
7347-4_WSSAT_Unland_Titelei 18.7.2005 16:12 Uhr Seite 1

Whitestein Series in Software Agent Technologies

Series Editors:
Marius Walliser
Monique Calisti
Thomas Hempfling
Stefan Brantschen

This series reports new developments in agent-based software technologies and agent-
oriented software engineering methodologies, with particular emphasis on applications in var-
ious scientific and industrial areas. It includes research level monographs, polished notes
arising from research and industrial projects, outstanding PhD theses, and proceedings of
focused meetings and conferences. The series aims at promoting advanced research as well
as at facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies AG was founded in 1999 with the mission to become a leading
provider of advanced software agent technologies, products, solutions, and services for vari-
ous applications and industries. Whitestein Technologies strongly believes that software agent
technologies, in combination with other leading-edge technologies like web services and
mobile wireless computing, will enable attractive opportunities for the design and the imple-
mentation of a new generation of distributed information systems and network infrastruc-
tures.

www.whitestein.com

7347-4_WSSAT_Unland_Titelei 18.7.2005 16:12 Uhr Seite 2

Software Agent-Based
Applications, Platforms
and Development Kits

Rainer Unland
Matthias Klusch
Monique Calisti
Editors

Birkhäuser Verlag
Basel • Boston • Berlin

7347-4_WSSAT_Unland_Titelei 18.7.2005 16:12 Uhr Seite 3

Editors:

Rainer Unland
Universität Gesamthochschule Essen
Fachbereich Mathematik und Informatik
Schützenbahn 70
D-45117 Essen

Monique Calisti
Whitestein Technologies
Pestalozzistrasse 24
CH-8032 Zürich

2000 Mathematics Subject Classification 68T35, 68U35

A CIP catalogue record for this book is available from the Library of Congress,
Washington D.C., USA

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 3-7643-7347-4 Birkhäuser Verlag, Basel – Boston – Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. For any kind of use permission of the copyright owner must be obtained.

© 2005 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland
Printed on acid-free paper produced from chlorine-free pulp. TCF°°
Printed in Germany

ISBN-10: 3-7643-7347-4 e-ISBN: 3-7643-7348-2
ISBN-13: 978-3-7643-7347-4

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Matthias Klusch
German Research Center for Artificial
Intelligence,
Deduction and Multiagent Systems
Stuhlsatzenhausweg 3
D-66123 Saarbrücken

7347-4_WSSAT_Unland_Titelei 18.7.2005 16:12 Uhr Seite 4

Contents

Preface . vii

Agent Tool Kits I (Platforms)

Fabio Bellifemine, Giovanni Caire, Giosuè Vitaglione, Giovanni Rimassa
and Dominic Greenwood

The JADE Platform and Experiences with Mobile MAS Applications 1

David Šǐslák, Martin Rehák, Michal Pěchouček, Milan Rollo
and Dušan Pavĺıček

A-globe: Agent Development Platform with Inaccessibility
and Mobility Support .21

Antonella Di Stefano and Corrado Santoro
Supporting Agent Development in Erlang through the eXAT Platform . . 47

Agent Tool Kits II (Development Environments)

Giovanni Rimassa, Monique Calisti and Martin E. Kernland
Living Systems� Technology Suite .73

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoylov, Victor Konushy,
Evgeny Mankov and Alexey Malyshev
Multi Agent System Development Kit . 95

Josep Llúıs Arcos, Marc Esteva, Pablo Noriega,
Juan Antonio Rodŕıguez-Aguilar and Carles Sierra
An Integrated Development Environment for Electronic Institutions . . . 121

Agent Tool Kits III (Frameworks)

Lars Braubach, Alexander Pokahr and Winfried Lamersdorf
Jadex: A BDI-Agent System Combining Middleware and Reasoning . . . 143

Gaya Jayatilleke, Lin Padgham and Michael Winikoff
Component Agent Framework For Non-Experts (CAFnE) Toolkit169

vi Contents

Tools for the Integration of Web-Services and Agent Technology

László Zsolt Varga, Ákos Hajnal and Zsolt Werner
The WSDL2Agent Tool . 197

Xuan Thang Nguyen, Ryszard Kowalczyk, Mohan Baruwal Chhetri
and Alasdair Grant

WS2JADE: A Tool for Runtime Deployment and Control of
Web Services as JADE Agent Services . 223

Tool Support for Agent Communication and Negotiation

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, Valentin Robu
and Jan Treur

A System for Analysis of Multi-Issue Negotiation . 253

Frank Teuteberg and Iouri Loutchko
FuzzyMan: An Agent-Based E-Marketplace with a Voice and
Mobile User Interface .281

Heikki Helin and Mikko Laukkanen
Efficient Agent Communication in Wireless Environments 307

Mobile Agent Tool Kits

Michael Zapf
AMETAS - The Asynchronous MEssage Transfer Agent System 331

Peter Braun, Ingo Müller, Tino Schlegel, Steffen Kern, Volkmar Schau
and Wilhelm Rossak

Tracy: An Extensible Plugin-Oriented Software Architecture for
Mobile Agent Toolkits . 357

Applications of Agent Technology

Danny Weyns, Alexander Helleboogh and Tom Holvoet
The Packet-World: A Test Bed for Investigating Situated
Multi-Agent Systems . 383

Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré
Decommitment in a Competitive Multi-Agent Transportation Setting . . 409

Habin Lee, Patrik Mihailescu and John Shepherdson
Teamworker: An Agent-Based Support System for Mobile
Task Execution .433

Author index . 449

Preface

Intelligent agents and multi-agent systems (MAS) represent the next big step in
the development of next-generation software systems, especially when consider-
ing large scale distributed applications consisting of several sub-components with
behavior that is increasingly difficult to predict. This is supported by impor-
tant research and development results and reinforced by the increasing uptake
of agent-based solutions and services for real-world industries. In fact, software
agent technology successfully addresses a number of highly relevant issues, like ef-
ficient resource distribution, scalability, adaptability, maintainability, modularity,
autonomy, self-sustainability, and decentralized control, by providing powerful con-
cepts, metaphors and tools. The mentioned issues are often regarded as essential
non-functional properties of emerging software architectures and systems.

The high importance of agent-related research and development can be seen
from the fact that currently about 100 major projects are funded in Europe
only - see http://www.agentlink.org/resources/agentprojects-db.php - and more
than 100 academic and commercial software tools are publicly advertised - see
http://www.agentlink.org/resources/agent-software.php. And these numbers are
still growing. As a result of the enormous efforts the stage of maturation has
reached a level, which encourages commercial players to increasingly adopt multi-
agent systems concepts and technologies for the development of a variety of real-
world applications in different domains such as logistics, e-commerce, and en-
tertainment. In this perspective, concrete agent-driven research and development
results (such as applications, platforms, and development kits) substantially con-
tribute to promote the technology and increase its exploitation for industrial so-
lutions.

