ 0, λ ∈ C+,

and satisfies the initial condition Θ(0, λ) = I2II n. Moreover

R(λ) = lim
x→∞TΘ(TT x,λ)−1(0), λ ∈ R. (2.10)

The matrix function Θ(x, λ) is called the matrizant, or fundamental solution of
the canonical differential expression. Its properties may be found in [22, p. 150].
For real λ the matrix function U(0, λ) is J-unitary. Hence we have:

Θ(x, λ)−1 = U(0, λ)U(x, λ)−1.

The result follows using (2.9) and the asymptotic property (2.6).
In fact, the function R is analytic and takes contractive values in the closed lower
half-plane. For a proof and references, see [10] and [13, Theorem 3.1 p 6].

Theorem 2.9. A minimal realization of R(λ) is given by

R(λ) = −c(λIpII − (a + iΩc∗c))−1(b + iΩc∗). (2.11)

See [10]. It follows in particular that the spectrum of the matrix a + iΩc∗c is in
the open upper half-plane. Note that Ω is not arbitrary but is related to a, b and
c via the Lyapunov equation (2.2).
A direct proof that R is analytic and contractive in C− can be given using the
results in [33], as we now explain.

Definition 2.10. A Cn×n-valued rational function R is called a proper contraction if
it takes contractive values on the real line and if moreover it is analytic at infinity
and such that

R(∞)R(∞)∗ < InII .

The following results are respectively [33, Theorem 3.2 p. 231, Theorem 3.4 p. 235].

Theorem 2.11. Let R be a Cn×n-valued rational function analytic at infinity and
let R(z) = D + C(zI − A)−1B be a minimal realization of W . Let

A =
(

α β
γ α∗

)
=
(

A + BD∗(InII − DD∗)−1C B(InII − D∗D)−1B∗

C∗(InII − DD∗)−1C A∗ + C∗(InII − DD∗)−1DB∗

)
.

Then the following are equivalent:
1) The matrix function R is a proper contraction.
2) The real eigenvalues of A have even partial multiplicities.
3) The Riccati equation

XγX − iXα∗ + iαX + β = 0. (2.12)

has an Hermitian solution.
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The matrix A is called the state characteristic matrix of W and the Riccati equa-
tion (2.12) is called its state characteristic equation.

Theorem 2.12. Let R be a Cn×n-valued proper contraction, with minimal realiza-
tion R(z) = D + C(zI −A)−1B and let (2.12) be its state characteristic equation.
Then, any Hermitian solution of (2.12) is invertible and the number of negative
eigenvalues of X is equal to the number of poles of R in C−.

Consider now the minimal realization (2.11). The corresponding state character-
istic equation is

Xc∗cX − iX(a∗ − icc∗Ω) + i(a + iΩcc∗)X + (b + iΩc∗)(b∗ − icΩ) = 0.

To show that X = Ω is a solution of this equation is equivalent to prove that Ω
solves the Lyapunov equation (2.3). Indeed,

0 = Ωc∗cΩ − iΩ(a∗ − icc∗Ω) + i(a + iΩcc∗)Ω + (b + iΩc∗)(b∗ − icΩ)
⇐⇒

0 = −iΩa∗ + iaΩ + bb∗ − iΩ(a − c∗b∗) + i(a − bc)Ω + bb∗

⇐⇒
0 = i(a×Ω − Ωa×∗) + bb∗,

which is (2.3).

The scattering matrix function is defined as follows:

Theorem 2.13. The differential equation (1.1) has a uniquely defined C2n×n-valued
solution such that for λ ∈ R, (

InII −InII
)
X(0, λ) = 0,

lim
x→∞

(
0 eixλInII

)
X(x, λ) = InII .

The limit
lim

x→∞
(
e−ixλInII 0

)
X(x, λ) = S(λ)

exists for all real λ and is called the scattering matrix function of the canonical
system. The scattering matrix function takes unitary values on the real line, belongs
to the Wiener algebra W and admits a factorization S = S+S− where S+ and its
inverse are analytic in the closed upper half-plane while S− and its inverse are
analytic in the closed lower half-plane.

We note that the general factorization of a function in the Wiener algebra and uni-
tary on the real line involves in general a diagonal term taking into account quan-
tities called partial indices; see [31], [32], [34], [17]. We also note that conversely,
functions with the properties as in the theorem are scattering matrix functions
of a more general class of differential equations; see [41] and the discussion in [7,
Appendix].
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Theorem 2.14. The scattering matrix function of a canonical system (1.1) with
potential (2.1) is given by:

S(λ) = (InII + b∗(λIpII − a∗)−1c∗)−1

×(InII − (ib∗Y − c)(λIpII − a)−1(IpII + ΩY )−1(b + iΩc∗)).

