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Preface

This book has two main objectives in its comprehensive exposition of the important
problem of time-fixed terminal rendezvous around the Earth using chemical propul-
sion. The first objective is to present the mathematics of relative motion in near-
circular orbit, subjected to the perturbations emanating from the oblateness of the
Earth, third-body gravity such as due to the moon and the Sun, and atmospheric
drag, all in analytic form, suitable for fast trajectory prediction, without the need for
numerical integrations, and for further implementation in computer codes that solve
efficiently the required impulsive maneuvers. These analytic solutions are put to use
to create computer programs that calculate the required impulsive maneuver that
initiates the chase trajectory to intercept a passive or non-maneuvering vehicle in a
fixed time, where a second impulse is applied at interception to actually rendezvous
with that vehicle.

Unlike previous attempts to solve this problem in vacuum and analytic form, the
contents of this book provide solutions of this important spaceflight problem, by also
considering the various perturbations affecting the trajectories of both active and
passive vehicles, in analytic form, but also with very high accuracy, because the
classic treatments available in the literature dating back to the early 1960s are
inherently and grossly inaccurate. The gross inaccuracies are mainly due to the
paradigm of using a single rotating reference frame usually attached to the passive
vehicle itself, with respect to which the chase trajectory is constructed through the
initiation of the impulsive velocity change imparted to the active maneuvering
vehicle.

The paradigm of the single reference frame is cast aside here, and the problem of
the time-fixed terminal rendezvous is solved through the use of three different
reference frames at different phases of the calculations, which render possible the
computations of the initiating impulse with very high accuracy, while also taking
into account the precessions of the orbits due to the second zonal harmonic J2 of the
oblate Earth. Examples of rendezvous spanning several hours are thus generated
analytically through an iterative scheme, by using a first guess from an analytic
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solution that makes use of a single reference frame located midway between the
active and passive vehicles at the initial time.

After showing the derivations of the analytic second-order approximation to the
Euler-Hill equations of relative motion in Chapter 1, and then generating the analytic
solutions of relative motion as a function of time, by solving the system of the
linearized differential equations with, in turn, the forcing terms for the perturbations
due to third-body gravity, zonal harmonics J2 and J3, and atmospheric drag, in
Chapters 2, 3, 4, and 5, the case of the J2-perturbed theory is depicted in Chapter 6 by
also including the second-order approximation to the solution of the linearized
system of equations of relative motion for added accuracy, and still making use of
the single mid-point rotating frame to provide the first guess mentioned earlier. This
first guess is then used in Chapter 7, where the three different frames are employed,
and an iterative scheme applied, to arrive at the highly accurate rendezvous solution
in the near-circular orbit case, and for moderate interception times of the order of
several hours. Numerical examples are shown throughout the chapters to verify the
accuracy of these analytic solutions by comparing them to numerically integrated
ones. The J2 theory is derived in Chapter 2, and later used in Chapters 6 and 7,
without showing the derivations again, but nevertheless included in those latter
chapters for ease of reading and completeness, and for making each chapter as
self-contained as possible.