This book provides a first and comprehensive overview of existing software
agent development kits, environments, and applications. It is intended to be of
particular use for those who want to assess the maturity and state-of-the-art of
applied software agent technology. Both the software engineering and the user
perspective are covered by a carefully selected set of contributions reporting on
prominent examples of agent development environments, platforms, and toolkits
and deployed agent-based applications from various different application areas. In
particular, most of them have been either successfully demonstrated to the public
at the agent technology exhibition of the first German conference for Multi-Agent
system TEchnologieS (MATES 2004) in Erfurt, or won the prestigious system
innovation award of the international workshop series on Cooperative Information
Agents (CIA). Since this book concentrates on implemented systems most of them
are available on the Internet. Thus, at the end of each paper you will find all
relevant information about where to get the software on the Internet (if it is
available) and whom you may contact in case of questions.

viii Foreword

Contents

The book consists of seven chapters. The assignment of papers to chapters has
been a hard choice, since many papers fall into several categories. However, we
believe the final layout is the most reasonable one.

The first three chapters (with eight papers altogether) present toolkits for the
development of multi-agent systems. The toolkits are subdivided into three cate-
gories: platforms, development environments, and frameworks. An agent platform
is intended as the set of middleware components supporting the development of
(distributed) multi-agent applications. It provides all basic services, like agent life-
cycle management, communication, tasks scheduling, security, etc., to easily ini-
tialize and run multi-agent systems. A development environment usually supports
all phases in multi-agent system engineering, which comprises requirements engi-
neering, system design, development and deployment. Agent frameworks provide
a high-level programming environment consisting of a multi-agent system skeleton
that allows the programmer to easily extend it to a full-fledged MAS application.
Toolkits can also be differentiated according to their focus of support. In general,
it is possible to distinguish between middleware- and reasoning-oriented systems.
In this latter case, one emphasizes rationality and goal-directedness support for
agent development.

The first chapter focuses on agent platforms and starts with the paper The
JADE Platform and Experiences with Mobile MAS Applications by Fabio Bellifem-
ine, Giovanni Caire, Giosuè Vitaglione, Giovanni Rimassa, and Dominic Green-
wood. JADE is a well-known and well-established Java-based and FIPA-compliant
agent platform. The paper gives a comprehensive overview about the basic con-
cepts of JADE. Furthermore, it shows how JADE can be used on mobile networks.
Finally, it discusses possible application domains for JADE. The second paper A-
globe: Agent Development Platform with Inaccessibility and Mobility Support by
David Šǐslák, Martin Rehák, Michal Pechoucek, Milan Rollo, and Dušan Pavlicek
presents A-globe, a streamlined lightweight platform for MAS development, which
operates on normal PCs as well as on PDAs. After a comprehensive introduction
into the basic features of A-globe it is compared to some other agent platforms.
The next section concentrates on simulation support since A-globe provides a spe-
cial infrastructure for environmental simulation. The third paper in this chapter
Supporting Agent Development in Erlang through the eXAT Platform by Antonella
Di Stefano and Corrado Santoro motivates and presents first the agent program-
ming language Erlang. Then the agent programming platform eXAT that is based
on Erlang is discussed. eXAT especially emphasizes the implementation of agent
intelligence, behavior, and communication.

The second chapter is dedicated to development environments. The paper
Living Systems� Technology Suite (LS/TS) by Giovanni Rimassa, Monique Calisti,
and Martin E. Kernland describes the LS/TS set of components for the develop-
ment and deployment of products and systems based on software agent technology

Foreword ix

and autonomic computing. The paper not only gives a comprehensive overview
about the architecture and functionality of this package, but also discusses the
challenges that were to be addressed in order to develop the proposed software
methodology and infrastructure. The second paper by Vladimir Gorodetsky, Oleg
Karsaev, Vladimir Samoylov, Victor Konushy, Evgeny Mankov, and Alexey Maly-
shev presents the Multi-Agent System Development Kit (MASDK), a comprehen-
sive software tool kit for the development, implementation, and deployment of
multi-agent systems. The paper mainly concentrates on the development process,
which is heavily influenced by the Gaia methodology. It is conducted with the help
of a number of integrated editors (e.g., for the model, protocol, ontology, behavior,
and state transition development), which are described in detail. The third paper
An Integrated Development Environment for Electronic Institutions by Josep Llúıs
Arcos, Marc Esteva, Pablo Noriega, Juan Antonio Rodŕıguez-Aguilar, and Carles
Sierra presents a methodology and an integrated development environment for en-
gineering multi agent systems as electronic institutions. The latter defines a set
of artificial constraints that articulate agent interactions, defining what they are
permitted and forbidden to do. It defines a normative environment where hetero-
geneous (human and software) agents can participate by playing different roles
and can interact by means of speech acts. The integrated use of these tools is
illustrated using as an example the double auction market.

The third chapter starts with the paper Jadex: A BDI-Agent System Com-
bining Middleware And Reasoning by Lars Braubach, Alexander Pokahr, and Win-
fried Lamersdorf. The presented system Jadex relies on an arbitrary given agent
platform, e.g. JADE, however, extends it by providing tools to model agent ra-
tionality and goal-directedness. Its reasoning engine supports cognitive agents by
exploiting the BDI model. It permits to explicitly model such features as beliefs,
plans, goals or capabilities. The CAFnE toolkit is presented in the paper Com-
ponent Agent Framework For Non-Experts (CAFnE) Toolkit by Gaya Jayatilleke,
Lin Padgham. and Michael Winikoff. The vision of the authors is not only to
support developers in the initial application development but also to provide a
framework that facilitates domain experts themselves in making modifications to
a deployed system, in order for it to better fit needs which are identified as the
system is used. The system is introduced and its functionality is explained with
the help of an example system.

The forth chapter comprises two papers that show how Web-Services can
be integrated into agent technology. The paper The WSDL2Agent Tool by László
Zsolt Varga, Ákos Hajnal, and Zsolt Werner presents a bipartite tool for this
purpose. The WSDL2Jade part of the tool generates code for a proxy agent that
makes the Web service available in a multi-agent environment. The WSDL2Protégé
part of the tool translates a WSDL description to a Protégé project in order to
support its semantic enrichment. It generates a project file for the Protégé ontology
engineering tool in which the ontology of the Web service can be visualized, edited,

x Foreword

or exported to various formats. The second paper WS2JADE: A Tool for Run-
Time Deployment and Control of Web Services as JADE Agent Services by Xuan
Thang Nguyen, Ryszard Kowalczyk, Mohan Baruwal Chhetri, and Alasdair Grant
presents the WS2JADE framework. It permits the easy integration of Web services
into the JADE agent platform. In particular, the technical aspects of the run-time
deployment and control of Web services as agent services are discussed. The Web
service - agent integration capabilities of WS2JADE are demonstrated with simple
examples of Web service management including service discovery, composition, and
deployment with JADE agents.