A minimal realization of the scattering matrix function is given by S(λ) = InII +
C(λI2II p − A)−1B, where

A =
(

a b(icΩ − b∗)
0 a×∗

)
,

B =
(

b
(IpII + Y Ω)−1(c∗ + iY b)

)
,

C = (c icΩ − b∗).

Set

G =
(

−Ω iIpII
−iIpII −Y (IpII + ΩY )−1

)
.

Then it holds that

i(AG − GA∗) = −BB∗,
CG = iB∗,

and thus S takes unitary values on the real line.

For a proof, see [8, p. 7]. The last statement follows from [5, Theorem 2.1 p. 179],
that is from equations (2.7) and (2.8) with H = X−1 and J = IpII . Since

X =
(

IpII 0
iΩ−1 IpII

)(
−Ω 0
0 (Ω + ΩY Ω)−1

)(
IpII 0

iΩ−1 IpII

)∗

the space
(

C
p

0

)
is A invariant and H-negative. Thus Theorem 2.5 on factorizations

leads to:

Theorem 2.15. The scattering matrix function of a canonical system (1.1) with
potential (2.1) admits a minimal factorization of the form

S(z) = U1(z)−1U2UU (z)

where both U1 and U2UU are inner (that is, are contractive in C+ and take unitary
values on the real line).

The fact that U2UU is inner (and not merely unitary) stems from the fact that the
Schur complement of −Ω in H is equal to

−Y (IpII + ΩY )−1 − iIpII (−Ω)−1(−iIpII ) = (Ω + ΩY Ω)−1

and in particular is strictly positive.
Such a factorization result was also proved in [12, Theorem 7.1] using differ-
ent methods. It is a particular case of a factorization result of M.G. Krĕ n and˘
H. Langer for functions having a finite number of negative squares; see [39].
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We now turn to the spectral function. We first recall that the operator

Hf(x) = −iJ
d f

d x
(x) − v(x)f(x)

restricted to the space of C2n-valued absolutely continuous functions with entries
in L2 and such that

(InII − InII )f(0) = 0

is self-adjoint.

Definition 2.16. A positive function W : R → Cn×n is called a spectral function if
there is a unitary map U from Ln

2 onto Ln
2 (W ) mapping H onto the operator of

multiplication by the variable in Ln
2 (W ).

Theorem 2.17. The function

W (λ) = (V22VV (λ) − V12VV (λ))−∗(V22VV (λ) − V12VV (λ))−1

is a spectral function, the map U being given by

F (λ) =
1√
2π

∫ ∞

0

∫∫ (
InII InII

)
Θ(x, λ)∗f(x)dx. (2.13)

A direct proof in the rational case can be found in [26]. When k(x) ≡ 0, we
have that W (λ) = InII dλ, and the unitary map (2.13) is readily identified with the
Fourier transform.

Definition 2.18. The Weyl coefficient function N(λ) is defined in the open upper
half plane; it is the unique Cn×n-valued function such that∫ ∞

0

∫∫ (
iN(λ)∗ InII

)( InII InII
InII −InII

)
Θ(x, λ)∗Θ(x, λ)

(
InII InII
InII −InII

)(
−iN(λ)

InII

)
dx

is finite for −i(λ − λ∗) > 0.

In the setting of differential expressions (1.1), the function N was introduced
in [27]. The motivation comes from the theory of the Sturm-Liouville equation.
The Weyl coefficient function is analytic in the open upper half-plane and has a
nonnegative imaginary part there. Such functions are called Nevanlinna functions.

Theorem 2.19. The Weyl coefficient function is given by the formula

N(λ) = i(U12(0, λ) + U22UU (0, λ))(U12(0, λ) − U22UU (0, λ))−1

= i(InII − 2c(λIpII − a×)−1(b + iΩc∗)).
(2.14)

Proof. We first look for a Cn×2n-valued function P (λ) such that x �→ P (λ)Θ(x, λ)∗

has square summable entries for λ ∈ C+. Let U(λ, x) be the solution of the dif-
ferential system (1.1) subject to the asymptotic condition (2.6). Then, U(x, λ) =
Θ(x, λ)U(0, λ). We thus require the entries of the function

x �→ P (λ)U(0, λ)−∗U(x, λ) (2.15)
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to be square summable. By definition of U , it is necessary for P (λ)U(0, λ)−∗ to
be of the form (0, p(λ)) where p(λ) is Cn×n-valued. It follows from the definition
of U(0, λ) that one can take

P (λ) =
(
0 InII

)
U(0, λ)∗ =

(
U12(0, λ)∗ U22UU (0, λ)∗

)
and hence the necessity condition. Conversely, we have to show that the function
(2.15) has indeed summable entries. But this is just doing the above argument
backwards.