The second objective of this book is to apply the theory to the exact long-duration
time-fixed terminal rendezvous problem around the oblate Earth, for the general
elliptic orbit case. The mathematics of relative motion in general elliptic orbit
referred to a rotating coordinate frame attached to the passive non-maneuvering
vehicle, and that drags and precesses due to atmospheric drag and Earth oblateness,
are depicted in Chapter 8 for the coplanar case with drag, and for the noncoplanar
case with drag and J2 effects, in Chapters 9 and 10. The system of the exact nonlinear
differential equations are derived in Chapter 9, and the algorithm that provides the
solution through numerical integration and through an iterative scheme is shown in
Chapter 10 with several examples. Chapters 9 and 10 are, of course, related such that
orbit geometry figures depicted in Chapters 8 and 9 are not repeated in Chapter 10.
The theory is exact in the sense that the trajectories are generated by numerically
integrating the full system of 12 first-order differential equations, without any
simplifying assumptions. The higher-order zonal harmonics such as J3, J4, etc., are
not considered, even though they too can be taken into account to describe a more
precise modeling of the oblateness of the Earth. Two-impulse rendezvous trajecto-
ries are, thus, produced for various examples of elliptic orbits, and for different
interception times spanning several hours, and even days. The last chapter shows
how the theories laid out in this book can effectively be applied to station-keep a
Walker constellation in Earth orbit, by implementing a series of impulsive maneu-
vers to counter the drift experienced by the various vehicles, and to maintain the
constellation geometry, thus preventing the symmetric configuration of the constel-
lation from getting disrupted, which would, otherwise, affect the coverage generated
by their onboard sensors. Many of the examples shown in the book use the analytic
solutions generated in Chapter 7 as a starting guess to iterate on, with the full
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nonlinear, and therefore exact dynamics of the later chapters, to arrive at exact
converged solutions that can be flown by actual spacecraft in near-circular orbits.
Even though the perturbations due J3, third-body gravity, and atmospheric drag are
available analytically for the near-circular orbit case in the first chapters, the exam-
ples at hand do not include them as such, but are easily added to the computer
programs to also account for these perturbations. These perturbations can be
included in their numerically integrated form, if needed, for the general elliptic
orbit case. One of the main advantages of the relative motion theory lies in its
being perfectly nonsingular, both for the coplanar, and the J2-perturbed noncoplanar
cases, unlike the equations of motion based on the classical orbital elements which,
of course, exhibit singularities for the circular and equatorial orbits. Equinoctial
elements are, however, nonsingular for both of these important cases, and they can
also be used for guidance applications, even though they are a bit cumbersome and
not as efficient and straightforward as the rotating Cartesian relative rotating coor-
dinates theory of this book which allows to compute easily the rendezvous
trajectory.

This book can be used to design terminal two-impulse time-fixed rendezvous
trajectories, both for the near-circular and the more general elliptic orbit cases, to
carry out trade studies useful in designing both actual vehicles and missions, to fly
actual missions by ground-generated or autonomous onboard-generated solutions
for rendezvous and docking, formation-keeping, inspection, spacecraft servicing,
and relocation applications, among others, in low-Earth orbit, as well as higher orbits
such as the geostationary orbit, and to instruct students as well as researchers in
spaceflight guidance studies, both in universities that provide aerospace and mechan-
ical engineering curriculae, and practitioners in research laboratories and aerospace
companies that design and fly such missions. The theories in this book can be
extended to account for even more precise Earth oblateness models, as well as
standard atmosphere models using tabular data, instead of the exponential models
used here, and to the multi-impulse rendezvous applications through the methods of
optimal control, for truly minimum-fuel solutions, if desired, being understood that
the full nonlinear differential equations for the dragging and precessing reference
frames make it very convenient and straightforward, to calculate the impulsive
maneuvers in an efficient manner.

It is appropriate to mention the teachings of my late teacher and thesis adviser,
Professor John Valentine Breakwell in the Department of Aeronautics and Astro-
nautics at Stanford University, who made the relative motion mathematics referred
to rotating frames, in his classes, a central part of his various graduate courses,
providing the inspiration to carry out the research in this book, with obvious essential
applications in spaceflight guidance for civilian and military programs, especially in
autonomous mode. The complex and difficult typesetting of this book was carried
out by Mary Villanueva, previously of The Aerospace Corporation and currently of
Raytheon Space and Airborne Systems in El Segundo, California, while the tran-
scription of the figures from print and electronic versions to Adobe Illustrator files
was carried out mainly by Yvonne Craig of The Rand Corporation in Arlington,
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Virginia, and by Jason Perez, previously of The Aerospace Corporation. Gratitude is
expressed to all three specialists. The research provided in this book was initially
started at the NASA Jet Propulsion Laboratory in Pasadena, California, then,
followed at Ford Aerospace in Palo Alto, California, and later at The Aerospace
Corporation under contract with the United States Air Force Space and Missile
Systems Center.

La Canada Flintridge, CA, USA Jean Albert Kéchichian
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Chapter 1
The Second-Order Analytic Approximation
to the Solution of the Euler-Hill Equations
of Relative Motion