Chapter five concentrates on Tool Support for Agent Communication and Ne-
gotiation. The paper by Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij,
Valentin Robu, and Jan Treur presents SAMIN, A System for Analysis of Multi-
Issue Negotiation. The agents in this system conduct one-to-one negotiations, in
which the values across multiple issues are negotiated on simultaneously. The paper
shows how the system supports both automated and human negotiation. To ana-
lyze such negotiation processes, the user can enter every formal property deemed
useful into the system and use the system to automatically check this property in
given negotiation traces. The paper also shows how to deal with incomplete infor-
mation and presents some experimental results about human multi-issue negoti-
ation. FuzzyMAN: An Agent-Based E-Marketplace with a Voice and Mobile User
Interface by Frank Teuteberg and Iouri Loutchko focuses on the conceptual foun-
dations and the architecture of an agent-based job e-Marketplace that supports
mobile negotiations. The negotiation model is based on many negotiation issues,
a fuzzy utility scoring method, and simultaneous negotiation with many negotia-
tion partners in an environment of limited negotiation time. The paper discusses
FuzzyMAN’s architecture, agents, negotiation model, and mobile and voice user
interfaces. Heikki Helin and Mikko Laukkanen deal in their paper with Efficient
Agent Communication in Wireless Environments. They propose a layered model
of agent communication in the context of the FIPA agent architecture. For each
layer of this communication stack an efficient solution for wireless agent communi-
cation is presented. Furthermore, the paper thoroughly analyzes the performance
of agent communication in slow wireless environments.

Chapter six contains two papers about tool kits for mobile agents. The pa-
per AMETAS - The Asynchronous MEssage Transfer Agent System by Michael
Zapf presents a development and runtime environment for creating and running
mobile, autonomous agents under Java 2. AMETAS defines three kinds of appli-
cation components: agents, user adapters, and services. Services are able to wrap
system-dependent resource accesses and provide functional enhancements while
user adapters integrate the human user into the agent environment. Techniques
of mediation are used to realize open applications; i.e. applications with an ever-
changing set of components. The discussed security system prevents illegal access
between users and defines the access control to resources. The other paper Tracy:
An Extensible Plugin-Oriented Software Architecture for Mobile Agent Toolkits

Foreword xi

by Peter Braun, Ingo Müller, Tino Schlegel, Steffen Kern, Volkmar Schau, and
Wilhelm Rossak presents a kernel-based tool kit that only provides fundamen-
tal concepts and functions common to all toolkits and abstracts from all of their
possible services. In particular, although Tracy was developed as a mobile agent
toolkit, its kernel abstracts from all issues related to agent mobility, delegating this
to an optional service implementation. This makes it possible to replace Tracy’s
migration service with another implementation and even to have two different mi-
gration services in parallel. Service implementations are developed as plug-ins that
can be started and stopped during run-time. The paper first discusses the set of
fundamental services. Then it is shown how they are realized in Tracy.

Chapter seven comprises three papers that are related to agent-based appli-
cations. Each of these papers also covers a research issue, however, discusses its
solution on the basis of an application. The Packet-World: A Test Bed for Inves-
tigating Situated Multi-Agent Systems by Danny Weyns, Alexander Helleboogh,
and Tom Holvoet presents as application area the packet world. The research aim
of the paper is to discuss how to model a distributed application as a set of co-
operating autonomous entities (agents), which are situated in an environment.
The Packet-World is used as a test bed to explore and evaluate a broad range of
fundamental concepts and mechanisms for situated MASs. The paper elaborates
on the structure of the environment, agents’ perception, flexible action selection,
protocol-based communication, execution control and timing, simultaneous ac-
tions and several forms of stigmergy. Decommitment in a Competitive Multi-Agent
Transportation Setting by Pieter Jan ’t Hoen, Valentin Robu, and Han La Poutre
discusses the decommittment issue on the basis of a large-scale logistics setting
(freight forwarding) with multiple, competing companies. It is shown in the paper
that decommitment as the action of foregoing of a contract for another (superior)
offer can reach higher utility levels in case of negotiations with uncertainty about
future opportunities. The paper Teamworker: An Agent-Based Support System for
Mobile Task Execution by Habin Lee, Patrik Mihailescu, and John Shepherdson
shows how a multi-agent based computer cooperative support system known as
TeamWorker can help to overcome the difficulties faced by mobile workers. Each
mobile worker is assigned a personal agent that can assist her/him during the
working day through appropriate service provision (based on current work con-
text), and through monitoring work progress to anticipate and undertake required
actions on the user’s behalf. A detailed presentation of the TeamWorker system is
given, including the benefits provided for a real life mobile business process.

As this book is a collaborative effort, the editors would like to thank foremost
the contributing authors for their outstanding contributions, and the reviewers
and publisher for their invaluable help and assistance during the whole project.
We also would like to thank Dr. Stefan Göller from Birkhauser Publishing Ltd. for
his outstanding support in producing this book.

xii Foreword

In summary, we hope that this book will be of substantial benefit for stu-
dents, software engineers, computer scientists, researchers (both academic and in-
dustrial), and IT experts, who are keen to learn about the deployment of software
agent technology for engineering complex solutions and systems.

Enjoy the reading!
Monique Calisti, Matthias Klusch, Rainer Unland

Zürich - Saarbrücken - Essen
Spring 2005

The JADE Platform and Experiences with
Mobile MAS Applications

Fabio Bellifemine, Giovanni Caire, Giosuè Vitaglione,
Giovanni Rimassa and Dominic Greenwood

Abstract. This paper draws a perspective about a software platform for multi-agent
systems, called JADE. JADE is an Open-Source Java middleware very popular in the
MAS research and development community, counting a lively and active user base.
Here we will describe the JADE architecture, the main features provided by the
platform, and some application domains from the Open Source community.

1. Introduction

JADE [1] is a middleware for the development of distributed multi-agent applications.
According to the multi-agent systems approach, an application based on the JADE
platform is composed of a set of cooperating agents, which can communicate with each
other through message exchange. Each agent is immersed within an environment that
can be acted upon and from whom events can be perceived. Intelligence, initiative,
information, resources and control can be fully distributed on mobile terminals as well
as on computers in the fixed network. The environment can evolve dynamically and
agents appear and disappear in the system according to the needs and the requirements
of the applications.
JADE provides the basic services necessary for distributed peer-to-peer applications in
the fixed and mobile environment allowing each agent to dynamically discover others
and to communicate with them. From the application point of view, each agent is
identified by a unique name and provides a set of services. It can register and modify its
services and/or search for agents providing given services, it can control its life cycle
and, in particular, communicate with all other peer agents by exchanging asynchronous
messages, a widely accepted communication model for distributed and loosely-coupled

2 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

software components. Communication between the agents, regardless of whether they
are running in the wireless or in the wireline network, is completely symmetric with
each agent being able to both initiate an interaction and respond to it. JADE is fully
developed in Java and is based of the following driving principles:
� Interoperability. JADE is compliant with the FIPA specifications [2]. As a

consequence, JADE agents can interoperate with other agents, provided that they
comply with the same standard.