The realization formula follows then from the realization formulas for the block
entries of the asymptotic equivalence matrix function. �

Any of the functions in the spectral domain determines all the others, as follows
from the next theorem:

Theorem 2.20. Assume given a differential system of the form (1.1) with potential
k(x) of the form (2.1). Assume W (λ), V (λ), R(λ), S(λ) and N(λ) are the charac-
teristic spectral functions of (1.1), and let S = S−S+ be the spectral factorization
of the scattering matrix function S, where S− and its inverse are invertible in the
closed lower half-plane and S+ and its inverse are invertible in the closed upper
half-plane. Then, the connections between these functions are:

W (λ) = S−(λ)−1S−(λ)−∗ = S+(λ)S+(λ)∗,
W (λ) = Im N(λ),
S(λ) = S−(λ)S+(λ),
R(λ) = (iN(λ)∗ − InII )(iN(λ)∗ + InII )−1,

N(λ) = i(InII + R(λ)∗)(InII − R(λ)∗)−1,

V (λ) =
1
2

(
(iN(λ)∗ + InII )S−(λ)∗ (−iN(λ) − InII )S+(λ)−∗

(iN(λ)∗ − InII )S−(λ)∗ (−iN(λ) + InII )S+(λ)−∗

)
for λ ∈ R.

See [10, Theorem 3.1].

We note that R∗ = TVTT (0). We now wish to relate V to a unitary completion of
the reflection coefficient function. It is easier to look at

Ṽ (λ) =
(

0 InII
InII 0

)
V (λ)

(
0 InII
InII 0

)
.

We set

P =
I2II n + J

2
=
(

InII 0
0 0

)
and Q =

I2II n − J

2
=
(

0 0
0 InII

)
.

Theorem 2.21. Let Θ ∈ C2n×2n be such that det(P+QΘ) �= 0�� . Then det(P−ΘQ) �=��
0 and

Θ× def= (def.
PΘ + Q)(P + QΘ)−1 = (P − ΘQ)−1(ΘP − Q) (2.16)
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Finally

I2II n − Θ×Θ×∗ = (P − ΘQ)−1 (J − ΘJΘ∗) (P − ΘQ)−∗ (2.17)

I2II n − Θ×∗Θ× = (P + QΘ)−∗ (J − Θ∗JΘ) (P + QΘ)−1. (2.18)

Proof. We set Θ =
(

A B
C C

)
where A ∈ Cn×n. We have:

P + QΘ =
(

InII 0
C D

)
, P − ΘQ =

(
InII −B
0 −D

)
.

Thus either of these matrices is invertible if and only if D is invertible. Thus
both equalities in (2.16) make sense. To prove that they define the same object is
equivalent to prove that

(P − ΘQ)(PΘ + Q) = (ΘP − Q)(P + QΘ),

i.e., since PQ = QP = 0,

PΘ − ΘQ = ΘP − QΘ.

This in turn clearly holds since P + Q = I2II n.

We now prove (2.17). The proof of (2.18) is similar and will be omitted. We have

I2II n − Θ×Θ×∗ = I2II n − (P − ΘQ)−1(ΘP − Q)(ΘP − Q)∗(P − ΘQ)−∗

= (P − ΘQ)−1{(P − ΘQ)(P − ΘQ)∗−(ΘP − Q)(ΘP − Q)∗}
×(P − ΘQ)−∗

= (P − ΘQ)−1 {P − Q + ΘQΘ∗ − ΘPΘ∗} (P − ΘQ)−∗

and hence the result since J = P − Q. �

The function defined by (2.16) is called the Potapov–Ginzburg transform of Θ.
We have

Θ× =
(

A − BD−1C BD−1

−D−1C D−1

)
. (2.19)

Theorem 2.22. The Potapov–Ginzburg transform of Ṽ is a unitary completion of
the reflection coefficient function.

