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Preface

Following the death of Claude Berge in June 2002, the Equipe Combinatoire, the
group founded by Berge in 1975 under the aegis of the C.N.R.S. and in liaison with
the Université Pierre et Marie Curie, decided to organise a conference on graph
theory in his memory. This meeting, GT04, took place in July 2004. It was the
first international conference on graph theory to be held in the Paris region since
the memorable meeting in Orsay in 1976, which coincided with Claude’s fiftieth
birthday. The conference was held in the heart of the Latin Quarter, on one of the
campuses of the Université Pierre et Marie Curie, the Couvent des Cordeliers (the
former site of a Franciscan convent). Our aim was not only to celebrate the life
and achievements of Claude Berge, but also to organise a conference in the line of
continuity of the international meetings on graph theory and related topics which
had been held successfully in Marseille-Luminy at five-year intervals since 1981.

GT04 brought together many prominent specialists on topics upon which
Claude Berge’s work has had a major impact, such as perfect graphs and matching
theory. The meeting attracted over two hundred graph-theorists, roughly half of
whom contributed to the scientific program. Plenary talks were presented by Maria
Chudnovsky, Vašek Chvátal, Gérard Cornuéjols, András Frank, Pavol Hell, László
Lovász, Jaroslav Nešetřil, Paul Seymour, Carsten Thomassen and Bjarne Toft.

Generous support for the conference was provided by the Université Pierre
et Marie Curie, CNRS (Centre National de la Recherche Scientifique), INRIA
(Institut National de Recherche en Informatique et en Automatique), the European
network DONET (Discrete Optimization NETwork), the Délégation Générale pour
l’Armement, France Télécom, ILOG and Schlumberger.

This volume includes contributions from many of the participants. All papers
were refereed, and we are pleased to thank those colleagues who assisted us in this
task. A short section of open problems presented during the meeting and edited
by Rama Murty concludes the book.

The Editors

Adrian Bondy
Jean Fonlupt
Jean-Luc Fouquet
Jean-Claude Fournier
Jorge Ramı́rez Alfonśın
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Claude Berge – Sculptor of Graph Theory

Bjarne Toft

Abstract. Claude Berge fashioned graph theory into an integrated and signi-
ficant part of modern mathematics. As was clear to all who met him, he was
a multifaceted person, whose achievements, however varied they might seem
at first glance, were interconnected in many ways.

1. Introduction

My purpose here is to present an account of some of Claude Berge’s activities and
achievements, mainly with regard to his role as a graph theorist. The information
upon which I draw is mostly available in published sources. But the account is
also personal, in that I shall include some of my own experiences and impressions.
As a doctoral student in July 1969, I attended the Colloquium on Combinatorial
Theory and its Applications in Balatonfüred at Lake Balaton. For me, this was like
a dream, with its unique Hungarian charm and hospitality, the presence of many
young people and of famous mathematicians like Berge, Erdős, Rényi, Rota, Turán
and van der Waerden, to mention just a few. This was my first encounter with
Berge, and I admired his French intellectual style, if at a distance. I also learned
from him – at this meeting Berge emphasized the importance of hypergraphs,
then still something of a novelty. Again in Hungary, at the meeting in Keszthely
in June 1973 to celebrate Erdős’ 60th birthday, I got to know Berge better. I gave
my first conference lecture there, in the same afternoon session as Berge – I was
nervous talking about hypergraph colouring with Berge sitting in the front row.
But Berge was gracious and reassuring – he was without pretention, invariably
putting those in his company at ease. As regards his mathematics, too, Berge had
a distinctive manner, attempting always to combine the general with the concrete,
and to see things in a general mathematical framework. He introduced hypergraphs
not merely to generalize, but also to unify and simplify.

2. The late fifties and early sixties

The period around 1960 seems to have been particularly important and fruitful for
Berge. Through the book Théorie des graphes et ses applications [2] he had estab-
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lished a mathematical name for himself. In 1959 he attended the first graph theory
conference ever in Dobogokő, Hungary, and met the Hungarian graph theorists. He
published a survey paper on graph colouring [4]. It introduced the ideas that soon
led to perfect graphs. In March 1960 he talked about this at a meeting in Halle
in East Germany [6]. In November of the same year he was one of the ten found-
ing members of the OuLiPo (Ouvroir de Littérature Potentiel). And in 1961, with
his friend and colleague Marco Schützenberger, he initiated the Séminaire sur les
problèmes combinatoires de l’Université de Paris (which later became theEquipe
combinatoire du CNRS). At the same time Berge achieved success as a sculptor [7].

3. Games, graphs, topology

Games were a passion of Claude Berge throughout his life, whether playing them –
as in favorites such as chess, backgammon and hex – or exploring more theoretical
aspects. This passion governed his interests in mathematics. He began writing on
game theory as early as 1951, spent a year at the Institute of Advanced Study
at Princeton in 1957, and the same year produced his first major book Théorie
générale des jeux à n personnes [1]. Here, one not only comes across names such
as von Neumann and Nash, as one would expect, but also names like König, Ore
and Richardson. Indeed, the book contains much graph theory, namely the graph
theory useful for game theory. It also contains much topology, namely the topo-
logy of relevance to game theory. Thus, it was natural that Berge quickly followed
up on this work with two larger volumes, Théorie des graphes et ses applications
[2] and Espaces topologiques, fonctions multivoques [3]. Théorie des graphes et ses
applications [2] is a master piece, with its unique blend of general theory, theo-
rems – easy and difficult, proofs, examples, applications, diagrams. It is a personal
manifesto of graph theory, rather than a complete description, as attempted in the
book by König [31]. It would be an interesting project to compare the first two ear-
lier books on graph theory, by Sainte-Laguë [34] and König [31] respectively, with
the book by Berge [2]. It is clear that Berge’s book is more leisurely and playful
than König’s, in particular. It is governed by the taste of Berge and might well be
subtitled ‘seduction into graph theory’ (to use the words of Rota from the preface
to the English translation of [13]). Among the main topics in [2] are factorization,
matchings and alternating paths. Here Berge relies on the fundamental paper of
Gallai [25]. Tibor Gallai is one of the greatest graph theorists – he is to some
degree overlooked – but not by Berge. Gallai was among the first to emphasize
min-max theorems and LP-duality in combinatorics. In [26] one finds for the first
time in writing the result (in generalized form) that the complement of a bipartite
graph is perfect, attributed by Gallai to König and dated to 1932. But also [2]
contains a theorem characterizing the size of a maximum independent set of ver-
tices in a bipartite graph, which is easily seen to be equivalent to the fact that the
complement of a bipartite graph is perfect. To notice this non trivial, yet simple,
result seems to me to be a major step in the direction of the perfect graph con-
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jectures. The 1959 book Espaces topologiques, fonctions multivoques [3] deals with
general topology, focussing on what is useful in game theory, optimization theory
and combinatorics. It includes a theory of multivalued functions, as stated in the
title. And as Berge explains, when combinatorial properties of these functions are
studied, it may be called a theory of oriented graphs. One of the theorems of [3] is
known as Berge’s Maximum Theorem. It deals with multivalued continuous map-
pings. It is very useful in economics and well known among economists. Also here,
Berge manages to focus on the essential and useful. At The History of Economic
Thought Website (http://cepa.newschool.edu/het/) the topic Continuity and all
that is divided into four sections. Two of these deal with Berge’s theory. They are
called Upper and lower semicontinuity of correspondences and Berge’s Theorem.
In the 1960’s two more books by Berge appeared, namely Programmes, jeux et
réseaux de transport [8] and Principes de combinatoire [13]. In the preface to the
English version of [13], which came out in 1971, Gian-Carlo Rota said:

Two Frenchmen have played a major role in the renaissance of Com-
binatorics: Berge and Schützenberger. Berge has been the more prolific
writer, and his books have carried the word farther and more effectively
than anyone anywhere. I recall the pleasure of reading the disparate ex-
amples in his first book, which made it impossible to forget the material.
Soon after that reading, I would be one of the many who unknotted them-
selves from the tentacles of the Continuum and joined the then Rebel
Army of the Discrete. What are newed pleasure is it to again read Berge
in the present book!
Both books [2] and [3] are now classics, and can still be purchased (in English)

as new Dover Paperbacks. In 1970 Berge helped to give graph theory a new aspect
by extending it to hypergraphs in the book Graphes et hypergraphes [15]. The
purpose was to generalize, unify and simplify. The term hypergraph was coined by
Berge, following a remark by Jean-Marie Pla, who had used the word hyperedge
in a seminar. In 1978 Berge enriched the field once more with his lecture notes
Fractional Graph Theory [17]. The purpose was again the same – and conjectures
changed into elegant theorems in their fractional versions. The 1970 book was
later split into two and appeared in the most recent versions as Graphs [20] and
Hypergraphs [19]. In addition to his books Berge edited many collections of papers,
some of which have been very influential, such as Hypergraph Seminar [16] and
Topics on Perfect Graphs [18].

4. Perfect graphs

In 1960 Berge wrote a survey paper [4] on graph colouring, a topic not treated in
depth in [2]. The paper was reviewed in Mathematical Reviews (MR 21, 1608) by
Gabriel Andrew Dirac. Berge moved here into an area that Dirac knew like the
back of his hand – and where Dirac had thought a lot about how to best prove
and present results. Also Dirac, with his Hungarian background, did graph theory
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in the style of König, and he always maintained that König’s book was the best
source for learning graph theory. So Dirac was not particularly fond of Berge’s
more leisurely style, and his review of [4] was quite critical. Seen from today’s
perspective it seems too harsh. Here the first hints of perfect graphs appeared. As
Berge wrote (my translation):

We shall here determine certain categories of graphs for which the chro-
matic number equals the clique number.

In 1976 I attended the conference in Orsay to celebrate Berge’s 50th birth-
day. I asked him about his reaction to Dirac’s negative review. He said that he was
just surprised and that he was on good terms with Dirac both before and after
1960. This was his nature – he took no offence. And Dirac invited Berge to visit
Aarhus as one of the first graph theory guests after his appointment in Denmark
in 1970. Dirac did his utmost to please Berge and make the visit a success, as I
witnessed with my own eyes. I can still see the backs of Berge and Dirac, under
an umbrella, disappearing in the fog and rain down Ny Munkegade in Aarhus. In
1959 in Dobogokő, Berge met Gallai, who told him about his work about graphs
in which every odd cycle has two non-crossing chords, to be published in [27].
Berge saw immediately the importance of Gallai’s work and included some of it
in [4]. Berge called a graph in which every cycle has a chord a ‘Gallai graph’ (the
terminology commonly used now is ‘chordal graph’ or ‘rigid circuit graph’) and
proved the new result (in today’s terminology) that such a graph is perfect, and he
also included a proof of the theorem of Hajnal and Surányi that their complements
are perfect – this they had presented in Dobogokő [29]. Berge called line-graphs of
bipartite multigraphs ‘pseudo-Gallai graphs’. Such graphs, and also their comple-
ments, are shown to be perfect. One property of these graphs is that all odd cycles
of length at least 5 have chords. Berge remarked that, to establish perfectness,
it is not enough to require only that all odd cycles of length at least five have
chords, as the complement of the 7-cycle shows. He attributed this observation
to A. Ghouila-Houri. Berge lectured about all these ideas at the colloquium on
graph theory in Halle in East Germany, in March 1960, and wrote an extended
abstract [6]. Here he defined a ‘Gallai graph’ as in [4] and a ‘semi-Gallai graph’ as
one in which each odd cycle of length at least five has a chord. Berge mentions the
result of Hajnal and Surànyi [29] that the complement of a Gallai graph is perfect
and his own result that a Gallai graph itself is perfect. Moreover he notices that
bipartite graphs, line-graphs of bipartite graphs and a class of Shannon graphs
are perfect semi-Gallai graphs. At the end he says that it would seem natural to
conjecture that all semi-Gallai graphs are perfect, but he then again exhibits the
Ghouila-Houri counterexample (the complement of the 7-cycle). Berge does not
mention complements of line-graphs of bipartite graphs nor complements of bipar-
tite graphs in the Halle abstract. The abstract [6] is in German. Berge had given
it the title (English translation) Colouring of Gallai and semi-Gallai graphs. The
referee apparently asked Gallai if this was appropriate, and Gallai in his modest
style answered that there was a misunderstanding and that he had never looked
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thoroughly at these classes. So Dirac, involved with the editing, on his way to take
up a professorship at Ilmenau in East Germany, suggested the change of title to the
one the paper ended up with. In [21] Berge mentions that the strong perfect graph
conjecture was stated in Halle in March 1960 at the end of his lecture in the form,
that if a graph and its complement are both semi-Gallai graphs (such graphs are
now called Berge graphs) then the clique number and chromatic number are equal.
It is clear from the abstract that this was certainly a natural question with which
to end the lecture, but it also seems clear that the focus was not yet on the con-
jecture. In 1961 Berge spent the summer at a symposium on combinatorial theory
at the RAND Cooperation in Santa Monica in California. There he presented his
results, including some new ones on unimodular graphs, and he had many fruitful
discussions, among others with Alan J. Hoffman. It seems likely that the whole
English terminology, as we know it, was created here. On his return to Paris Berge
wrote an English version of the theory of perfect graphs, and he sent it to Hoffman
for comments. This manuscript, with some improvements suggested by Hoffman,
Gilmore and McAndrew, appeared as Some classes of perfect graphs ([9], [12] and
[14]). The 1963 paper [9] consists of lecture notes from the Indian Statistical In-
stitute in Calcutta, which Berge visited in March and April 1963. Berge himself
had at some point forgotten the existence of these published notes – they are not
mentioned in the preprint [21], where he had some difficulties explaining why these
important ideas from 1960 had to wait so long to get published. So he was pleased
when I sent him a copy of [9]. I discovered [9] in the fine library of the University
of Regina, Canada, in 1993. The published lecture notes are however not rare and
are present in several libraries around the world. So my bet on the first publication
using the term perfect graph and mentioning explicitly the perfect graph conjec-
tures is Berge’s paper [9] from 1963. This paper contains the whole basic theory
of perfect graphs in the still commonly used terminology. Now, 40 years later the
strong perfect graph conjecture has finally been proved [24]. In addition to [6], an
abstract [10] from a meeting in Japan in September 1963 is often mentioned as an
original source for perfect graphs. However the abstract is very short (nine lines)
and mentions neither perfect graphs nor the perfect graph conjectures. At the
meeting in Japan Berge did however distribute a manuscript. Judging from titles
and from [21] this was the manuscript later to be presented and discussed at Rav-
ello, Italy, in June 1964, and published in 1966 [11]. This paper (in French) contains
the strong perfect graph conjecture and acknowledges Paul C. Gilmore’s influence.