� Portability. JADE provides a homogeneous set of APIs that are independent from
the underlying network and Java edition. More in details, the JADE run-time
provides the same API for the J2EE, J2SE and J2ME environment and it has been
designed and optimized for low footprint and memory requirements.

� Ease of use and faster time-to-market. The set of APIs has been designed with the
goal of reducing the time to market for developing applications; therefore, they
aim to hide the complexity of the middleware behind a simple and intuitive set of
APIs.

� Pay-as-you-go philosophy. Programmers do not need to use all the features
provided by the middleware. Features that are not used do not require
programmers to know anything about them neither they add computational
overhead.

After this introduction, the paper is organized as follows. Next chapter describes the
high level components of the architecture. Then the evolution of distributed kernel on
which the platform is based upon is analyzed and the new architecture based on a set of
distributed coordinated filters is presented. Next chapter presents some of the most
interesting platform-level services. Then, the split container architecture is presented
and how it is suitable for mobile networks and devices, including how the platform is
able to guarantee MSISDN-based1 identification of the peers. A categorization of the
application domains where the platform and this technology provides highest payoff is
then presented and, finally, the Open Source Community, the JADE Board, and the
future roadmap are presented.

2. JADE Architecture

JADE includes both the libraries (i.e. the Java classes) required to develop application
agents and the run-time environment that provides the basic platform-level services and
that must be active on the device before agents can be executed. Each instance of the
JADE run-time is called container (since it “contains” agents). The set of all containers
is called platform and provides a homogeneous layer that hides from agents the
complexity and the diversity of the underlying tiers (hardware, operating systems, types
of network, JVM) as depicted in Figure 1.

For bootstrapping and FIPA compliance purposes, one among these containers is
labeled as Main Container; it must be the first to start up and all other containers

1 MSISDN stands for “Mobile Subscriber ISDN Number”. Basically it is the phone number of the

SIM-card in the mobile phone.

 The JADE Platform and Experiences with Mobile MAS Applications 3

register with it at bootstrap time. The Main Container has the following specific
responsibilities:
� It manages the Container Table (i.e. the set of all the nodes that compose the

distributed platform).
� It manages the Global Agent Descriptor Table (i.e. the set of all the agents hosted

by the distributed platform, together with their current location).
� It manages the Message Transport Protocols Table (i.e. the set of all deployed

message transport endpoints, together with their deployment location).
� It hosts the platform Agent Management Service (AMS) agent, mandated by FIPA

specifications as unique white page and life-cycle management agent.
� It hosts the platform Default Directory Facilitator (DF) agent, mandated by FIPA

specifications as default yellow page management agent.
All the above operations are essential for correct and FIPA-compliant platform

operation. Unfortunately, this also entails that, from a fault tolerance perspective, the
Main Container is a sensible part of the platform, and a single point of failure for many
tasks. For this purpose, the replication service, described in the followings, allows to
monitor and replicate the main container responsibilities.

Its distributed architecture allows deploying JADE platforms that run across multiple
Java editions, from powerful servers to small mobile devices. The limited memory
footprint, in fact, allows installing JADE on all mobile phones provided that they are
Java-enabled. JADE is compatible with the J2ME CLDC/MIDP environment and it has
already been extensively used on the field over GPRS network with several commercial
mobile terminals. The JADE run-time memory footprint, in a MIDP1.0 environment, is
around 45 KB, but can be further reduced until 20 KB using the ROMizing technique,
i.e. compiling JADE together with the JVM [3]. JADE is extremely versatile and
therefore, not only it fits the constraints of environments with limited resources, but it
has already been integrated into complex architectures such as .NET or J2EE [4] where
JADE becomes a service to execute multi-party proactive applications.

3. Platform Kernel

The platform is built on top of a distributed kernel that supports basic platform-level
operations such as message delivery and agent life-cycle management. The current
kernel architecture can be considered as the third generation of the kernel. The first
generation of JADE had a monolithic distributed kernel and was only able to operate in
the J2SE environment. The second generation had to target the whole spectrum of Java
editions (from Micro-Edition to Enterprise Edition) and introduced the idea of having
many platform profiles, that allowed choosing whether to include a feature or not.
Though flexible enough, this second-generation kernel had a fixed feature set. Even if
most features (agent mobility, event management, platform security) could be turned on
or off, the kernel did not allow easy extension by including new platform-level services.
In order to effectively address the more demanding requirements gathered from the first
JADE-based systems, and also in order to promote an application model based on
seamlessly situated agents, a third generation of JADE kernel was conceived and built.

4 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

This section outlines the resulting architecture, highlighting the design rationale backing
up the major choices made.

Platform

Homogeneous API

Multi-agent application Agent A

Agent B

Agent C

Agent D

Main

Container

Container Container

Wireless and wireline

Internet

Java J2SE J2EE J2ME

Fig. 1. JADE Distributed Architecture

3.1 Ideas and motivations

The first, natural direction in designing the third generation JADE kernel was to strive
for finer-grained modularity of the kernel features. Moreover, an open-ended set of
kernel-level feature sets was envisaged, and a flexible deployment strategy was essential
in targeting the hybrid wireless/wireline network.

The first abstraction, adopted in order to give an extensible structure to the JADE
kernel, is the Service. A JADE service groups together a set of features according to
their conceptual cohesion, and is the kernel-level unit of deployment. Some sample
JADE kernel services are agent management, agent mobility and event notification.
These services closely correspond to the second-generation feature sets, but now they
comply with a generic and extensible model that allows many more services to be
developed and eases creating more complex ones, such as some of the services that will
be described in the next sections.

The second abstraction adopted to achieve the seamless distribution of agents in the
platform is the Container. This concept was kept from the previous kernel versions, but
now it has an enhanced semantics. While in first- and second-generation kernels a
JADE container was meant to contain only agents, now a third-generation container
holds both agents and services.

 The JADE Platform and Experiences with Mobile MAS Applications 5

From the previous requirements and the design vision, a set of desiderata for the new
architecture was obtained:
1. Different services can be composed together.
2. Any subset of the available services can be deployed at any given container,

possibly adding/removing a service during normal platform operation.
3. Some services can be present only on a subset of the platform containers or can be

present with different service levels at different containers.
4. The services can run on the various Java editions supported by JADE, possibly

with a graceful degradation on the more resource constrained devices.

3.2 The distributed coordinated filters architecture

Part of the inspiration needed to shape the new architecture was drawn from the
research area about aspect-oriented programming [5]. The main tenet of aspect
orientation is to promote separation of concerns, by writing software code as a
collection of independently written aspects, expressing a different concern each.