1.1 Introduction

The first-order solution of the problem of relative motion of a spacecraft in near-
circular orbit is known to degrade in accuracy, when compared to the numerically
integrated exact solution, at greater distances from the origin of the rotating reference
frame. These solutions have been developed to study the problem of the terminal
rendezvous guidance where an active spacecraft at several hundred km from its
rendezvous target centered at the rotating frame, must maneuver to intercept the
target in a given time. In References [1, 2], the relative motion technique was used
for a different purpose, namely to describe the future motion of a spacecraft relative
to the rotating frame, as it is perturbed by the Earth zonal harmonics J2 and J3, and by
the luni-solar gravity effects. Although these perturbations have a small effect on
the spacecraft motion which would not wander to great distances from the origin of
the frame, it is felt that because of the presence of initial non-zero velocities, the
subsequent motion may drift to considerable distances from the origin of the frame,
thereby, degrading the accuracy of the analytic first-order solution of the equations
of motion. The initial velocities exist because the orbit determination-generated
osculating orbit is necessarily elliptical in nature with small eccentricity, such that
at time zero, or epoch, a reference circular orbit having the same radius as the radial
distance of the actual spacecraft is assumed, to describe the future motion of the
vehicle itself, which, unlike the frame, experiences the various perturbations just
mentioned. Second-order corrections to the linear solution of Reference [3] have
been obtained in References [4, 5] to extend the region of accuracy of the analytic
solutions at greater distances from the origin. This chapter rederives the second-
order solutions, resolving the errors of Reference [4], and the typographical errors of
Reference [5], by adopting the nomenclature of these two references in defining the
coordinates. The radial coordinate is depicted as y, and the “tangential” coordinate
by x, although x is pointing in the opposite direction of motion. The out-of-plane or
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z coordinate, is along the orbital angular momentum vector. In References [1, 2], x is
along the radial direction, y along the “tangential” direction in the direction of
motion, and z along the orbital angular momentum vector. When the second-order
expressions developed here are added to the first-order solutions of the perturbed
motion of References [1, 2], the differences in the coordinates must be properly
accounted for.

1.2 Derivation of the Equations of Motion in Rotating
Rectangular Coordinates for an Elliptic Orbit

Let bx,by,bz represent an inertial coordinate system centered at the Earth, and let a
reference elliptic orbit be defined by Ω, i, ω, with eccentricity e, and semimajor axis
a as in Figure 1.1. Then bθ,br,bh define a rotating frame with br, a unit vector along the
radial direction r0,bθ a unit vector in the orbital plane and in the direction opposite to
the motion, and bh a unit vector along the angular momentum vector to complete the
right-handed system. This reference frame is attached to the reference elliptic orbit at
O0 and rotates at the angular rate _θ which is a function of angular position θ. The
perigee is at P, and θ� ¼ θ � ω is the true anomaly. The spacecraft position can be

Figure 1.1 Geometry of rotating frame.
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referred to the rotating frame by the vector ρ, and to the inertial frame by the vector
r= r0 + ρ. Because r0 and r obey the following differential equations as described in
the inertial system (Reference [5]),

€r0
I
¼ � μ

I
€r0
r30

ð1:1Þ

€r
I
¼ � μ

I
r

r3
ð1:2Þ

Then with μ standing for the gravity constant of the Earth,

€ρ
I
¼ �μ

r
I

r3
� r0

I

r30

" #
ð1:3Þ

This acceleration can also be written directly in terms of the rotating frame as

€ρ
I
¼€ρ

R
þ2 ωR � _ρ

R
þ ωR � ωR � ρR

� �
þ ωR � ρR ð1:4Þ

where the angular velocity vector in the rotating frame has the form

ωR¼
0

0
_θ

264
375

Writing ρ and r0 in terms of their coordinates in the rotating frame,

ρ ¼ xbθþ ybrþ zbh ð1:5Þ
r0 ¼ r0br ð1:6Þ

then

ωR � ρR¼ x _θbr� y _θ bθ ð1:7Þ

ωR � ωR � ρR
� �

¼ �y _θ
2br� x _θ

2bθ ð1:8Þ

ωR � ρR¼ x€θ br� y€θ bθ ð1:9Þ

ωR � ρR¼ _x _θ br� _y _θ bθ ð1:10Þ

such that Equation (1.4) becomes
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€ρ
I
¼ €yþ 2_x _θ � y _θ

2 þ x€θ
� �brþ €x� 2 _y _θ � x _θ

2 � y€θ
� �bθþ €zbh ð1:11Þ

If Equation (1.3) is resolved into the rotating system directly and compared to
Equation (1.11), the second-order differential equations in x, y, z can be readily
obtained by observing also that

r3 ¼ x2 þ yþ r0ð Þ2 þ z2
h i3=2

ð1:12Þ

These exact equations are given by the following three equations, in perfect agree-
ment with Reference [5].

