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Preface

This book proposes a new capital asset pricing model dubbed the ZCAPM
that consistently outperforms existing popular models in empirical tests
using U.S. stock returns. The ZCAPM’s dominance of established multi-
factor models in out-of-sample cross-sectional tests—the gold standard in
comparative tests—is remarkable. We believe that the ZCAPM represents
the next step in the evolution of asset pricing models. Consequently, this
book is intended for academics and finance professionals that employ these
models in their research activities. Finance Ph.D. students and professors
can apply our ZCAPM to asset pricing problems. And, finance profes-
sionals, including portfolio managers, securities traders, and quants, can
utilize the ZCAPM in their investment activities.

Early chapters in the book establish the theoretical foundation for
the ZCAPM by mathematically deriving a special case of Fischer Black’s
renowned zero-beta CAPM . Black’s model is a more general form of the
famed Capital Asset Pricing Model (CAPM ) by Nobel Laureate William
Sharpe. Both models depend heavily on the mean-variance investment
parabola of Nobel Laureate Harry Markowitz. In later chapters we docu-
ment extensive empirical evidence supporting the ZCAPM based on more
than 50 years of U.S. stock return data, many different samples of stocks,
and comparisons to several popular multifactor models. These substan-
tive tests using stock return data show that the ZCAPM is the premier
asset pricing model in terms of surpassing the significance of other models
in commonly used cross-sectional tests used to validate models. Also,
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we demonstrate practical applications of the ZCAPM in the areas of
momentum investing and diversified portfolio formation with superior
return/risk performance.

As a backstory, in summers from 2002 to 2017, James Kolari taught
a graduate international finance seminar at the Hanken School of
Economics in Vaasa, Finland. A long-time puzzle in financial economics
is the very small impact of exchange rate movements on stock returns as
measured by asset pricing models. After reviewing this vast literature, he
began to suspect that problems in asset pricing models may be complicit
in the puzzle. In the 1970s, researchers observed that stock return data
only weakly supported the lauded CAPM. Motivated by this evidence,
Black proposed the zero-beta CAPM to help reconcile CAPM theory and
stock return evidence. However, he did not provide empirical proxies for
the two efficient and inefficient (zero-beta) portfolios in his model.

In a series of 1990 papers, Eugene Fama and Kenneth French argued
that things were worse than previously believed. The beloved CAPM was
dead. They accumulated evidence that the CAPM’s hypothesized rela-
tion between beta risk associated with proxy market portfolio returns
and the cross-section of average U.S. stock returns did not hold. Due
to this failure, to better fit stock return data, they proposed a three-factor
model that augmented the CAPM’s market portfolio factor with size and
value factors. Responding to the Fama and French studies, Black criti-
cized their three-factor model because: (1) it was developed by means of
data snooping, and (2) there was little or no theoretical foundation. He
continued to believe that, despite growing evidence to the contrary, the
CAPM was valid. What if Black was right?

The biography Fischer Black and the Revolutionary Idea of Finance
by Perry Mehrling (John Wiley & Sons, Inc.) was published in 2005.
As recounted there, after working at the University of Chicago and
Massachusetts Institute of Technology, Black took a job at Goldman Sachs
in 1984 and worked there until he died in 1995. Always in the relent-
less pursuit of solutions to finance puzzles, as the first quant at Goldman
Sachs, he worked one day a week on independent research. Over these
years, he likely continued to develop his zero-beta CAPM ideas. Was it
possible that he found an alternative form that bridged the gap between
pure theory and practical investment in the real world?

In summer 2010 Kolari met Wei Liu, at the time a Ph.D. finance
student at Texas A&M University. Liu had previously earned a Ph.D.
in physics from Texas A&M and published numerous scientific papers.
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Together, they set out to rediscover what Fischer Black may have learned
about the zero-beta CAPM but did not publish due to proprietary
research at Goldman Sachs. Their main goal was to find an alternative
form of the zero-beta CAPM that could be readily estimated. Given
Black’s criticism of Fama and French’s three-factor model, they focused
on building a model based on the theoretical tenets of the CAPM and
related zero-beta CAPM. In this regard, Liu’s previous physics training
was instrumental in using random matrix theory to better understand the
asymptotic behavior of the minumum-variance investment parabola. By
2011 they had derived a special case of Black’s zero-beta CAPM dubbed
the ZCAPM that contained readily available asset pricing factors—namely,
average market returns and the cross-sectional return dispersion of all
assets’ returns.