5. Problems

Berge was influential as an author of books, conference lecturer, thesis director
and seminar organizer – the weekly seminar held at the Maison des sciences de
l’homme on boulevard Raspail was legendary – but he was less so as a problem
poser. His problems are relatively few and sometimes seem accidental. The book
[2] has an appendix with fourteen unsolved problems. It might be interesting to
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examine these more closely with modern eyes. There are exceptions to this. In
particular the perfect graph conjectures have had a huge impact. There are at
least two other widely known circles of problems due to Berge: The Berge Path
Partition Conjectures and Berge’s Hypergraph Edge Colouring Problems. See [23]
or [30] for a more detailed description. Finally, Berge edited for a period (1960–64)
a magazine column [5] of brain teasers. It might also be interesting to take a closer
look at these (unfortunately I did not have access to this material).

6. OuLiPo

The OuLiPo is a group of French writers and intellectuals, who experiment with
literature. When one writes literature, poetry or music, one imposes on oneself
certain restrictions. The main idea of this workshop for potential literature is to
make these restrictions of a more precise mathematical nature (as Schönberg did
in music and Lewis Carroll did in some of his writings). Martin Gardner wrote two
columns on OuLiPo in Scientific American in the late 1970’s, later to be completely
rewritten and included in the book [28]. He said that

the most sophisticated and amusing examples of literary word play have
been produced by the whimsical, slightly mad French group called the
Oulipo.
There are some books in English about and by the group, among them [32]

and [33]. In both these books Berge is prominently featured. Berge was active in
OuLiPo and wrote several articles, responsible as he was for “combinatory ana-
lysis”. His most well-known OuLiPo work is the short storyWho killed the Duke
of Densmore? [22], which is a classical crime story, where the solution however
requires knowledge of the Theorem of Hajós, characterizing interval graphs (Berge
had heard Győrgy Hajós lecture about this theorem in Halle in March 1960).
With this theorem it is possible to see that the set of events cannot have taken
place as described by the participants, because the overlap graph of the events as
described is not an interval graph. So at least one of the participants must be lying.
But only the removal of one particular vertex of the corresponding overlap graph
changes this into an interval graph, so this reveals the culprit. Berge pays tribute
to the author Lewis Carroll and also to Carroll’s alter ego, the mathematician
C.L. Dodgson, both of whom are represented in the Duke’s library. In an interval
graph the sequence of events cannot be fully determined since a suitable sequential
ordering of the intervals may be reversed. One of the persons in the short story
contemplates the possibility of writing a novel with a set of events corresponding
to an interval graph, where the two possible orderings in time would give two
different solutions to the plot. Maybe Berge himself tried to create such an in-
teresting (possible?) sequence of events? Berge spoke to Adrian Bondy of his wish
to write a detective story in which the reader is the murderer, or the author, or
the publisher. . . In [33] there are other interesting contributions, for example the
ultimate lipogram, a book where not only one letter, but all letters have been
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avoided (where however the list of contents, footnotes, index, errata list, foreword
and afterword, not being part of the text of the book itself, do use letters!), and a
paper by the famous author Raymond Queneau (who had attended Berge’s graph
theory seminars around 1960), based on Hilbert’s axioms for plane geometry, where
point has been replaced by word and line by sentence, thus providing a foundation
for literature (Hilbert told us that the words point and line are undefined and may
be called anything). The OuLiPo group surely had/have a lot of fun, and their
meetings, which take place inpublic, are packed. This was in particular so for their
meeting in Berge’s memory, at which he was officially ‘excused’ for his absence.

7. Sculpture

In our modern everyday life we are surrounded and bombarded by (too) beautiful,
flawless pictures, sculptures and designs. In this stream Claude Berge’s sculptures
catch our attention, with their authenticity and honesty. They are not pretending
to be more than they are. Berge catches again something general and essential, as
he did in his mathematics. The sculptures may at first seem just funny, and they
certainly have a humorous side. But they have strong personalities in their unique
style – you come to like them as you keep looking at them – whether one could live
with them if they came alive is another matter! The book Sculptures multipètres
[7] gives a good impression of Berge’s early sculptures, made partly from stones he
found in the Seine. It was prefaced by Philippe Soupault, a well-known surrealist
writer.

8. Conclusion

Claude Berge’s greatest scientific achievement is that he gave graph theory a place
in mathematics at large by revealing and emphasizing its connections to set theory,
topology, game theory, operations research, mathematical programming, econom-
ics and other applications. The influence came mainly through his books, but
also via his lectures, discussions at conferences and seminars, and of course very
strongly through his many students. He generalized, unified, simplified, and com-
bined in a unique way the general and the concrete. He will for a long time remain
an inspirational force. So let us continue to play games and enjoy graph theory
Claude Berge style!
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1962. Translation: Programming, games and transportation networks, Methuen and
Wiley 1965.

[9] C. Berge, Some classes of perfect graphs, in: Six Papers on Graph Theory, Indian
Statistical Institute, Calcutta, 1963, 1–21.

[10] C. Berge, Sur une conjecture relative au problème des codes optimaux de Shannon,
in: Union Radio Scientifique Internationale, XIVe Assemblée Générale, Tokyo Sept.
9–20, 1963,Volume XIII-6, Ondes et Circuits Radio électriques, U.R.S.I. Bruxelles
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graphen, Ann.Univ. Budapest 1 (1958), 53–57.

[30] T.R. Jensen and B. Toft, Graph Coloring Problems, Wiley Interscience 1995.

[31] D. König, Theorie der endlichen und unendlichen Graphen, Teubner, Leipzig 1936.

[32] OULIPO a primer of potential literature (W.F. Motte ed.), University of Nebraska
Press 1986, and Dalkey ArchivePress, Illinois State University 1998.

[33] OULIPO Laboratory. Papers by Raymond Queneaux, Italo Calvino, Paul Fournel,
Claude Berge, Jaques Jouet and Harry Mathews, Atlas Anti-classics 1995.

[34] M.A. Sainte-Laguë, Les réseaux (ou graphes), Mémorial des sciences mathématiques,
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k-path-connectivity and mk-generation:
an Upper Bound on m

M. Abreu and S.C. Locke

Abstract. We consider simple connected graphs for which there is a path of
length at least k between every pair of distinct vertices. We wish to show that
in these graphs the cycle space over Z2 is generated by the cycles of length at
least mk, where m = 1 for 3 ≤ k ≤ 6, m = 6/7 for k = 7, m ≥ 1/2 for k ≥ 8
and m ≤ 3/4 + o(1) for large k.

Keywords. k-path-connectivity, cycle space, k-generation.