Indeed, from (2.19) the 22 block of the Potapov–Ginzburg transform of Ṽ is exactly
R. It is not a minimal completion (in particular it has n poles in C−). See [20]
for more information on this transform. Minimal unitary completions of a proper
contraction are studied in [33, Theorem 4.1 p. 236].

2.3. The continuous orthogonal polynomials

As already mentioned, for every x ≥ 0 the function λ �→Θ(x,λ)=U(x,λ)U(0,λ)−1

is entire. Albeit their name, the continuous orthogonal polynomials are entire
functions, first introduced by M.G. Krĕın (see [37]) and in terms of which one can
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compute the matrix function Θ(x, λ). To define these functions we start with a
function W of the form

W (λ) = InII −
∫

R

∫∫
eitλω(t)dt, λ ∈ R, (2.20)

with ω ∈ Ln×n
1 (R) and such that W (λ) > 0 for all λ ∈ R. This last condition

insures that the integral equation

ΓT (t, s) −
∫ T

0

∫∫
ω(t − u)ΓT (u, s)du = ω(t − s), t, s ∈ [0, T ]

has a unique solution for every T > 0.

Definition 2.23. The continuous orthogonal polynomial is given by:

P (t, λ) = eitλ

(
InII +

∫ 2t

0

∫∫
Γ2t(u, 0)e−iλudu

)
.

Theorem 2.24. It holds that(
InII InII

)
Θ(x, λ) =

(
P (t,−λ) R(t, λ)

)
where R(t, λ) = eitλ

(
InII +

∫ 2t

0

∫∫
Γ2t(2t − u, 2t)e−iλudu

)
.

In view of Theorem 2.20, note that every rational function analytic at infinity,
such that W (∞) = InII , with no poles and strictly positive on the real line, is
the spectral function of a canonical differential expression of the form (1.1) with
potential of the form (2.1). Furthermore, let W (λ) = InII + C(λIpII − A)−1B be a
minimal realization of W . Then, W is of the form (2.20) with

ω(u) =

{
iCe−iuA(IpII − P )B, u > 0,

−iCe−iuAPB, u < 0,

where P is the Riesz projection of A in C+. We recall that

P =
∫

γ

∫∫
(ζIpII − A)−1dζ

where γ is a positively oriented contour which encloses only the eigenvalues of A
in C+.

Theorem 2.25. Let W be a rational Cn×n-valued function analytic and invertible on
R and at infinity. Assume moreover that W (λ) > 0 for real λ and that W (∞) = InII .
Let W (λ) = InII + C(λIpII − A)−1B be a minimal realization of W . Let P (resp.
P×) denote the Riesz projection corresponding to the eigenvalues of A (resp. of
A× = A − BC) in C+. Then, the continuous orthogonal polynomials P (t, λ) are
given by the formula

P (t, λ) = eiλt
{
InII + C(λIpII + A×)−1(IpII − e−2iλte−2itA×

)π2tB
}

where
πt = (IpII − P + Pe−itA×

)−1(IpII − P ).
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Furthermore,
lim

t→∞ e−itλP (t, λ) = S−(−λ)∗. (2.21)

See [7, Theorem 3.3 p 10]. The computations in [7] use exact formulas for the
function ΓT (t, s) in terms of the realization of W which have been developed
in [15].
We note that the potential k(x) can be written as

k(x) = 2C
(
Pe−2ixA× |Im P

)−1

PB (2.22)

in terms of the realization of the spectral function W .

2.4. Perturbations

In this subsection we address the following question: assume that k(x) is a strictly
pseudo-exponential potential. Is −k(x) also such a potential? This is not quite
clear from formulas (2.1) or (2.22). One could attack this problem using the re-
sults in [11], where we studied a trace formula for a pair of self-adjoint operators
corresponding to the potentials k(x) and −k(x). Here we present a direct argu-
ment in the rational case. More precisely, if N is a Nevanlinna function so are the
three functions

λ → −N−1(λ),
λ → −N−1(−λ∗)∗,
λ → N(−λ∗)∗,

and we have three associated weight functions

W−WW (λ) = Im − N(λ)−1,

W1WW (λ) = Im − N(−λ∗)−∗,
W2WW (λ) = Im N(−λ∗)∗.