€x� 2 _y _θ � x _θ
2 � y€θ þ μx x2 þ yþ r0ð Þ2 þ z2

h i�3=2
¼ 0 ð1:13Þ

€yþ 2 _x _θ � y _θ
2 þ x€θ þ μ yþ r0ð Þ x2 þ yþ r0ð Þ2 þ z2

h i�3=2
� μr�2

0 ¼ 0 ð1:14Þ

€zþ μz x2 þ yþ r0ð Þ2 þ z2
h i�3=2

¼ 0 ð1:15Þ

The eccentricity and the semimajor axis of the reference elliptic orbit enter into these
equations through the angular velocity _θ and acceleration €θ . These latter two
parameters are obtained as follows:

The orbit equations given in polar form are

€r0 � r0 _θ
2 ¼ �μ=r20 ð1:16Þ

r0€θ þ 2_r0 _θ ¼ 0 ð1:17Þ

The last equation is of course equivalent to d
dt r20 _θ
� � ¼ 0, yielding the constant

angular momentum h ¼ r20 _θ, which in turn gives

_θ ¼ h
r20

¼ μ1=2 1þ ecθ�ð Þ2
a3=2 1� e2ð Þ3=2

ð1:18Þ

where h2 ¼ μa(1 � e2), and r0 ¼ h2=μ
� �

1þ ecθ�ð Þ�1 has been used. Because θ� is a
function of θ, the angular position, _θ is also a function of θ such that along an elliptic
reference orbit, €θ the non-zero angular acceleration is obtained from Equation (1.17)

€θ ¼ � 2r0 _θ
r0

ð1:19Þ

Because _r0 ¼ � μ
h esθ� by direct differentiation of r0, then
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€θ ¼ �2μesθ� 1þ ecθ�ð Þ3
a3 1� e2ð Þ3 ð1:20Þ

For a circular reference orbit, _θ ¼ μ1=2a�3=2 ¼ n, the mean motion, and €θ ¼ 0 as
expected. Given the initial conditions on the position and velocity components and
in view of Equations (1.18) and (1.20), the exact differential equations of motion
relative to an elliptic reference orbit can now be integrated numerically. These
equations are shown in Equations (1.13) through (1.15).

For spacecraft in near-circular orbits, it is appropriate to consider a circular
reference orbit, in which case, the equations of motion simplify to take the following
form:

€x� 2n _y� n2xþ n2x 1þ y
r0

� �2

þ x2

r20
þ z2

r20

" #�3=2

¼ 0 ð1:21Þ

€yþ 2n _x� n2 yþ r0ð Þ þ n2 yþ r0ð Þ 1þ y
r0

� �2

þ x2

r20
þ z2

r20

" #�3=2

¼ 0 ð1:22Þ

€zþ n2z 1þ y
r0

� �2

þ x2

r20
þ z2

r20

" #�3=2

¼ 0 ð1:23Þ

Here r0 is the radius of the reference cicular orbit. If x, y, z are considered to be small
compared to r0, then, the term in brackets appearing in the preceding expressions can
be expanded as

1þ y
r0

� �2

þ x2

r20
þ z2

r20

" #�3=2

¼ 1þ ηð Þ�3=2 ’ 1� 3
2
ηþ 15

8
η2 � 35

16
η3 þ⋯

If terms up to the third-order in x/r0 etc. . . ., are retained, then,

1þ ηð Þ�3=2 ’1� 3y
r0

� 3
2

x
r0

� �2

� 3
2

z
r0

� �2

þ 6
y
r0

� �2

þ 15
2

y
r0

� �
x
r0

� �2

þ 15
2

y
r0

� �
z
r0

� �2

� 10
y
r0

� �3

þ O4

ð1:24Þ

Then, the equations of motion containing third-order terms in the expansions are
obtained as:
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€x� 2n _y� 3n2
xy
r0

� 3n2

2
x3

r20
� 3n2

2
xz2

r20
þ 6n2

xy2

r20
¼ 0 ð1:25Þ

€yþ 2n_x� 3n2y� 3n2

2
x2

r0
� 3n2

2
z2

r0
þ 3n2

y2

r0
þ 6n2

yx2

r20

þ 6n2
yz2

r20
� 4n2

y3

r20
¼ 0

ð1:26Þ

€zþ n2z 1� 3y
r0

� 3
2
x2

r20
� 3
2
z2

r20
þ 6y2

r20

� �
¼ 0 ð1:27Þ

If only second-order terms are retained, then,

€x� 2n _y� 3n2
xy
r0

¼ 0 ð1:28Þ

€yþ 2n _x� 3n2y� 3
2
n2

x2

r0
� 3
2
n2z2

r0
þ 3n2

y2

r0
¼ 0 ð1:29Þ

€zþ n2z 1� 3y
r0

� �
¼ 0 ð1:30Þ

If second-order terms are also neglected, then the Euler-Hill equations are obtained
as:

€x� 2n _y ¼ 0 ð1:31Þ
€yþ 2n_x� 3n2y ¼ 0 ð1:32Þ

€zþ n2z ¼ 0 ð1:33Þ

in which the x and y motion is decoupled from the out-of-plane z motion, and whose
general solution is given by

x1 ¼ k1 snt þ k2 cnt þ k3 nt þ k4 ð1:34Þ
y1 ¼ k5 cnt þ k6 snt þ k7 ð1:35Þ

z1 ¼ k8 cnt þ k9 snt ð1:36Þ

with the coefficients given in terms of the initial conditions as

k1 ¼ 4
_x0
n
� 6y0 ð1:37Þ

k2 ¼ �2 _y0=n ð1:38Þ

6 1 The Second-Order Analytic Approximation to the Solution of the Euler-Hill. . .



k3 ¼ 6y0 � 3 _x0=n ð1:39Þ
k4 ¼ 2_y0=nþ x0 ð1:40Þ
k5 ¼ 2_x0=n� 3y0 ð1:41Þ

k6 ¼ _y0=n ð1:42Þ

k7 ¼ 4y0 � 2
_x0
n

ð1:43Þ
k8 ¼ z0 ð1:44Þ

k9 ¼ _z0=n ð1:45Þ

These equations were used in Reference [3] to solve the problem of the terminal
rendezvous guidance which was used in the Gemini program. These equations give
accurate results only in the vicinity of the origin of the Euler-Hill frame, and break
down rather quickly at greater distances. This is critical for the rendezvous problem,
because the active spacecraft must apply the correct velocity change, several hun-
dred km away from the passive target vehicle, which is considered to be fixed at the
origin O0 of the frame. London, in Reference [4], provided the second-order correc-
tion to these equations to extend their accuracy to greater distances from the origin,
by solving Equations (1.28) through (1.30), which retain the second-order terms in
the expansions, using the method of successive approximations. In Reference [5],
Anthony and Sasaki extended these results to the case of the elliptic orbit with small
eccentricity, and recovered the second-order solutions of London, pointing out
however, some errors in the final solutions. This chapter rederives these equations,
and finds a typographical error in Anthony and Sasaki’s solutions. It is claimed that
the solutions derived here are the final and exact form for the second-order correc-
tions. Carrying out the second-order corrections, enhances the accuracy of our
trajectory propagation scheme used in the orbit determination element of the navi-
gation subsystem at a small cost in computing time and computer memory storage,
but at a considerable effort in deriving these solutions.

1.3 The Second-Order Approximation to the Euler-Hill
Equations of Relative Motion

Using Equations (1.28) through (1.30), London observed that the second-order
approximation x2, y2, z2, must satisfy

€x2 � 2n _y2 ¼ 3n2

r0
x1y1 ð1:46Þ
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€y2 þ 2n_x2 � 3n2y2 ¼ � 3n2

r0
y21 �

1
2

x21 þ z21
� �h i

ð1:47Þ

€z2 þ n2z2 ¼ 3n2
y1z1
r0

ð1:48Þ

where x1, y1, z1, represent the first-order solutions given in Equations (1.34) through
(1.36). London’s approach in solving the preceding equations consists of guessing
the form of the solution as

x2 ¼ α0 þ α1nt þ α2 snt þ α3 cnt þ α4 s2nt þ α5 c2nt þ α6 nt snt þ α7 nt cnt ð1:49Þ
y2 ¼ β0 þ β1 nt þ β2 ntð Þ2 þ β3 snt þ β4 cnt þ β5 s2nt þ β6 c2nt þ β7 nt snt

þ β8 nt cnt ð1:50Þ
z2 ¼ γ0 þ γ1 snt þ γ2 cnt þ γ3 s2nt þ γ4 c2nt þ γ5 nt snt þ γ6 nt cnt ð1:51Þ

and then, substituting these expressions and their first and second time derivatives in
Equations (1.46), (1.47) and (1.48), and comparing coefficients term by term, which
results in a set of simultaneous equations which can be solved for the various αi, βi,
and γi constants.