1. Introduction

For basic graph-theoretic terms, we refer the reader to Bondy and Murty [5]. All
graphs considered are simple (without loops or multiple edges). For a graph G, we
use V (G) for the vertex set of G, E(G) for the edge set, and ε(G) = |E(G)|. For a
set X ⊆ V (G), G[X ] denotes the subgraph of G induced by X . For a path P , the
length of P is ε(P ). If P has ends x and y, we call P an (x, y)-path. For u, v ∈ V (P )
with u preceding v on P , P [u, v] denotes the subpath of P from u to v. For a pos-
itive integer k, an (x, y : k)-path is an (x, y)-path of length at least k. A simple
connected graph is k-path-connected if between every pair of distinct vertices, there
is an (x, y : k)-path. It is easy to see that every maximal 2-connected subgraph of a
k-path-connected graph is itself k-path-connected, and we may therefore restrict
our study to graphs which are 2-connected and k-path-connected. Given a sub-
graph H of G, dH(x, y) will denote the distance in H between x and y (i.e., the
length of the shortest (x, y)-path in H). Recall that κ(G) is the (vertex) connec-
tivity of G and that N(x) is the neighborhood of a vertex x ∈ V (G).

A cycle is a connected, 2-regular graph. For a cycle C, the length of C is ε(C).
We use the term k+-cycle to refer to a cycle of length at least k. Given x, y ∈ V (C),
if dC(x, y) = max{dC(x′, y′) : x′, y′ ∈ V (C)} then x and y are said to be antipodal

The authors would like to thank the ‘Equipe Combinatoire’ Paris 6 and CNRS for the generous
support to attend GT04 conference.
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vertices of C. If ε(C) is even there exists a unique antipodal for each vertex of C
and an edge joining two antipodal vertices is called a diameter of C. If ε(C) is odd
there exist exactly two antipodals for each vertex of C and an edge joining two
antipodal vertices is called a near-diameter of C. We use the standard notation
(v1, . . . , vt) for the cycle C with edges vivi+1 for i = 1, . . . , t and the edge vtv1. This
notation induces a natural orientation for the cycle from which we may denote by
C[vi, vj ] the path on C with edges vsvs+1 for s = i, i+1, . . . , j−1 mod ε(C); and
by C−[vi, vj ] the path on C with edges vsvs−1 for s = i, i−1, . . . , j +1 mod ε(C).
Let {x, y} and {x′, y′} be two pairs of all distinct vertices of C. Then {x′, y′} is
said to be a separating pair for the pair {x, y} if the vertices appear on C in the
order xx′yy′ or xy′yx′. A chord is an edge joining two non consecutive vertices of
a cycle. Two chords are said to be crossing if the end vertices of one is a separating
pair for the end vertices of the other. The circumference of a graph is the length
of its longest cycle.

The cycle space, Z(G), of a graph G is the vector space of edge sets of
Eulerian subgraphs of G. A graph G is k-generated if the cycle space of G over
Z2 is generated by the cycles of length at least k. A 2-connected graph G is a
k-generator if it is both k-generated and (k − 1)-path-connected. In [8] it was
established that any 2-connected graph which contains a k-generator must itself
be a k-generator.

The relation between long paths, cycle space, k-path-connectivity and k-
generation of a graph has been studied by several authors. In particular, Bondy
[4] conjectured that if G is a 3-connected graph with minimum degree at least d
and at least 2d vertices, then every cycle of G can be written as the symmetric
difference of an odd number of cycles, each of whose lengths are at least 2d − 1
and Hartman [6] proved that if G is a 2-connected graph with minimum degree d,
where G is not Kd+1 if d is odd, then the cycles of length at least d + 1 generate
the cycle space of G. Locke [8, 9] partially proved Bondy’s conjecture and gave
ideas to extend the results presented. Furthermore, Locke [7, 8] gave another proof
of Hartman’s theorem and together with Barovich [3] generalized that result by
considering fields other than Z2. Locke and Teng in [10] give some results on odd
sums of long cycles in 2-connected graphs.

The families of graphs studied by Locke in [7, 8] turned out to be k-path-
connected and (k + 1)-generated. So in [9] he conjectured:

Conjecture 1.1. For some constant m, 0 < m ≤ 1, every k-path-connected graph
is mk-generated.

From [2] we recall that a k-path-connected graph G (other than K1) must
have a cycle of length at least k + 1 in each block. Thus, G is t-generated for
t ≤

⌊
k+3
2

⌋
. This immediately improves the lower bound, so every k-path-connected

graph is
⌊

k+3
2

⌋
-generated, for k ≥ 1. While noting that any (2k − 3)+-cycle is a

k-generator, implies that we only need to study k-path-connected graphs which
contain cycles of length less than or equal to 2k − 4.
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Locke in [9] proved that m = 1 for 3 ≤ k ≤ 5 and Abreu, Labbate, Locke in
[1] proved the following result:

Theorem 1.2. Let G be a 2-connected, 6-path-connected graph with |V (G)| ≥ 9 and
minimum degree at least 3. Then G is 6-generated.

In the next section we complete the proof of the following:

Theorem 1.3. Let G be a 2-connected, 6-path-connected graph. Then G is 6-gene-
rated.

The dodecahedron is an 18-path-connected graph but is only 17-generated
[9], so it will not be possible to prove in general that a k-path-connected graph is
k-generated.

However, in Section 3 we present a family of graphs that is (4a + 3)-path-
connected and (3a+3)-generated but not (3a+4)-generated for a ≥ 1. This family
allows us to prove

Theorem 1.4. Let G be a 2-connected, k-path-connected graph, and k ≥ 7. Then
G is mk-generated where

(i) m = 6/7 for k = 7, and
(ii) m ≤ 3/4 + o(1) for large k.

2. 6-path-connected graphs

We first recall some results from [1].

Theorem 2.1. Let G be a 2-connected, (k − 1)-path-connected graph with a cycle
C of length 2k − 4, then G is k-generated if one of the following holds:
(1) G is at least 3-connected,
(2) There are no diameters of C in E(G),
(3) There is exactly one diameter of C in E(G),
(4) There are at least three diameters of C in E(G).

Theorem 2.2. Let G be a 2-connected, (k − 1)-path-connected graph with a cycle
C of length 2k − 5, then G is k-generated if one of the following holds:
(1) There are no near-diameters of C in E(G),
(2) There is exactly one near-diameter of C in E(G),
(3) There are at least three pairwise crossing near-diameters of C in E(G).

Now we present a couple of new results on 2-connected, (k−1)-path-connected
graphs with a cycle of length at least (2k − 4).

Lemma 2.3. Let G be a 2-connected, (k − 1)-path-connected graph with a cycle
C = (v1, v2, . . . , v2k−4) of length (2k − 4). If there is a diameter v1vk−1 and a
(vi, vj)-path P , internally disjoint from C where v1vk−1 separates {vi, vj}, then
either |i− j| = k − 2 and P is a diameter or G is a k-generator.
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Proof. If |i − j| = k − 2 and P is a diameter, there is nothing to prove. We
may assume that j > i. Let C1 = C[v1, vi] ∪ P ∪ C[vj , v1] and C2 = C[vi, vj ] ∪ P .
ε(C1)+ε(C2) = ε(C)+2ε(P ) = 2k−4+2ε(P ). If ε(P ) > 1, then ε(C1)+ε(C2) ≥ 2k,
so max{ε(C1), ε(C2)} ≥ k. If ε(P ) = 1, then ε(C1) + ε(C2) = 2(k − 1) and either
ε(C1) = ε(C2) = k − 1, in which case |i − j| = k − 2 and P is a diameter,
or max{ε(C1), ε(C2)} ≥ k. In both cases in which P is not a diameter, we can
conclude that there is C3 ∈ {C1, C2} such that ε(C3) ≥ k. Therefore C ∪ P is
k-generated.