The relationships between these three weight functions and the original weight
function W and the associated potential have been reviewed in the thesis [36] and
we recall the results in form of a table:

The potential The weight function

v(x) =
(

0 k(x)
k(x)∗ 0

)
W (λ) = Im N(λ)

−v(x) = −
(

0 k(x)
k(x)∗ 0

)
W−WW (λ) = Im − N(λ)−1

−
(

0 k(x)∗

k(x) 0

)
W1WW (λ) = Im N(−λ∗)∗(

0 k(x)∗

k(x) 0

)
W2WW (λ) = Im − N(−λ∗)−∗
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Let
N(λ) = i(I + c(λI − a)−1b)

be a minimal realization of N . Then,

W (λ) = I + C(λI − A)−1B

is a minimal realization of the weight function W , where

A =
(

a 0
0 a∗

)
, B =

(
b
c∗

)
, C =

1
2
(
c b∗

)
, (2.23)

and the Riesz projection corresponding to the spectrum of A in the open upper
half-plane C+ is

P =
(

I 0
0 0

)
. (2.24)

Furthermore, the potential associated to the weight function W is given by (2.22)
where A, B, C and P are given by (2.23) and (2.24), and

A× = A − BC =
(

a − bc
2 − bb∗

2

− c∗c
2 (a − bc

2 )∗

)
.

Consider now the weight function W−WW . A minimal realization of −N(λ)−1 is
given by

−N(λ)−1 = i(I − c(λI − a×)−1b), a× = a − bc,

and a minimal realization of W−WW is given by

W−WW (λ) = I + C−(λI − A−)−1B−,

where

A− =
(

a× 0
0 a×∗

)
, B− = B =

(
b
c∗

)
, C− = −C = −1

2
(
c b∗

)
,

and the Riesz projection corresponding to the spectrum of A− in the open upper
half-plane C+ is P−PP = P given by (2.24).

The potential associated to the weight function W−WW is given by

k−(x) = −2C
(
Pe−2itA×

− |Im P

)−1

PB,

where

A×
− = A− − B−C− =

(
a − bc

2
bb∗
2

c∗c
2 (a − bc

2 )∗

)
.

Setting

D =
(

a − bc
2 0

0 (a − bc
2 )∗

)
, Z =

(
0 b∗b

2
cc∗
2 0

)
,

we have
A× = D − Z and A×

− = D + Z.
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We are now in a position to prove the following result:

Theorem 2.26. Let k(x) be a strictly pseudo-exponential potential with associated
Weyl function N(λ). The potential associated to Im − N−1 is equal to k−(x) =
−k(x).

Proof. To prove that k−(x) = −k(x), it is enough to prove that

Pe−itA× |Im P = Pe−it(A−−B−C−)|Im P .

To prove this equality, it is enough in turn to prove that for all positive integers
�, it holds that

PA×�|Im P = P (A− − B−C−)�|Im P ,

i.e., that(
I 0
0 0

)
(D + Z)�

(
I 0
0 0

)
=
(

I 0
0 0

)
(D − Z)�

(
I 0
0 0

)
for all positive integers �. Let ε = ±1. The expression (D + εZ)� consists of a sum
of terms of the form

Dα1(εZ)β1Dα2(εZ)β2 · · · ,

where the αi and the βi are equal to 1 or 0 and
∑

i(αi + βi) = �. Each factor
DαiZβi for which βi �= 0 is anti block diagonal. We consider two cases, namely��∑

i βi being odd or even. When
∑

i βi is odd, we have the product of an odd
number of anti block diagonal matrices, and the result is anti block diagonal, and
so, premultiplying and postmultiplying this product by

(
I 0
0 0

)
we obtain the zero

matrix. When
∑

i βi is even, the product is an even function of ε and have the
same value at ε = 1 and at ε = −1.
The case of the other two weight functions is treated in much the same way. We
focus on W1WW (λ) = Im N(−λ∗)∗. A minimal realization of N(−λ∗)∗ is given by

N(−λ∗)∗ = i(I − b∗(λI + a∗)−1c∗),

and a minimal realization of the weight function W1WW is therefore given by

W1WW (λ) = I + C1(λI − A1)−1B1,

where

A1 =
(

−a∗ 0
0 −a

)
, B1 =

(
c∗

b

)
, C1 = −1

2
(
b∗ c

)
,

and the Riesz projection corresponding to the spectrum of A1 in the open upper
half-plane C+ is P1PP = P given by (2.24). The potential associated to the weight
function W1WW is given by

k1(x) = 2C1

(
P1PP e−2itA×

1 |Im P1PP

)−1

P1PP B1.