Aspects, though written separately, will then be combined together to yield the final
application. The process of combining together the different aspects according to some
rules is called aspect weaving. The aspect-oriented approach basically stems from a
programming language viewpoint, and the first works such as AspectJ [6] use source
code translators to perform compile-time aspect weaving. Another option would be to
perform run-time aspect weaving through some kind of component composition
technique; among these dynamic approaches, a pioneering work was made by Aksit and
others [7] with the proposal of composition filters as a way to transparently extend
object systems.

Fig. 2. Distributed coordinated filters architecture of the JADE Kernel.

6 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

In Java-based aspect languages and systems, a third option is viable and has become
very popular, that is, classload-time aspect weaving. Due to the lack of support in J2ME
and considering that JADE struggles to provide all its features to users through nothing
more than a Java API, the third generation JADE kernel architecture took the biggest
inspiration from the composition filters approach. Basically each object is provided with
two filter chains: an incoming chain whose filters are invoked whenever the object
receives a method call, and an outgoing chain whose filters are invoked whenever the
object is about to call some other object’s method itself.

By mixing the composition filters approach with the distribution of services across
containers, we obtained the Distributed Coordinated Filters architecture, sketched in
Figure 2.

In the figure above, every color refers to a specific kernel service, and every dotted

line encloses a container. This means that, in the depicted example, the distributed
platform has three services deployed on four containers. The various kernel operations
are represented by commands, which flow across services in their container as shown by
the vertical arrows. This accounts for the filtering aspect, just like in the original
composition filters model. The horizontal arrows show that a single service (say, the
one at the bottom) is actually distributed on several network nodes. We call Slice the
part of a service that resides on a given node; the colored cubes in Figure 2 are exactly
the service slices. Service slices and their interaction account for the distribution and
coordination aspect in our model.

The UML diagram in Figure 3 shows the general layout of the resulting solution.

AgentPlatform

Service

1..*

ServiceSlice

1..*

n: Containern: Container

Agent

Container

1..*

1

0..*

1

0..*

MainContainer

1

1..* 1..*
1

0..*

1..*

0..*

1

1

supports

resides on

register with

lives in

Fig. 3. Main elements of the JADE Kernel.

 The JADE Platform and Experiences with Mobile MAS Applications 7

4. Platform Services

The architecture of the JADE kernel enables the deployment of platform-level services
at run-time: each container can be deployed with the necessary services, such as
communication, replication, persistence, or security. Programmers can also implement
and deploy their own application-specific services, where needed.

The agent class usually accesses these platform-level services via a Service Helper
that exposes all the methods available to the agent. In some cases (e.g. for the
communication service), the methods are exposed by the Agent class itself, partly
because of backward compatibility, partly because of easiness of use.

For the sake of brevity, this section does not report the full list of available services
but just some of the most relevant and representatives.

4.1 Communication Service

In order to communicate, an agent just sends a message to a destination agent. Agents
are identified by a name (no need for the destination object reference to send a message)
and, as a consequence, there is no temporal dependency between communicating agents.
The sender and the receiver could not be available at the same time. The receiver may
not even exist (or not yet) or could not be directly known by the sender that can specify
a property (e.g. “all agents interested in football”) as a destination. Because agents
identifies each other by their name, hot change of their object reference are transparent
to applications. Despite this type of communication, security is preserved, since, for
applications that require it, JADE provides proper mechanisms to authenticate and
verify “rights” assigned to agents. When needed, therefore, an application can verify the
identity of the sender of a message and prevent actions not allowed to perform (for
instance an agent may be allowed to receive messages from the agent representing the
boss, but not to send messages to it). All messages exchanged between agents are
carried out within an envelope including only the information required by the transport
layer. That allows, among others, to encrypt the content of a message separately from
the envelope.

The communication service is instantiated, by default, on every JADE container and
it makes transparent to agents the location of communicating end points. Each agent
owns a private queue that is filled by the communication service with incoming
messages. Agents can access this private queue via any arbitrary combination of the
following methods: polling-based, timeout blocking-based (i.e. blocks until a message
arrives or until the given timeout expires), message-template based (i.e. it gets the first
message in the queue that matches the passed message template).

The structure of a message complies with the ACL language defined by FIPA [2] and
includes fields, such as variables indicating the context a message refers-to and timeout
that can be waited before an answer is received, aimed at supporting complex
interactions and multiple parallel conversations. As a matter of fact, in order to further
support the implementation of complex conversations, JADE provides a set of skeletons
of typical interaction patterns to perform specific tasks, such as negotiations, auctions

8 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

and task delegation. By using these skeletons (implemented as Java abstract classes),
programmers can get rid of the burden of dealing with synchronization issues, timeouts,
error conditions and, in general, all those aspects that are not strictly related to the
application logic.

An analysis and a benchmark of Scalability and Performance of the JADE Message
Transport System is reported in [8].

4.2 Security Service

Security in JADE is, by nature, distributed and enabled by a set of services delineated
by function. Those services are Authentication, Permission and Encryption, described as
follows:

The Authentication Service ensures that any user starting a JADE platform or
container is legitimate within the computational system and takes responsibility for her
actions, so as to be authorized to create agents within that platform. Being legitimate in
the case of JADE authentication implies that the user is known to the system by having
at least one valid identity and associated password. Authentication does not however
imply any guarantees of behavior, this is managed by the Permission Service. The
authentication mechanism itself is based on the Java Authentication and Authorization

Service (JAAS) API [9] that enables enforcement of differentiated access control on
system users. JAAS provides a set of de facto LoginModules; with the Unix, NT and
Kerberos modules implemented in the current. The Unix and NT modules are Operating
System dependent and are designed to use the identity of the user extracted from the
current Operating System session. The Kerberos module is system independent in
operation, but requires system-specific configuration prior to use. Such login modules
usually require the user to enter some information as credentials, such as passwords or
smart-cards. A variety of input methods have already been provided, including text,
GUI and command-line, the latter available primarily for authenticating users on remote
containers. The default configuration is such that if the user fails to be correctly
authenticated, the system will exit and issue appropriate messages.

Due to authentication, all components (containers and agents) in a JADE platform
must be owned by an authenticated user. As an extension of this, the Permission Service
provides a layer of control over the actions that agents can perform, either permitting or
denying them according to stated rules. It is thus possible to selectively grant access to
platform services or application resources. This ultimately implies that permissions can
be used to influence the structure of relationships between agents interacting within and
across JADE platforms. The rules are typically stated in a system files according to
standard JAAS policy file syntax [9], extended with a special policy model providing
enhancements specifically useful to distributed agent applications. Two types of policy
files can be used to grant permissions to agents: (1) The MainContainer policy file that
specifies platform-wide permissions, e.g. "Agents owned by user Bob can kill agents
owned by user Alice". (2) Container policy files that specify container-specific
permissions, e.g. "Agents owned by user Bob can kill agents owned by user Alice on

 The JADE Platform and Experiences with Mobile MAS Applications 9

the local container"). Container policy files can also regulate access to local resources
(JVM, file system, network, etc.).