Let C4 = C[v1, vi] ∪ P ∪ C−[vj , vk−1] ∪ vk−1v1 and C5 = C−[v1, vj ] ∪ P ∪
C[vi, vk−1]∪ vk−1v1. ε(C4)+ ε(C5) = ε(C)+2ε(P )+2 = 2k− 4+2+2ε(P ). Since
ε(P ) ≥ 1, max{ε(C4), ε(C5)} ≥ k and therefore, there is C6 ∈ {C4, C5} such that
ε(C6) ≥ k. Hence C ∪ P ∪ {v1vk−1} is k-generated.

Now we need to prove that if P is not a diameter, H = C ∪ P ∪ {v1vk−1} is
(k − 1)-path-connected. For x, y ∈ V (H) − V (C), with x �= y, there are x′, y′ ∈
V (C) such that there is an (x, x′)-path P1 in H and an a (y, y′)-path P2 in H
with ε(C[x′, y′]) ≥ k − 2 or ε(C−[x′, y′]) ≥ k − 2, and with P1 disjoint from P2.
Therefore, either ε(P1 ∪ C[x′, y′] ∪ P2) ≥ k or ε(P1 ∪ C−[x′, y′] ∪ P2) ≥ k. Thus,
there is an (x, y : k)-path in H .

For x ∈ V (H)− V (C) and y ∈ V (C), there is an x′ ∈ V (C) and an (x, x′)-
path P3 with either ε(P3 ∪ C[x′, y]) ≥ k − 2 or ε(P3 ∪ C−[x′, y]) ≥ k − 2, which
gives us an (x, y : k − 1)-path in H .

For x, y ∈ V (C) with x and y not antipodal on C, there already is an (x, y :
k− 1)-path in C ⊆ H . Hence, we need only consider the case in which x and y are
antipodal. If {x, y} �= {v1, vk−1}, we may assume, without loss of generality, that
v1xvk−1y appear in this order on C and either C−[x, v1]∪v1vk−1∪C[vk−1, y] ≥ k−1
or C[x, vk−1] ∪ v1vk−1 ∪C−[v1, y] ≥ k − 1. Hence there is an (x, y : k − 1)-path in
C ∪ P ∪ {v1vk−1}.

If {x, y} = {v1, vk−1} we may assume, without loss of generality, that x = v1

and y = vk−1 and then either C[v1, vi] ∪ P ∪ C−[vj , vk−1] ≥ k − 1 or C−[v1, vj ] ∪
P ∪ C[vi, vk−1] ≥ k − 1. Giving an (x, y : k − 1)-path in H .

Therefore when P is not a diameter, C∪P∪{v1vk−1} is (k−1)-path-connected
and k-generated, hence a k-generator. �
Lemma 2.4. Let G be a 2-connected, k-path-connected graph with a cycle C =
(v1, v2, . . . , v2k−4) of length 2k− 4. If G contains two consecutive diameters of C,
then G is a k-generator.

Proof. Without loss of generality, suppose these two consecutive diameters are
v1vk−1 and v2vk. Suppose there is a (vi, vj)-path P crossing {v2, vk−1}. Thus P
crosses at least one of v1vk−1 or v2vk. By the previous lemma, ε(P ) = 1, and
the unique edge e of P is a diameter of C. But then, e /∈ {v1vk−1, v2vk}, and
{e, v1vk−1, v2vk} is a set of three diameters of G, which by Theorem 2.1 implies
that G is a k-generator.

Hence, we may assume that G − {v2, vk−1} is disconnected. Since G is k-
path-connected, there is a (v2, vk−1 : k)-path Q in G. If V (Q)∩ {v3, . . . , vk−2} = ∅,
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then Q∪C[v2, vk−1] is a (2k− 3)+-cycle, hence a k-generator. However if V (Q)∩
{v3, . . . , vk−2} �= ∅, then V (Q)∩ {vk, . . . , v2k−4, v1} = ∅, and Q ∪ C[vk−1, v2] is a
(2k − 3)+-cycle, hence a k-generator. Thus, G is a k-generator. �

We now return to the discussion of a 2-connected, 6-path-connected graph G
which is not a 6-generator. If G contains a 9+-cycle, then G is a 6-generator. We
may therefore assume G has no 9+-cycle.

Suppose G has an 8-cycle C = (v1, v2, . . . , v8). By Theorem 2.1, we may
assume that G has exactly two diameters, and by Lemma 2.4 we may assume,
without loss of generality, that these diameters are v1v5 and v3v7. From Lemma
2.3, no chord, which is not itself a diameter, can cross a diameter. Also, by Lemma
2.3, there can be no (vi, vj)-path P internally-disjoint from C if {vi, vj} separates
{v1, v5} or if {vi, vj} separates {v3, v7}.

Suppose that there is an edge xy in G− V (C). Then, we can find a (vi, vj)-
path P containing xy, and internally disjoint from C, with vi �= vj . Since P
cannot cross either diameter, without loss of generality, {vi, vj} ⊆ {v1, v2, v3}. But
then, P ∪ C contains a 9+-cycle, contradicting our hypotheses about G. Hence,
ε(G − V (C)) = 0. Suppose there is a vertex x ∈ V (G) − V (C). Then, we can
find a (vi, vj)-path P containing x, and internally disjoint from C, with vi �=
vj . Since P cannot cross either diameter, {vi, vj} ⊆ {v2m+1, v2m+2, v2m+3}, for
some m ∈ {0, 1, 2, 3}, subscripts modulo 8. Since G can have no cycle of length
exceeding 8, {vi, vj} = {v2m+1, v2m+3}, and ε(P ) = 2. Note that N(x) ⊆ V (C),
and thus N(x) ⊆ {v1, v3, v5, v7}. If N(x) �= {v2m+1, v2m+3}, then (reversing the
direction along the cycle, if necessary) we may assume that xv2m+5 ∈ E(G),
and v2m+1xv2m+5 is a path of length exceeding one and crossing the diameter
v2m+3v2m+7, in contradiction to our assumption. Thus, |N(x)| = 2.

We now have a characterization of G. The graph G is an eight cycle C =
(v1, v2, . . . , v8), together with two crossing diameters, v1v5 and v3v7 and possibly
some vertices of degree two joined to {v2m+1, v2m+3}, for various choices of m,
and also possibly some chords {v2m+1v2m+3}, again for various choices of m. But,
this graph has no (v1, v5)-path of length at least 6. This violates our assumptions
about G.

This concludes all of the cases in which the circumference of G is 8, leaving
only the cases where the circumference of G is 7, since a (k − 1)-path-connected
graph must contain a k+-cycle. Suppose that G has a vertex v of degree 2, with
N(v) = {x, y}. There is an (x, y : 6)-path P in G, and P ∪ xvy is an 8+-cycle.
Therefore, we may assume that δ(G) ≥ 3.

Let C = (v1, v2, . . . , v7) be a 7-cycle in G and let Rm = {v ∈ V (G) :
d(v, V (C)) = m} be the set of vertices of G at distance exactly m from the
cycle C. In previous work [1], we showed that |R2| = 0 (or G contains an 8+-
cycle) and that ε(G[R1]) = 0, (or G contains an 8+-cycle). But then, for any
v ∈ R1, H = C ∪ {v} ∪ {vw : w ∈ N(v)} is a 6-generator. Hence, |R1| = 0, and
V (G) = V (C).
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What remains is to check the Hamiltonian graphs on 7 vertices to see that
any of which are 6-path-connected are also 6-generated. In order to do this we first
prove some general results.