We claim that k1(x) = −k(x)∗. Indeed,

k1(x)∗ = 2B∗
1P ∗

1PP
(
P1PP e2itA∗×

1 |Im P1PP

)−1

P ∗
1PP C∗

1 .
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But we have that

B∗
1P ∗

1PP = 2CP =
(
c 0

)
, P1PP C∗

1 = −PB = −1
2

(
b
0

)
, A∗×

1 = −A×,

which allows to conclude. �

3. The discrete case

3.1. First-order discrete system

In our previous work [6] we studied inverse problems for difference operators asso-
ciated to Jacobi matrices. Such operators are the discrete counterparts of Sturm–
Liouville differential operators, and one can associate to them a number of func-
tions analytic in the open unit disk similar to the characteristic spectral functions
of a canonical differential expression. In the present paper we chose a different
avenue to define discrete systems, which has more analogy to the continuous case
and is more natural. The analogies between the two cases are gathered in form of
two tables at the end of the paper.
We note that another type of discrete systems has been considered by L. Sakhno-
vich in [42, Section 2 p. 389].
Our starting point is the telegraphers’ equations (1.2). We now assume that the
local impedance function Z(x) defined in (1.2) is equal to a constant, say ZnZZ , on the
interval [nh, (n+1)h) for n = 0, 1, . . . In particular, Z(x) may have discontinuities
at the points nh. On the open interval (nh, (n + 1)h), we have k(x) = 0 and
equation (1.3) becomes(

( ∂
∂x + ∂

∂t ) 0
0 ( ∂

∂x − ∂
∂t )

)
W (x, t) = 0.

Hence one can write

W (x, t) =
(

v1n(x − t)
v2n(x + t)

)
on the interval (nh, (n + 1)h). Voltage and current are continuous at the points
nh. Let us set

α(n, t) = lim
x→nh
x>nh

W (x, t).

Taking into account (1.3) one gets to:

α(n, t) =
1
2

(
Z

−1/2
nZZ Z

1/2
nZZ

Z
−1/2
nZZ −Z

1/2
nZZ

)(
v(nh, t)
i(nh, t)

)

lim
x→nh
x<nh

W (x, t) =
1
2

(
Z

−1/2
nZ −1 Z

1/2
nZ −1

Z
−1/2
nZ −1 −Z

1/2
nZ −1

)(
v(nh, t)
i(nh, t)

)
.

We define the backward shift operator on functions of the variable t

∆f(t) = f(t − h).
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We have:

lim
x→nh
x<nh

W (x, t) =
(

v1,n−1(nh − t)
v2,n−1(nh + t)

)
=
(

v1,n−1((n − 1)h − (t − h))
v2,n−1((n − 1)h + t + h)

)
=
(

∆ 0
0 ∆−1

)(
v1,n−1((n − 1)h − t)
v2,n−1((n − 1)h + t)

)
=
(

∆ 0
0 ∆−1

)
α(n − 1, t).

Thus, (
∆ 0
0 ∆−1

)
α(n − 1, t) =

1
2

(
Z

−1/2
nZ −1 Z

1/2
nZ −1

Z
−1/2
nZ −1 −Z

1/2
nZ −1

)(
v(nh, t)
i(nh, t)

)
,

and we have:

α(n, t) =

(
Z

−1/2
nZ +1 Z

1/2
nZ +1

Z
−1/2
nZ +1 −Z

1/2
nZ +1

)(
Z

−1/2
nZZ Z

1/2
nZZ

Z
−1/2
nZZ −Z

1/2
nZZ

)−1(
∆ 0
0 ∆−1

)
α(n − 1, t)

= H(ρn)
(

∆ 0
0 ∆−1

)
α(n − 1, t)

where

ρn =
ZnZZ +1 − ZnZZ

ZnZZ +1 + ZnZZ
and H(ρ) =

1√
1 − |ρ|2

(
1 −ρ

−ρ∗ 1

)
for |ρ| < 1. See [19, p. 111].

Replacing ∆ by the complex variable and removing the scalar constant factor
1√

1−|ρ|2 we see that the discretization of the telegraphers’ equations leads to sys-

tems of the form

YnYY +1(z) =
(

1 −ρn

−ρ∗n 1

)(
z 0
0 z−1

)
YnYY (z), (3.1)

which we will call two-sided first-order discrete systems.

The solution corresponding to ρn ≡ 0 is

YnYY (z) =
(

zn 0
0 z−n

)
Y0YY (z),

that is, we are in a two-sided situation (the negative powers of z corresponding to
signals coming from −∞).

Recursions of the related forms

Xn+1(z) =

(
1 −ρn

−ρ∗n 1

)(
z 0
0 1

)
Xn(z) (3.2)