Finally, message privacy and integrity is managed by the Encryption Service, which
provides reasonable security guarantees when sending a ACL messages between agents
on the local, or a foreign, platform. Signatures are used to both ensure the identity of a
message originator and the integrity of a message (confidence that data has not been
tampered with during transmission). Encryption is used to ensure privacy of the
message by protecting message data from eavesdropping (confidence that only the
intended receiver will be able to read the clear message). In JADE both signature and
encryption always apply to the entire payload of a message in order to protect all the
information contained in the slots of the ACL message (content, protocol, ontology,
etc.). The security-related information (such as the signature, the algorithm or the key)
is placed into the envelope. Users themselves do not need to deal with the actual
signature and encryption mechanisms, but just need to request a message to be signed or
to check whether a received message has been signed. If some problems occur whilst
signing, encrypting, verifying or decrypting a message, the message is discarded and a
failure notice is returned to the sender.

4.3 Agent Management and Migration Service

The Agent Management service provides support for managing the life cycle of agents.
Each agent owns and controls its thread of execution, and life-cycle transitions can only
be initiated by the agent or requested to the AMS (provided that the requestor has the
needed permissions). The platform takes care of hiding the object reference of the agent
in order to avoid other agents, or other objects of the system, to take control and directly
manipulate an agent by calling its public methods. Notice that these two features (i.e.
owning the thread and keeping private the object reference) are needed in order to meet
the agent autonomy requirement that each platform is requested to guarantee.

In the J2SE and Personal Java environments, JADE supports mobility of code and of
execution state so that an agent can stop running on a host, migrate its code and state on
a different remote host, and restart its execution from the point it was interrupted
(actually, JADE implements a form of not-so-weak mobility because the stack and the
program counter cannot be saved in Java). This functionality allows distributing
computational load at runtime by moving agents to less loaded machines without any
impact on the application. In a similar way, agent cloning is support in order to clone
agent state and code.

4.4 Replication Service

To keep JADE fully operational even in the event of a failure of the Main-Container, a
Main Replication Service was included in the latest versions of the platform. With this
service is then possible to start any number of Main Container nodes, which will
arrange themselves in a logical ring so that whenever one of them fails, the others will

10 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

notice and act accordingly. Ordinary containers will be able to connect to the platform
through any of the active Main Container nodes; the different copies will evolve
together using cross-notification. Without Main Container replication, JADE platform
has a star topology, while enabling Main Container replication turns the topology into a
ring of stars, as shown in Figure 4.

In the fault-tolerant configuration two or more Main Container nodes are arranged in
a ring, and each node is monitoring its neighbour: if the node Main-Container-1 fails,
the node Main-Container-2 will notice and inform all the other Main Container nodes,
so that a smaller ring can be rebuilt with the surviving nodes.

Peripheral containers can be arbitrarily spread among the available Main Container
nodes. Any single peripheral container is connected to exactly one node and in absence
of failures it is completely unaware of all the other copies. When a Main Container node
fails, there will generally be some orphaned peripheral containers. They will attach
themselves to another one among all the Main Container nodes present in the platform.

JADE supports two policies in distributing the Main Container list to peripheral
containers. A first option is to enable detection of changes to the list and notify
peripheral containers. A second option is to pass the address list to peripheral containers
at start-up time, avoiding notification traffic towards peripheral containers when the
fixed list of Main Container nodes is known beforehand.

Main-Container

Container-1

Container-2 Container-3

Main-Container

Main-Container-2

Main-Container-1

Container-2

Container-3

Container-1

Fig. 4. Star topology (left) and ring of stars topology (right)

4.5 Message-Content Management Service

When an agent A communicates with another agent B, a certain amount of information I
is transferred from A to B by means of an ACL message. Inside the ACL message, I is
represented as a content expression consistent with a proper content language (e.g. SL)
and encoded in a proper format (e.g. string). Both A and B have their own (possibly
different) way of internally representing I. Taking into account that the way an agent
internally represents a piece information must allow an easy handling of that piece of

 The JADE Platform and Experiences with Mobile MAS Applications 11

information, it is quite clear that the representation used in an ACL content expression
is not suitable for the inside of an agent. In order to facilitate the creation and handling
of messages content, JADE provides support for automatically converting back and
forth between the format suitable for content exchange (including String, sequence of
bytes, XML and the Resource Description Framework, RDF), and the format suitable
for content manipulation (i.e. Java objects). This support is integrated with Protégé [10],
an ontology creation graphical tool that allows also importing/exporting ontology in
several formats, including the Web Ontology Language (OWL).

This support for content languages and ontologies automatically performs all the
necessary message format marshaling (and unmarshaling) as well as a number of
semantic checks to verify that I is a well-formed piece of information, i.e. that it
complies with the rules (for instance that the age of Giovanni is actually an integer
value) of the ontology by means of which both A and B ascribe a proper meaning to I.

Content slot of an

ACLMessage
Inside of an agent

Information
 represented as a string or

a sequence of bytes
(easy to transfer)

Information
 represented as Java objects

(easy to manipulate)

JADE support
for content

languages and
ontologies

Fig. 5. JADE support for content management.

The conversion and check operations are carried out by a content manager helper
object. The content manager provides a convenient interfaces to access the conversion
functionality, but actually just delegates the conversion and check operations to an
ontology (i.e. an instance of the Ontology class included in the
jade.content.onto package) and a content language codec (i.e. an instance of the
Codec interface included in the jade.content.lang package). More specifically,
the ontology validates the information to be converted from the semantic point of view
while the codec performs the translation into strings (or sequences of bytes) according
to the syntactic rules of the related content language

Notice that JADE is opaque to the underlying inference engine system, if inferences
are needed for a specific application, and it allows programmers to reuse their preferred
system. It has been already integrated and tested with Java Expert System Shell (JESS

12 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

[11]) and some Prolog environments; moreover, a separate academic add-on is
available, which supports building rational agents [12].

4.6 Persistence Service

Another important aspect that needs to be considered in order to support server-side
applications is persistent data management. Nowadays the dominant infrastructure for
this is a relational DBMS, with more recent extensions towards a less structured data
model (mainly binary data and text).

The persistence-related features were divided into two categories. First, there are
system-level features, such as persistently storing agents and whole containers; then,
there are application-level features concerning the persistent storage of application-
specific entities. In designing JADE Persistence Service, the focus for the API was kept
on system-level features, with the rationale of avoiding redundant API wrapping,
relying instead directly on some chosen persistence Java API for application-level
features.