The method used in this chapter is the same as in References [1, 2], where the
differential equations are solved directly. From Equation (1.46) and in view of
Equations (1.34) and (1.35),

x1y1 ¼ A1 c
2
nt þ B1 s

2
nt þ C1 snt cnt þ D1 nt cnt þ E1 nt snt þ G1 snt

þ F1 cnt þ I1 nt þ J1 ð1:52Þ

where

A1 ¼ k2k5 ¼ � 4_x0 _y0
n2

þ 6y0
_y0
n

ð1:53Þ

B1 ¼ k1k6 ¼ 4 _x0 _y0
n2

� 6y0
_y0
n
¼ �A1 ð1:54Þ

C1 ¼ k1k5 þ k2k6 ¼ 8 _x20
n2

� 24y0
_x0
n
þ 18y20 � 2

_y20
n2

ð1:55Þ

D1 ¼ k3k5 ¼ 21
_x0
n
y0 � 18y20 �

6 _x20
n2

ð1:56Þ

E1 ¼ k3k6 ¼ 6y0
_y0
n
� 3_x0

_y0
n2

ð1:57Þ

F1 ¼ k2k7 þ k4k5 ¼ �14y0
_y0
n
þ 8 _x0

_y0
n2

þ 2x0 _x0 � 3x0y0 ð1:58Þ
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G1 ¼ k1k7 þ k4k6 ¼ 28
_x0y0
n

� 8
_x20
n2

� 24y20 þ 2
_y20
n2

þ x0 _y0
n

ð1:59Þ

I1 ¼ k3k7 ¼ 24y20 � 24
_x0
n
y0 þ

6_x20
n2

ð1:60Þ

J1 ¼ k4k7 ¼ 8y0
_y0
n
� 4

_x0 _y0
n2

þ 4x0y0 � 2x0
_x0
n

ð1:61Þ

In a similar way, from Equations (1.47), (1.34), (1.35) and (1.36),

€y2 þ 2n _x2 � 3n2y2 ¼� 3n2

r0
y21 �

1
2

x21 þ z21
� �h i

y21 �
1
2

x21 þ z21
� � ¼A2 c

2
nt þ B2 s

2
nt þ C2 snt cnt þ D2 nt cnt þ E2 nt snt

þ F2 cnt þ G2 snt þ H2 n
2t2 þ I2 nt þ J2

ð1:62Þ

where,

A2 ¼ k25 �
k22
2
� k28

2
¼ 4 _x20

n2
þ 9y20 � 12y0

_x0
n
� 2

_y20
n2

� z20
2

ð1:63Þ

B2 ¼ k26 �
k21
2
� k29

2
¼ _y20

n2
� 8

_x20
n2

� 18y20 þ 24y0
_x0
n
� _z20
2n2

ð1:64Þ

C2 ¼ 2k5k6 � k1k2 � k8k9 ¼ 12
_x0 _y0
n2

� 18y0
_y0
n
� z0

_z0
n

ð1:65Þ

D2 ¼ �k2k3 ¼ 12y0
_y0
n
� 6

_x0 _y0
n2

ð1:66Þ

E2 ¼ �k1k3 ¼ �42y0
_x0
n
þ 36y20 þ 12

_x20
n2

ð1:67Þ

F2 ¼ 2k5k7 � k2k4 ¼ 28y0
_x0
n
� 8

_x20
n2

� 24y20 þ 4
_y20
n2

þ 24x0
_y0
n

ð1:68Þ

G2 ¼ 2k6k7 � k1k4 ¼ 20
_y0
n
y0 � 12

_x0 _y0
n2

� 4x0
_x0
n
þ 6x0y0 ð1:69Þ

H2 ¼ �k23
2

¼ �18y20 �
9
2
_x20
n2

þ 18y0
_x0
n

ð1:70Þ

I2 ¼ �k3k4 ¼ �12y0
_y0
n
� 6x0y0 þ 6

_x0 _y0
n2

þ 3x0
_x0
n

ð1:71Þ

J2 ¼ �k24
2

þ k27 ¼ �2
_y20
n2

� x20
2
� 2x0

_y0
n
þ 16y20 þ 4

_x20
n2

� 16y0
_x0
n

ð1:72Þ

and finally for the z equation,
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€z2 þ n2z2 ¼ 3n2
y1z1
r0