Lemma 2.5. Let G be a graph, C a cycle of length 2k − 5 in G and S a set of
chords of C in G. Then C + S is (k − 1)-path-connected if and only if for every
antipodal pair of vertices {vi, vi+k−3} there is a chord vsvt ∈ S separating the pair
{vi, vi+k−3}.
Proof. Given a pair {vi, vi+k−3}, if there is chord vsvt that separates it, without
loss of generality we may assume that the vertices appear in the order vivsvi+k−3vt

on C. Then the paths P1 = C[vi, vs] ∪ vsvt ∪C−[vt, vi+k−3] and P2 = C−[vi, vt] ∪
vtvs ∪ C[vs, vi+k−3] satisfy ε(P1) + ε(P2) = ε(C) + 2 = 2k − 3, implying that
max{ε(P1), ε(P2)} ≥ k− 1. Therefore there is path P3 ∈ {ε(P1), ε(P2)} which is a
(vi, vi+k−3 : k − 1)-path.

For the converse, let {vi, vi+k−3} be a pair of vertices for which there is no
chord in S separating it. This implies that C + S − {vi, vi+k−3} is disconnected
with exactly two components A1 and A2. For i = 1, 2, let Hi = Ai ∩ (C + S).
Then the longest path in Hi for i = 1, 2 has length k − 2. Therefore C + S is not
(k − 1)-path-connected. �

Let H be a 2-connected graph and s, t ∈ V (H). The graph H is said to be
{s, t}-near-(k − 1)-path-connected if k ≥ 3, there is an (s, t : k − 2)-path in H ,
and for every pair of distinct vertices x, y ∈ V (H) with {x, y} �= {s, t}, there is
an (x, y : k − 1)-path in H . If H is also k-generated, then it is said to be an
{s, t}-near-k-generator. In [1] the following lemma was proved.

Lemma 2.6. Let G be a 2-connected, (k − 1)-path-connected graph that contains
an {s, t}-near-k-generator H. Then, G contains a k-generator (and then G is a
k-generator).

Remark 2.7. In a cycle C = (v1, . . . , v2k−5) of length 2k − 5 there are (x, y :
k − 1)-paths among all pairs of non-antipodal vertices x, y ∈ C. A near-diameter
e = vivi+k−3 separates every pair of antipodal vertices {vj, vj+k−3} except for
the pairs p1 = {vi, vi+k−2} and p2 = {vi−1, vi+k−3}. Then any chord e′ which is
different from the near-diameters e1 = vivi+k−2 and e2 = vi−1vi+k−3 and which
crosses e, also crosses at least one of e1, e2. Therefore C + e + e′ is either a k-
generator or a pi-near-k-generator for some i = 1, 2.

Remark 2.8. In particular if C = (v1, . . . , v7) is a 7-cycle and if a 2-chord crosses
a 3-chord (near-diameter) in C, we have a near-6-generator. To prove this, sup-
pose without loss of generality that the 2-chord is the edge e = v2v7 and the
3-chord is the edge e′ = v1v4. The cycles C1 = (v1, v2, v3, v4, v5, v6, v7), C2 =
(v2, v3, v4, v5, v6, v7) and C3 = (v1, v2, v7, v6, v5, v4) generate the cycle space of
C + e + e′, so it is 6-generated and by Remark 2.7 it is near-5-path-connected.

Let G be 6-path-connected Hamiltonian graph on 7 vertices and let C =
(v1, . . . , v7) be a 7-cycle in G. The possible near-diameters of C are of the form
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ej = vjvj+3, subscripts modulo 7. We record the vector F = (f1, f2, . . . , f7),
where fj = 1 if ej ∈ E(G) and fj = 0 if ej /∈ E(G). We list a representative
of the equivalence class [F ] of F under the dihedral group D7, acting on C. We
write C + F for the graph whose vertex set is {v1, v2, . . . , v7} and whose edges are
the edges of C, together with the edges {ej : fj = 1}. Those patterns which force
three pairwise crossing near-diameters are marked with the symbol

√
, as are those

with zero or one near-diameters (hence covered by Theorem 2.2). For each of the
remaining patterns we study the addition of chords which are not near-diameters
to C + F and in each case we get either a 6-generator or a graph which is not 6-
path-connected. Each pattern is marked with the corresponding observation below
in which it is studied.

F |[F ]|
(0, 0, 0, 0, 0, 0, 0) 1

√

(1, 0, 0, 0, 0, 0, 0) 7
√

(1, 1, 0, 0, 0, 0, 0) 7 Obs. 2.9
(1, 0, 1, 0, 0, 0, 0) 7 Obs. 2.10
(1, 0, 0, 1, 0, 0, 0) 7 Obs. 2.11
(1, 1, 1, 0, 0, 0, 0) 7

√

(1, 1, 0, 1, 0, 0, 0) 14 Obs. 2.12
(1, 1, 0, 0, 1, 0, 0) 7 Obs. 2.9
(1, 0, 1, 0, 1, 0, 0) 7 Obs. 2.10

F |[F ]|
(1, 1, 1, 1, 0, 0, 0) 7

√

(1, 1, 1, 0, 1, 0, 0) 14
√

(1, 1, 0, 1, 1, 0, 0) 7 Obs. 2.12
(1, 1, 0, 1, 0, 1, 0) 7 Obs. 2.12
(1, 1, 1, 1, 1, 0, 0) 7

√

(1, 1, 1, 1, 0, 1, 0) 7
√

(1, 1, 1, 0, 1, 1, 0) 7
√

(1, 1, 1, 1, 1, 1, 0) 7
√

(1, 1, 1, 1, 1, 1, 1) 1
√

Observation 2.9. Let F1 = (1, 1, 0, 0, 0, 0, 0). By Remark 2.8 and Lemma 2.5 the
graphs C + F1 + v2v7, C + F1 + v4v6, C + F1 + v1v3 and C + F1 + v3v5 are 6-
generators or near-6-generators. On the other hand for F2 = (1, 1, 0, 0, 1, 0, 0), by
Lemma 2.5 C + F2 + {v2v4, v5v7, v1v6} is not 5-path-connected, since there is no
(v1, v5 : 5)-path, therefore neither is C + F1 + {v2v4, v5v7, v1v6}.
Observation 2.10. Let F3 = (1, 0, 1, 0, 0, 0, 0). By Remark 2.8 and Lemma 2.5 the
graphs C + F3 + v2v7, C + F3 + v5v7, C + F3 + v2v4 and C + F3 + v3v5 are 6-
generators. On the other hand C +F3 +{v1v3, v4v6, v1v6} is not 6-path-connected.
For F4 = (1, 0, 1, 0, 1, 0, 0) we have that C + F4 + {v1v3, v1v6} is not 6-path-
connected, since there is no (v3, v6 : 6)-path, while by Remark 2.8 C + F4 + v4v6

is a near-6-generator.