The chosen persistence engine turned out to be Hibernate [13], for a number of
reasons among which its plain persistent component model and its powerful object-
oriented query language were prominent. Using Hibernate data mapping capabilities, a
model of the relevant JADE system-level entities (agents, containers, messages and
others) was made. Then, a basic graphical tool was developed to allow easy
management of persistent storage and both API-level and ACL-level access was granted
to application programmers. The Persistence Service is distributed as an add-on to the
main JADE package and is currently being evaluated and tried out by the JADE user
community.

4.7 Other services

Several other platform-level services are available and the expandability of the kernel
will facilitate several more to be implemented in the future.

For instance, a Logging Service is available that exploits the capabilities of the
java.util.logging package in order to enable management of per-class logging
levels and logging handlers (e.g. different file names and file formats). A graphical tool,
the LogManagerAgent, also allows modifying at run-time the logging configuration
of each class, features that is very useful for on-the-site debugging.

Of course, the platform also includes a naming service (ensuring each agent has a
unique name) and a yellow pages service that can be distributed across multiple hosts.
Federation graphs can be created in order to define structured domains of agent services.

 The JADE Platform and Experiences with Mobile MAS Applications 13

5. JADE for Mobile Networks

Usage of JADE on mobile networks and resource-constrained mobile terminals needs
the platform to properly address new non-functional issues, such as the memory and
processing power limitations of mobile devices and the characteristics of wireless
networks, specifically the commonplace General Packet Radio Service (GPRS) in terms
of bandwidth, latency, intermittent connectivity and IP addresses variability. Inter-
container communication cannot be anymore assumed to be stable, persistent, and
reliable as connectivity may suddenly drop because of dead spots.

The Split Container execution mode faces these limitations by executing only a very
small part of the container (called front-end) on the mobile terminal. The remaining part
(called back-end) runs somewhere in the fixed network. As depicted in Figure 6, the
front-end provides to agents living on the mobile phone the same APIs as a normal
container: that makes the split container execution completely transparent to application
agents. Similarly, a back-end behaves for the rest of the platform exactly as a normal
container does: that makes the split container execution completely transparent to the
rest of the platform. The front-end and the back-end are linked together by means of a
permanent connection. The front-end just communicates with the back-end that, instead,
is responsible for interacting with the rest of the platform. When the front-end of a split
container is launched on a mobile device, it first needs to create its back-end on a host in
the fixed network. In order to do that, it requires a normal JADE container to act as a
mediator and to serve back-end creation requests. Any JADE container can act as
mediator for several split containers, the only limitation being the number of
connections that a single host is able to keep opened.

FrontEnd ContainerBackEnd

JADE APIs

“Split container”

JADE APIs

BackEnd

FrontEnd

Mediator

permanent
bi-directional
connection

 Fig. 6. Split container architecture.

14 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

The split container approach provides a number of advantages:
� Most of the container functionality (such as hosting the services and registering

with the Main container) is delegated to the back-end. As a consequence, the
front-end can be extremely lightweight and save resources for applications agents.
Using obfuscation techniques, as described in [3], we were able to reduce the
JADE footprint down to 43 Kbytes.

� The front-end is able to detect a drop down of the connection with the back-end
(e.g. because the user entered a dead spot), react, and automatically recover it, as
soon as possible.

� Both the front-end and the back-end can implement a store and forward
mechanism so that any message, that was tried to exchange when the connection
was temporarily down, is automatically buffered and delivered as soon as the
connection is restored.

� The IP address of the device is hidden by the back-end to the rest of the platform.
Therefore a change of the device IP address is completely transparent to the
applications and to the rest of the platform.

� Last but not least, the split container approach allows the platform provider (likely
the telecom operator) to keep control on the applications and the services provided
over the platform. In fact, though completely peer-to-peer from a logical point of
view, the communication between two agents on mobile devices always passes
through the back-ends of the split containers. By plugging ad hoc services in the
back-ends, the operator is in fact able to implement e.g. application-specific event-
based logging, billing, priority assignment mechanisms based on the user
subscription.

5.1 The PDP context manager module

Multi-agent applications need to face the peer discovery problem, i.e. how a peer
becomes aware of other peers to communicate with. Typically, this is solved by means
of some sort of white pages and yellow pages services that require each peer to register
and successively search for other peers. Mobile devices, however, are intrinsically
identified by their user phone number, i.e. the MSISDN (Mobile Station International
ISDN Number). For this reason, all mobile applications involving people whose phone
numbers are known a-priori (e.g. applications involving a group of people) should not
require any peer discovery mechanism: a peer acting on behalf of a user should be
addressable by simply specifying the phone number of that user.

JADE supports this MSISDN-based identification by means of the PDP (Packet Data
Protocol) context manager module. When a mobile phone attaches to the GPRS
network, it communicates with the operator’s SGSN (Serving GPRS Support Node) to
request the creation of a PDP context. This is a logical association between the mobile
phone and the network, including aspects such as routing, QoS and billing. The mobile
phone request is passed to the GGSN (Gateway GPRS Support Node) to verify the
GPRS account and assign an IP address to a new PDP Context. In general, the
authentication is performed by using a RADIUS server connected to the GGSN. The

 The JADE Platform and Experiences with Mobile MAS Applications 15

JADE PDP context manager is a software module able to interact with the RADIUS
Server. When a back-end creation is requested, the JADE container, which is acting as
mediator, interrogates this module and gets back the MSISDN corresponding to the IP
address the request comes from. In this way, JADE can use the device MSISDN to
identify the starting split container and possibly force any agent starting on that
container to comply with proper name space conventions based on the MSISDN. For
example, an agent implementing a chat application may be named <device msisdn>-

chat so that its name is known a priori by other chat agents on other devices. The PDP
context manager module complies with a simple and well defined interface so that the
actual implementation can be modified or even replaced depending on the operator
network topology.

Besides offering an intrinsic peer identification mechanism, the integration with the
RADIUS Server also allows exploiting the GPRS authentication to authenticate JADE
nodes. The advantage of this is threefold:
� It is secure enough from the operator point of view since it relies on its standard

authentication mechanism.
� It allows the operator to easily manage access control lists of users/phone-number

authorized to join the platform.
� It does not require users to enter additional username and password to launch

JADE based applications on their mobile devices.

6. JADE Application Domains

One of the main goals in developing a middleware is to maintain a high degree of
openness and flexibility, making it applicable in as many different application domains
as possible. We propose hereafter a first general categorization with no scientific
completeness but just to provide a general understanding of the effectiveness of JADE.
The highest payoff of adopting Agent Technology is expected in those cases where an
interaction between numerous elements is required, and where an autonomous and
dynamic adaptation to complex relations is needed.

6.1 Mobile applications

The focus here is supporting users on the move with a “personal agent” that helps its
owner. Its goal is to facilitate the search and discovery of information through the
interaction with other peers, being both other people and “service providers”. In general,
JADE agents are extremely suited to act in the context of Mobile PIM – Personal
Information Management: their ability of autonomous and proactive acting and
seamless communications allows conceiving applications for everyday life organization,
like meeting organizer, info search or services negotiation.