y1z1 ¼ A3 c
2
nt þ C3 snt cnt þ B3 s

2
nt þ F3 cnt þ G3 snt

ð1:73Þ

where,

A3 ¼ k5k8 ¼ 2
_x0
n
z0 � 3y0z0 ð1:74Þ

B3 ¼ k6k9 ¼ _y0 _z0
n2

ð1:75Þ

C3 ¼ k5k9 þ k6k8 ¼ 2
_x0 _z0
n2

� 3y0
_z0
n
þ _y0

n
z0 ð1:76Þ

F3 ¼ k7k8 ¼ 4y0z0 � 2
_x0
n
z0 ð1:77Þ

G3 ¼ k7k9 ¼ 4y0
_z0
n
� 2

_x0 _z0
n2

ð1:78Þ

The z equation takes the following form:

€z2 þ n2z2 ¼ 3n2

r0
A3 c

2
nt þ B3 s

2
nt þ C3 snt cnt þ F3 cnt þ G3 snt

� � ð1:79Þ

whose general solution is given by

z2 ¼ c01 snt þ c02 cnt

þ 3n
r0

Z t

0
A3 c

2
nv þ B3 s

2
nv þ

C3

2
s2nv þ F3 cnv þ G3 snv

� �
� sin n t � vð Þdv ð1:80Þ

and because the initial conditions on z0 and _z0 are already absorbed in the first-order
solutions, we let c01 ¼ c02 ¼ 0, such that, after carrying out the various integrations,

z2 ¼ 3
r0

A3 þ B3ð Þ
2

� A3 þ 2B3ð Þ
3

cnt þ C3

3
þ G3

2

� �
snt � C3

6
s2nt

�
þ B3 � A3ð Þ

6
c2nt þ F3

2
nt snt � G3

2
nt cnt

	 ð1:81Þ

which is of the form given in Equation (1.51), such that, by direct comparison

γ0 ¼ 3
2r0

A3 þ B3ð Þ ¼ 3
2r0

2
_x0z0
n

� 3y0z0 þ
_y0 _z0
n2

� �
ð1:82Þ
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γ1 ¼ �2γ3 � γ6 ¼ C3

r0
þ 3
2r0

G3 ¼ � _x0 _z0
n2

þ 3
y0 _z0
n

þ _y0z0
n

� �
=r0 ð1:83Þ

γ2 ¼ �γ0 � γ4 ¼ � A3 þ 2B3ð Þ=r0 ¼ �2
_x0z0
n

þ 3y0z0 � 2
_y0 _z0
n2

� �
=r0 ð1:84Þ

γ3 ¼ � C3

2r0
¼ � _x0 _z0

n2
þ 3
2
y0 _z0
n

� _y0z0
2n

� �
=r0 ð1:85Þ

γ4 ¼ � A3 � B3ð Þ
2r0

¼ � _x0z0
n

þ 3
2
y0z0 þ

_y0 _z0
2n2

� �
=r0 ð1:86Þ

γ5 ¼ 3
2r0

F3 ¼ 6y0z0 � 3
z0 _x0
n

� �
=r0 ð1:87Þ

γ6 ¼ � 3
2r0

G3 ¼ �6y0
_z0
n
þ 3

_x0 _z0
n2

� �
=r0 ð1:88Þ

Now, the differential equation in x2 can be integrated once, such that, from,

€x2 � 2n_y2 ¼ 3n2

r0
x1y1 ¼ 3n2

r0
A1 c

2
nt þ B1 s

2
nt þ C1 snt cnt þ D1 nt cnt þ E1 nt snt

�
þF1 cnt þ G1 snt þ I1 nt þ J1Þ

_x2 ¼ 2ny2 þ 3n2

r0
A1 þ B1ð Þ t

2
þ E1 þ F1ð Þ snt

n
þ D1 � G1ð Þ cnt

n

h i
þ A1 � B1ð Þ s2nt

4n
� C1

c2nt
4n

þ D1 tsnt � E1 tcnt þ I1
nt2

2
þ J1t

	
þ K1

ð1:89Þ

where K1 is determined from _x2ð Þ0 ¼ 0, with (y2)0 ¼ 0 too, so that

K1 ¼ � 3n
r0

D1 � G1 � C1

4

� �
ð1:90Þ

Using the preceding expression for _x2 in the differential equation for y2, and
regrouping terms, yields