Excited about this new theoretical model with measurable factors, they
began experimenting with different empirical approaches to estimate the
theoretical ZCAPM. After some initial failures, empirical methods were
adapted to take into account positive and negative effects of return disper-
sion on asset returns. Early tests of these methods corroborated the theo-
retical ZCAPM. However, these empirical tests relied on fitting regres-
sion models that use the response variable to define a signal variable indi-
cating the sign of the effect of return dispersion. Soon thereafter, they
met with Jianhua Huang, a statistics professor at Texas A&M University,
who recommended a reformulation named the empirical ZCAPM that
treats the unobservable sign as a latent or hidden variable and employs the
expectation–maximization (EM) algorithm for the estimation of parame-
ters. Importantly, this maximum likelihood approach enables the estima-
tion of the probability that returns are positively versus negatively affected
by movements in the return dispersion factor. A major refinement, the
EM approach to estimating the empirical ZCAPM computes regression
parameters, estimates the probability of positive or negative return disper-
sion effects, substantially boosts the goodness-of-fit of the model, and
provides a statistically well-founded empirical methodology.

With both the theoretical and empirical ZCAPM in hand, we wrote a
research paper using U.S. stock returns and submitted it to finance confer-
ences. In 2012 our paper won the Best Paper in Investments Award at
the largest finance conference in the world sponsored by the Financial
Management Association. An attendee invited by us to the conference
from the Teachers Retirement System of Texas (TRS) proposed that we
set up an investment company and work privately with them on research
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and development (R&D) for pension fund management. An agreement
was made to not publish our work in any manner, including the internet,
academic journals, books, etc. From 2012 to 2015 we worked privately
with TRS and Texas A&MUniversity, which deepened our applied knowl-
edge of the ZCAPM. During this time, Liu managed the investment
company, conducted paper trading experiments, and actively rebalanced
an R&D pension fund. Unfortunately, due to changes in management at
TRS, our relationship was ended.

After closing our investment firm, we continued to develop the
ZCAPM. Our research gradually grew beyond the normal bounds of
published papers in academic journals with page length and other restric-
tions. For this reason, we opted to publish our ZCAPM research in a
book. By presenting the theoretical derivation of the ZCAPM from the
zero-beta CAPM, a weight of empirical evidence about the ZCAPM and
its outperformance compared to other popular models, and useful appli-
cations to investment practices, we hope to blunt the natural skepticism
that confronts any new and novel model with strong asset pricing claims.

To develop the ZCAPM we benefited greatly from previous work by
Black on the zero-beta CAPM. As already mentioned, our ZCAPM is a
special case of the zero-beta CAPM that takes on a new functional form
with measurable factors. More precisely, the ZCAPM is comprised of beta
risk associated with average market returns (i.e., CRSP index, S&P 500
index, or other general market indexes) and zeta risk related to the cross-
sectional standard deviation of all stocks’ returns in the market (i.e., return
dispersion). Notice that beta risk in the ZCAPM is associated with average
market returns rather than the theoretical market portfolio in the CAPM.
Together, beta and zeta risks in the ZCAPM serve as a proxy for Sharpe’s
beta risk as proposed by the CAPM.

Another novel aspect of our ZCAPMmodel is taking into account posi-
tive and negative sensitivity of asset returns to return dispersion move-
ments over time. To estimate the probability of these opposite forces, a
mixture model comprised of two factor models is specified. No previous
asset pricing models utilize a mixture model to our knowledge. As we will
show, return dispersion is a powerful market factor that helps to explain
stock returns but must be modeled as in our empirical ZCAPM to fully
capture its dual positive and negative nature and be consistent with the
theoretical ZCAPM.

Readers are encouraged to conduct empirical tests using our Matlab
and R computer programs.
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• Matlab codes used in our cross-sectional tests of the empirical
ZCAPM are provided at the end of this book. Matlab is licensed
software that combines a desktop environment with a programming
language for matrix and array mathematics.

• R programs for estimating and testing the empirical ZCAPM are
available on GitHub (https://github.com/zcapm). R is a free soft-
ware environment for statistical computing and graphics. It compiles
and runs on a wide variety of UNIX platforms, Windows, and
MacOS. Readers can find our Matlab and Python codes at the
GitHub website also.

We should note that our R programs execute at a faster speed than the
Matlab and Python programs. We challenge readers to use our software
and prove for themselves the superior efficacy of the ZCAPM.

College Station, USA
San Antonio, USA
College Station, USA

James W. Kolari
Wei Liu

Jianhua Z. Huang

https://github.com/zcapm
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i,a quintiles and then beta risk β̂i,a quintiles

within each Ẑ∗
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