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Supervisor’s Foreword

Nitrate radical (NO3) and dinitrogen pentoxide (N2O5) play a pivotal role in the
nocturnal atmosphere. The reaction of NO3 with VOCs and N2O5 heterogeneous
uptake broadly impacts the fate of NOx and VOCs in both the regional and global
scales. Over the past decades, many studies are conducted to improve our knowledge
of nighttime chemistry. However, there are still many issues that remain poorly
understood, especially their atmospheric processes and impacts in China. In this
study, Dr. Haichao Wang sets up the first field-deployable instruments in China for
the measurement of both NO3 and N2O5 based on cavity-enhanced absorption
spectroscopy (CEAS). The main improvements compared to the few available
CEAS instruments worldwide include a mechanically aligned non-adjustable optical
mounting module and a chemical titration module for determining the zero point.
The new improvements also allow the new instruments to be portable, stable, and
easy to operate in the field campaigns. Up to now (also after the thesis), the
developed instruments have been successfully applied in about ten field campaigns,
which provided key supports for the exploration of the nighttime chemistry. Besides,
benefit the elucidation of the particulate nitrate formation mechanism in the major
cities in China. During the thesis period, four field campaigns were conducted in
Beijing with the measurement of N2O5 and related parameters. These data covered
different seasons and a large variety of ambient conditions. Based on the obtained
comprehensive dataset, the features of the ambient behaviors and the budgets of both
the NO3 and N2O5 in Beijing were well systematically explored and quantified.
Moreover, the N2O5 heterogeneous uptake coefficient was determined, the rela-
tionship of N2O5 uptake coefficient and the particle composition and properties were
elaborated, and a new parameterized equation for the N2O5 uptake coefficient is
proposed. The impacts of NO3–N2O5 chemistry on the atmospheric oxidation and
the contribution to particulate nitrate formation were systematically studied and
elucidated. These results significantly improved the understanding of the nighttime
chemistry in the troposphere and will enlighten the thinking about the role of NO3–

N2O5 chemistry in other polluted regions like Beijing. The academic impact of his
thesis is very good both in China and the international community. I received
excellent explicit comments from Prof. Steven Brown (NOAA) and Prof. Andreas

v



Wahner (director of IEK-8, FZJ) to his contribution to the nighttime chemistry. The
scientists from the Municipality of Milan also contacted me intensively even during
the COVID-19 period to ask for help about the particulate nitrate control due to his
publications, which I am the corresponding author.

Beijing, China
December 2018

Prof. Keding Lu
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Abstract

Nitrate radical (NO3) and dinitrogen pentoxide (N2O5) chemistry are important in
the troposphere at night. The quantitative description of them is of great signifi-
cance for the study of regional air quality and global climate change. This study
focuses on NO3 and N2O5 chemistry in Beijing, China. The NO3 and N2O5 field
measurement systems are developed based on the cavity-enhanced absorption
spectroscopy (CEAS). The detection limits of NO3 and N2O5 are 2.4 pptv and
2.7 pptv for 1 s temporal resolution. The uncertainty of NO3 and N2O5 is 19% and
22–36%, respectively. Compared with other similar measuring systems in the
world, there are two significant improvements. (1) The use of high-precision
mechanically coupled mirror holders significantly improves the stability of the
measurement system and the applicability of the field measurement. (2) The using
of chemical titration modules to avoid nonlinear absorption of water vapor inter-
ference. The instrument was successfully applied in four comprehensive field
campaigns in urban and suburban areas of Beijing, including the Huairou (HR)
winter campaign (suburbs), Changping (CP) summer campaign (suburbs), Peking
University (PKU) summer campaign (urban), and Peking University winter cam-
paign (urban). High-quality N2O5 time series were acquired under four typical
environmental conditions. The critical processes in NO3 and N2O5 chemistry were
systematically analyzed. The main findings were as follows:

1. The observation shows that the mixing ratio of N2O5 is significant in Beijing;
the nocturnal maximum over one ppbv was observed frequently; the suburbs are
significantly higher than urban areas. Based on the N2O5 measurements, the
nighttime NO3 concentration was derived from the thermodynamic equilibrium.
The average was between 0.1 and 10 pptv, which was significantly higher in
summer than in winter. The average NO3 production rate (1–2 ppbv h−1) was
much higher in summer than in winter (0.1–0.2 ppbv h−1). The difference
between urban and suburban areas is mainly affected by the difference in NOx

concentration, and seasonal differences are mainly affected by temperature and
ozone concentration.
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2. The average NO3 reactivity (kNO3) for volatile organic compounds (VOCs) in
PKU winter, HR winter, and CP summer is 6.6�10−3 s−1, 3.7�10−3 s−1, and
1.9�10−2 s−1, respectively. Biogenic VOCs (monoterpenes) dominated kNO3 in
CP summer, while anthropogenic VOCs dominated kNO3 in winter. The con-
tribution of NO3 to summer oxidation is significant, especially for BVOCs
oxidation. NO3 dominated more than 90% nocturnal BVOCs degradation, but
the NO3 oxidation capacity in the wintertime is weak.

3. The determined N2O5 uptake coefficient, c(N2O5), is generally high, ranging
from 0.012 to 0.072, with an average value of 0.04 in summer in Beijing. The
c(N2O5) is generally higher than those reported in Europe and the USA, which
may be related to the high water content in aerosols in Beijing. c(N2O5) was
ranged from 0.001 to 0.017, with an average of 0.005 in the winter suburbs of
Beijing, which was much lower than that in summer. In the winter, c(N2O5)
increased with the increase of relative humidity, and the aerosol liquid water
content had a promoting effect on the N2O5 uptake, while particulate nitrate had
an inhibitory effect. Both the existing organic coating model and inorganic
aerosol model are difficult to accurately simulate the c(N2O5), which may be
related to the underestimation of the inhibition of organic coating.

4. Both the high N2O5 concentration and the high aerosol surface area coexist in
the PM2.5 pollution episode in summer. The higher N2O5 uptake coefficient in
summer resulted in a significant contribution to particulate nitrate production,
with an average daily production of up to 57 lg m−3, which is equivalent to the
contribution of the gas-phase oxidation process (OH + NO2) during the day.
The N2O5 uptake coefficient was low during the winter pollution episodes, with
an average daily nitrate production of 11 lg m−3. The average daily amount of
gas-phase oxidation contributed up to 53 lg m−3, indicating that the winter
nitrate production was caused by gas-phase oxidation during the daytime. In
general, the heterogeneous uptake of N2O5 is an essential channel for nitrate
production in particulate matter in urban areas. The model simulation results
show that ClNO2 formed by the heterogeneous reaction of N2O5 during the
pollution process in Huairou winter has a vital role in the following daytime
chemistry, which can increase the primary source of O3 and ROx by 21% and
13%, and become the important daytime source of O3 and ROx in wintertime.

Keywords Nitrate radical � Dinitrogen pentoxide � Cavity-enhanced absorption
spectroscopy � Field observation � Atmospheric oxidation � Heterogeneous
hydrolysis � Particulate nitrate formation
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