Observation 2.11. Let F5 = (1, 0, 0, 1, 0, 0, 0). By Remark 2.8 and Lemma 2.5 the
graphs C + F5 + v1v6, C + F5 + v2v7 and C + F5 + v3v5 are 6-generators or near-
6-generators. On the other hand, by Lemma 2.5 C + F5 + {v1v3, v2, v4, v4v6, v5v7}
is not 5-path-connected, since there is no (v1, v4 : 5)-path.

Observation 2.12. Let F6 = (1, 1, 0, 1, 0, 0, 0) and note that C + F6 is contained in
C + F0 + v4v7 where F0 = (1, 0, 0, 0, 0, 0, 0). Therefore C + F6 is a 6-generator, as
well as C + F7 and C + F8 with F7 = (1, 1, 0, 1, 1, 0, 0) and F8 = (1, 1, 0, 1, 0, 1, 0),
which contain C + F6.

This completes the proof of Theorem 1.3 �
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3. The M+
r,s,t family

Let X = {u1, u2, u3, u4} be the vertices of a copy of K4. We replace each edge uiuj

by a path Pij , where ε(P13) = ε(P24) = r, ε(P12) = ε(P34) = s, ε(P14) = ε(P23) =
t, with 1 ≤ r < s < t. The resulting graph, Mr,s,t, has only seven cycles. Four of
these cycles are of length r+s+ t and the other three have lengths: 2r+2s, 2r+2t
and 2s+2t. Any basis for the cycle space uses at least one cycle of length r+s+ t,
and thus Mr,s,t is (r + s + t)-generated but not (r + s + t + 1)-generated. The
cycle P12 ∪ P23 ∪ P34 ∪ P14 contains a (ui, ui+1)-path of length at least 2s + t, for
i = 1, 2, 3, 4 (with u5 = u1). The cycle P13∪P23∪P24∪P14 contains a (u1, u3)-path
of length at least 2s + t, and a (u2, u4)-path of length at least 2s + t. The graph
Mr,s,t is at most (min{2s + t, 2t + r})-path-connected. However, in general, the
path-connectivity of Mr,s,t is strictly less than this. For example, an M1,a+1,2a+1

can’t be more than (4a + 2)-path-connected since for x ∈ V (P23) at distance a
from u2 on P23, the longest (x, u4)-path in M1,a+1,2a+1 has length 4a + 2.

We would like to modify Mr,s,t to yield a graph with higher path-connectivity
but which is not (r+s+t+1)-generated. Let M+

r,s,t = Mr,s,t∪Q14∪Q23, where Q14

is a (u1, u4)-path and Q23 is a (u2, u3)-path, each of length t, internally disjoint
from each other and from Mr,s,t. The graph M+

r,s,t has only 19 cycles. Eight of
these cycles have length r + s + t, two have length 2t, one has length 2r + 2s, four
have length 2t+2r and four have length 2t+2s. Any basis for the cycle space uses
at least one cycle of length r + s + t, and thus M+

r,s,t is (r + s + t)-generated but
not (r + s + t + 1)-generated.

Lemma 3.1. For a ≥ 1, the graph M+
1,a+1,2a+1 is (4a + 3)-path-connected.

Proof. For distinct vertices x, y ∈ X . As before we realize that we can always find
an (x, y : 4a + 3)-path in M+

1,a+1,2a+1.
For x ∈ V (Pij) we have (x, ui : 4a + 3)-paths and (x, uj : 4a + 3)-paths

making use of the (ui, uj : 4a + 3)-path found in the previous case, together with
a segment of Pij . Similarly for x ∈ V (Qij).

For x ∈ V (M+
1,a+1,2a+1)−X but x /∈ V (Pij)∪V (Qij) there are (x, ui : 4a+3)-

paths and (x, uj : 4a+ 3)-paths using two paths of length 2a+ 1. For example, for
x ∈ V (P23), P23[x, u3] ∪Q−

23 ∪ u2u4 ∪ P−
14 is an (x, u1 : 4a + 3)-path.

For distinct vertices x, y ∈ V (M+
1,a+1,2a+1) − X . If x, y ∈ V (Pij) we may

assume without loss of generality that the vertices appear in the order ui, x, y, uj

in M+
1,a+1,2a+1. Consider the path P1 = Pij [ui, x] ∪ Pik ∪ Pkl ∪ Plj ∪ P−

ij [uj , y],
where Pkl is a path of length a + 1, and Pik and Plj are paths of length 2a + 1.
Then P1 is an (x, y : 4a + 3)-path. Similarly for x, y ∈ V (Qij)

If x ∈ V (Pij), y /∈ V (Pij) and ε(Pij) = a + 1. Then if y ∈ V (Pkl) with
ε(Pkl) = a + 1, let P2 = P−

ij [ui, x] ∪ Pik ∪ ukul ∪ Pjl ∪ P−
kl [y, ul] where Pik and Pjl

are paths of length 2a + 1. Then P2 is an (x, y : 4a + 3)-path. If y ∈ V (Pik) with
ε(Pik) = 2a + 1, let P3 = Pij [x, uj ] ∪ Pjl ∪ ului ∪ Qik ∪ P−

ik [uk, y] where Pjl is a
path of length 2a + 1. Then P3 is an (x, y : 4a + 3)-path. Similarly if y ∈ V (Qik)
or y ∈ V (Qjl) or y ∈ V (Pjl) with ε(Pjl) = 2a + 1.
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If x ∈ V (Pij), y /∈ V (Pij) and ε(Pij) = 2a + 1. Then if y ∈ V (Qij), let
P4 = P−

ij [ui, x] ∪Pik ∪Pkl ∪P−
jl ∪Q−

ij [uj, y] where Pik and Pjl are paths of length
a+1 and Pkl is a path of length 2a+1. Then P4 is an (x, y : 4a+3)-path. Similarly
if y ∈ V (Pkl) or y ∈ V (Qkl). Analogously if x ∈ V (Qij) and y /∈ V (Qij). �

Proof of Theorem 1.4. (i) For a = 1, M+
1,a+1,2a+1 is a 7-path-connected graph

which is only 6-generated, hence m = 6/7 for k = 7.
(ii) We have found a family of graphs which are (4a + 3)-path-connected and
(3a+3)-generated but not (3a+4)-generated. Since these graphs are also (4a+2),
(4a+1) and (4a)-path-connected, we have, for 0 ≤ b ≤ 3, graphs which are (4a+b)-
path-connected and (3a+3)-generated but not (3a+4)-generated. Now, 3a+3

4a+b has
a limit of approximately 3

4 , and approaching 3
4 as a increases, hence m ≤ 3/4+o(1)

for large k. �
We may now conclude that for k ≥ 8 every k-path-connected graph is mk-

generated for some constant m, with 1
2 ≤ m ≤ 3

4 .
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Automated Results and Conjectures on
Average Distance in Graphs

Mustapha Aouchiche and Pierre Hansen

Abstract. Using the AutoGraphiX 2 system, a systematic study is made on
generation and proof of relations of the form

bn ≤ l ⊕ i ≤ bn

where l denotes the average distance between distinct vertices of a connected
graph G, i one of the invariants: diameter, radius, girth, maximum, average
and minimum degree, bn and bn are best possible lower and upper bounds,
functions of the order n of G and ⊕ ∈ {−, +×, /}. In 24 out of 48 cases simple
bounds are obtained and proved by the system. In 21 more cases, the system
provides bounds, 16 of which are proved by hand.
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1. Introduction

Classical books on graph theory, such as Berge’s Graphs and Hypergraphs [4],
present many lower and upper bounds on graph invariants (i.e., numerical func-
tions of graphs which do not depend on the numbering of vertices or edges) in
terms of the graph’s number n of vertices and/or m of edges. So it appears to be
a naturel challenge to see if such bounds can be discovered automatically [8] by
some computer system, (and if not, if such a system can provide substantial help,
e.g., by discovering extremal graphs for a given expression).