Several examples illustrate the strengths of JADE peers acting as assistants for
travelers, being private tourists or mobile workers. Other applications have been
developed in the mobile work or sales support systems, in which agent duties are task

16 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

and information sharing and exchange. In the entertainment field, JADE middleware
can either be the base for multiparty gaming applications, in which a real interaction
between players is offered, or can be the building block for an enhanced kind of mobile
community where peer-to-peer communication allows richer relationships amongst
members.

BTexact uses the JADE platform, and the LEAP add-on for mobile terminals, for its
application supporting the coordination and the activities of a mobile workforce,
including the distributed scheduling of jobs, job management on the fly, travel and
knowledge management, and location-based coordination [14]. Telecom Italia LAB uses
JADE for developing new mobile VAS (Value Added Services) for nomadic micro-
communities over Java-enabled mobile phones.

6.2 Internet applications

In the Internet domain several application concepts based on agent technology have
been proposed during the years, as the main concept has been to beneficiate from the
increased connectivity, in terms of bandwidth and relations amongst people.

JADE-based systems allow end users to deal with the complexity and number of
opportunities, and to exploit the possibility to seamlessly access remote resources and
services. Key elements in JADE-based applications designing are direct communication
support, smart information retrieval capabilities and negotiation techniques. Starting
from these basic principles, various sectors have been considered such as e-learning or
e-healthcare, and in general all the contexts of e-commerce/e-trading have been tackled.
Moreover many of the considerations put forward in the mobile environment can been
easily extended to a fixed consumption, allowing an integrated organisation of the
personal and working life between PC and mobile devices. Lastly, the entertainment
sector has been analysed starting from the obvious consideration on community
services, multiparty gaming and content sharing applications.

Whitestein Technologies AG uses the JADE platform in the health care field, in
collaboration with Swisstransplant, the Swiss National Transplant Coordination centre
for organ transplants, for an agent-based system for decision-making support in organ
transplant centers. By combining agent technology, constraint satisfaction techniques
and JADE capabilities, Whitestein implemented the Organ Transplant Management
(OTM) solution [15].

6.3 Corporate applications

The intelligent agents approach is an evident choice for business applications striving to
enhance company productivity and efficiency. The point is easing collaboration and
cooperation between systems and people in order to achieve better results. Many
different examples of the usage of agent technology have been provided already in order
to support company processes: when it comes the time to share information or

 The JADE Platform and Experiences with Mobile MAS Applications 17

coordinate tasks the deployment of JADE-based system becomes very effective and
useful.

Instances have been proposed in “soft contexts”, such as knowledge management and
personnel administration or in general for the support to decision making processes.
Other proposals have come in “harder” environments, including companies core
processes, like logistic or production: valuable demonstrations concern systems for
factory control, exploiting JADE capabilities in optimising tasks and coordinating
resources. Interestingly enough, some JADE applications exceed even company
boundaries supporting activities amongst different businesses: the ability of agents in
the negotiation and information retrieval amongst services and resource providers leads
to the construction of JADE-based supply-chain or e-procurement products.

6.4 Machine-to-Machine applications

In those cases where communication peers are machines instead of humans, JADE
features can be exploited at its best. Autonomy and proactivity of agents play a crucial
role in the management of complex systems: when the number of elements and the
complexity of the relations raise, the opportunity of a distributed control significantly
simplifies system operations.

Complex algorithms and heavy elaborations, typically concentrated in a single
central point can be spread among agents, increasing overall efficiency and system
performance and reducing the risks connected with this concentration, thus increasing
system fault tolerance and scalability.

Classical examples in this context are automatic control or traffic management
systems, but the helpfulness of JADE approach can go down in more depth: several
studies are under way in order to extend P2P agents paradigm to network management,
with the concept of peers mapping onto network equipments and interacting amongst
them for resources optimizations and system control.

Finally it’s interesting to cite the extensive application of agent models for simulation
uses. The concept of numerous elements acting independently but together in the
environment in which they are part of, easily applies to several contexts, from different
science sectors (for instance biology, ecology and natural science in general) to social
and economic studies.

Rockwell Automation implemented the Manufacturing Agent Simulation Tool
(MAST) [16] for the manufacturing control sector. The tool shows agents for basic
material-handling components (e.g. a manufacturing cell, a conveyor belt, an AGV,
etc.) capable of mutual collaboration on the product transportation via the exchange of
messages. Agents are able to deal at run-time with dynamic changes and exceptional
cases, such as failure detection and recovery, change of the layout of the factory’s shop
floor, addition/removal of components or their interconnections.

18 F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood

6.5 JADE Community

The evolution strategy of the JADE project, since its beginning, is based on a
collaborative intent aimed at focusing the interest of an ever-growing community of
users and developers. This community revolves around two focal points: the open
source project and the JADE Governing Board.

JADE is, in fact, distributed open source under the LGPL license. The aim of this
license is to facilitate the creation of an open and effective platform with the help of a
user community, while allowing everybody to base the business upon the applications.
At the time of writing, more than 60,000 official downloads and several contributions
from some tens of different companies and academic institutions have been counted,
including complete subsystems (the so-called JADE add-ons), but much more are
welcome and expected.

The JADE Governing Board [1] is a not-for-profit agreement between a set of
companies, all sharing the intent and the effort of promoting the evolution of this
software tool and its adoption by the mobile telco industry as a java-based de-facto
standard middleware for agent-based applications. The JADE Board governs and
implements the evolution of the software deciding which features should be added next.
At the time of writing, the Board is composed of 5 members: TILAB, Motorola,
Whitestein Technologies AG, Profactor GmbH, France Telecom. Each member of the
JADE Board has the advantage of contributing and voting about priorities, technical and
strategic decisions about the evolution of the JADE Project. Board members shall agree
with the governing rules and commit to a minimal amount of resources for development
and promotion of JADE. The Board is open to all companies and organizations with a
concrete business interest in JADE and that commit to its development and promotion.

7. Conclusions and Future Roadmap

The paper presented the architecture of the JADE platform with particular details on the
new kernel, realized as a set of distributed coordinated filters. This new kernel enables
composition of platform-level services and great extensibility and adaptivity to the
requirements of the deployment environment. The specific case of the mobile networks
and terminals has been presented by showing how the split container execution mode
allows meeting the peculiar requirements of that deployment environment and the PDP
context manager module has been described, that enables support for MSISDN-based
identification. As any healthy software infrastructure, JADE is still evolving while
trying to balance the need for change with the requirement to protect its users from
backward-incompatible modifications.

In order to manage the ever-increasing size and evolution of the project, a Governing
Board was created as a not-for-profit agreement between companies that commit to the
development and promotion of the platform. At the time of writing, the four main
goals/directions of the project are the followings. The first goal is to consolidate the
software platform by increasing the strength of features such as scalability,
performance, robustness, security, integration with Web Services and network