Recently, using the AutoGraphiX 2 (AGX 2) software [1, 5, 6], a systematic
study has been performed [2] on automated generation of bounds of the following
form:

bn ≤ i1 ⊕ i2 ≤ bn

where bn and bn are expressions depending only on the order n of the graphs under
study, i1 and i2 are graph invariants and ⊕ belongs to {+,−,×, /}. Moreover, it
is requested that the bound bn and bn be best possible in the strong sense that
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for all n (except very small values, due to border effects) there exists a graph
for which the bound is tight. The proposed form generalizes formulae of the well-
known Nordhaus-Gaddum [12] form, in that i1 and i2 are independent invariants
instead of the same one in G and its complement G and that the operations −
and / are considered in addition to + and ×.

In the present paper we report in detail on results of the comparison of average
distance in graphs with six other invariants: diameter, radius, girth, maximum,
average and minimum degree.

These results fall into the following categories:

(a) Automated complete results: structural conjectures on the family of extremal
graphs, algebraic expression of the bound, automated proof of this bound’s
validity and tightness (it turns out that such results are frequently obtained
in a simple way; they are therefore referred to as observations);

(b) Automated complete conjectures: structural conjectures and algebraic rela-
tions obtained as above, but without automated proof. Some conjectures are
proved by hand (and referred to as propositions), others remain open;

(c) Semi-automated conjectures: structural conjectures obtained automatically,
but algebraic relations derived from them by hand; of those some are proved
and some remain open;

(d) Automated structural conjectures, for which algebraic expressions have not
been found (or do not exist);

(e) No results, as the (presumably) extremal graphs do not present any regularity.

In order to enable an informed evaluation of the results obtained, they are all
presented. Simple ones are briefly listed. Their main interest is that they can
enrich the database of relations used in the automated proofs. Other results are
given with full proofs or with indications about how to prove them if a previous
proof technique carries over.

The paper is organized as follow: each of the next six sections presents a
comparison of average distance with diameter, radius, girth, maximum, average
and minimum degree respectively. Brief conclusions are given in the last section.
Observations made by AGX 2 are collected in the Appendix.

2. The diameter

The diameter D of a graph G = (V, E) is defined by D = max{d(u, v), u, v ∈ V },
where d(u, v) is the distance between u and v in G. A diametric path in G is a
path between two vertices u and v such that d(u, v) = D.

Automated results obtained by AGX 2, in 6 cases out of 8, when comparing
the average distance l and the diameter D are given in Table 2 of the Appendix.

The following proposition was obtained automatically by AGX 2 and then
proved by hand.
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Proposition 2.1. For any connected graph on at least 3 vertices,

D − l ≤ 2n− 4
3
·

The bound is attained if and only if the graph is a path.

Proof. Let G be a connected graph of diameter D and average distance l, and H
a subgraph of G induced by a diametric path. Let

σ =
∑

u,v∈V

d(u, v) and σH =
∑

u,v∈V (H)

d(u, v),

where V (H) is the set of vertices of H . It is easy to see that

σ ≥ σ(H) = D · (D + 1) · (D + 2)/6

and
l ≥ D · (D + 1) · (D + 2)/(3n(n− 1)).

Thus
D − l ≤ D − D·(D+1)·(D+2)

3n(n−1)

≤ 3n(n−1)·D−D·(D+1)·(D+2)
3n(n−1)

≤ −D3−3D2+(3n(n−1)−2)·D)
3n(n−1) ·

Easy algebraic manipulations show that this last expression is an increasing func-
tion of D. It thus reaches its maximum if and only if D = n − 1, i.e., if G is a
path. �

Before stating the next conjecture, let us define the family of graphs called
bugs [10]. A bug Bugp,k1,k2

is a graph obtained from a complete graph Kp by
deleting an edge uv and attaching paths Pk1 and Pk2 at u and v, respectively. A bug
is balanced if |k1−k2| ≤ 1. (In a bug, n = p+k1+k2 and m = p(p−1)

2 +k1 +k2−1).

Conjecture 2.2. Among all connected graphs on at least 3 vertices, D/l is maximum
for a balanced bug.

3. The radius

The eccentricity of a vertex v in a graph G = (V, E) is defined by ecc(v) =
max{d(u, v), u ∈ V }, where d(u, v) is the distance between u and v in G. The
radius of G is the minimum of its eccentricities, i.e., r = min{ecc(v), v ∈ V }.

Automated results obtained by AGX 2, in 4 cases out of 8, when comparing
the average distance l and the radius r are given in Table 2 of the Appendix.

The following proposition was obtained as a conjecture using AGX 2 in au-
tomated mode, and then proved by hand.
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Proposition 3.1. For any connected graph on at least 3 vertices,

l/r ≤ 2− 2
n
·

The bound is attained if and only if the graph is a star.

Proof. If G is a connected graph of radius r, it contains a spanning tree T of the
same radius r(T ) = r. It is obvious that l(T ) ≥ l, where l(T ) and l denote the
average distance in T and G respectively, with equality if and only if G ≡ T . So
l/r is maximum for a tree and we can assume that G is a tree.

Let mi denote the number of vertex pairs in G at distance i, for i = 1, . . . , D
where D is the diameter of G. We have:

l = 2 · (m1 + 2m2 + 3m3 + · · ·+ DmD)/(n(n− 1))
l ≤ (2n− 2 + D((n(n− 1))− 2n + 2))/(n(n− 1))
l ≤ D − 2(D − 1)/n.

Then we obtain:

l/r ≤ D

r
− (D − 1)

r
· 2
n
·

Since G is assumed to be a tree, we have [4] D = 2r or D = 2r − 1, thus

l/r ≤ 2− 4
n

+
2
rn

which is largest for r = 1 and the bound follows.
Now, let G be a tree such that: l/r = 2− 2

n · Because of

l/r = 2− 2/n ≤ D/r − (D − 1)/r · 2/n ≤ 2− 2/n

necessarily
D/r − (D − 1)/r · 2/n = 2− 2/n

which implies D/r = 2 and D − 1 = r, i.e., D = 2 and r = 1. The star is the
unique tree satisfying these conditions. �

Before stating the conjectures about l− r and l/r, let us define the family of
graphs called bags [10]. A bag Bagp,k is a graph obtained from a complete graph
Kp by replacing an edge uv with a path Pk (as Pk has k − 2 internal vertices, for
bags n = p + k− 2 and m = p(p−1)

2 + k− 2). A bag is odd if k is odd, otherwise it
is even.

Conjecture 3.2. For given n ≥ 3, among all connected graphs on n vertices,

l − r ≥
{ −n(n−2)

4(n−1) if n is even,
8−(n−1)3

4n(n−1) if n is odd.

The bound is attained for a cycle if n is even and for a bag Bag4,n−2 if n is odd.

Conjecture 3.3. For given n ≥ 3, among all connected graphs on n vertices, l/r is
minimum for bags.