€y2 þ 2n_x2 � 3n2y2 ¼ � 3n2

r0
y21 �

1
2

x21 þ z21
� �h i

¼ � 3n2

r0
A2 c

2
nt þ B2 s

2
nt þ C2 snt cnt þ D2 nt cnt

� �
þE2 nt snt þ F2 cnt þ G2 snt þ H2 n

2t2 þ I2 nt þ J2
�

€y2 þ n2y2 ¼ �2nK1 þ a1 snt þ a2 cnt þ a3 s2nt þ a4 c2nt þ a5 nt

þa6nt snt þ a7 nt cnt þ a8 n
2t2 þ a9
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whose general solution can be written as

y2 ¼ k01 snt þ k02 cnt þ
1
n

Z t

0
�2nK1 þ a1 snv þ a2 cnv þ a3 s2nv þ a4 c2nvð

�
þa5nvþ a6nv snv þ a7nv cnv þ a8n2v2 þ a9Þ sin n t � vð Þdv

i ð1:91Þ

Once again the constants k01 and k02 are zero because the initial conditions are
already absorbed in the first-order solutions. The various coefficients ai are given by:

a1 ¼ � 3n2

r0
2E1 þ 2F1 þ G2ð Þ ð1:92Þ

a2 ¼ � 3n2

r0
2D1 � 2G1 þ F2ð Þ ð1:93Þ

a3 ¼ � 3n2

2r0
A1 � B1 þ C2ð Þ ð1:94Þ

a4 ¼ � 3n2

2r0
A2 � B2 � C1ð Þ ð1:95Þ

a5 ¼ � 3n2

r0
A1 þ B1 þ 2J1 þ I2ð Þ ð1:96Þ

a6 ¼ � 3n2

r0
2D1 þ E2ð Þ ð1:97Þ

a7 ¼ � 3n2

r0
D2 � 2E1ð Þ ð1:98Þ

a8 ¼ � 3n2

r0
I1 þ H2ð Þ ð1:99Þ

a9 ¼ � 3n2

r0

A2 þ B2

2
þ J2

� �
ð1:100Þ

After carrying out the various integrations in Equation (1.91), and regrouping
identical terms, the y2 solution takes the form

y2 ¼ a9
n2

� 2
n2

a8 � 2K1

n

� �
þ a1

2n2
þ 2a3
3n2

� a5
n2

� a7
4n2

� �
snt

þ a4
3n2

þ 2a8
n2

� a9
n2

þ 2K1

n

� �
cnt � a4

3n2
c2nt � a3

3n2
s2nt

þ a2
2n2

þ a6
4n2

� �
nt s2nt þ a7

4n2
� a1
2n2

� �
nt cnt þ a5

n2
nt

þ a7
4n2

n2t2 snt � a6
4n2

n2t2 cnt þ a8
n2

n2t2

ð1:101Þ

which is of the same form as Equation (1.50), such that,
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β0 ¼ a9
n2

� 2
n2

a8 � 2
K1

n
ð1:102Þ

β1 ¼ a5=n
2 ð1:103Þ

β2 ¼ a8=n
2 ð1:104Þ

β3 ¼ a1
2n2

þ 2a3
3n2

� a5
n2

� a7
4n2

ð1:105Þ

β4 ¼ a4
3n2

þ 2a8
n2

� a9
n2

þ 2
K1

n
ð1:106Þ

β5 ¼ � a3
3n2

ð1:107Þ

β6 ¼ � a4
3n2

ð1:108Þ

β7 ¼ a2
2n2

þ a6
4n2

ð1:109Þ

β8 ¼ a7
4n2

� a1
2n2

ð1:110Þ

The coefficients a6 and a7 are zero because E2 ¼ � 2D1 and D2 ¼ 2E1. Now,
another identify is I1 ¼ � 4

3H2, such that,

β0 ¼ � 3
2r0

A2 þ B2ð Þ � 3J2
r0

� 2H2

r0
� 6G1

r0
þ 6D1

r0
� 3C1

2r0
ð1:111Þ

Using the identify I2 ¼ � 3
2 J1,

β1 ¼ � 3
2r0

J1 ð1:112Þ

and using the identify I1 ¼ � 4
3H2,

β2 ¼ � 3
4r0

I1 ð1:113Þ

Also by inspection

β3 ¼ �β1 � 2β5 � β8 ð1:114Þ
β4 ¼ �β0 � β6 ð1:115Þ

β5 ¼ C2

2r0
þ 1
2r0

A1 � B1ð Þ ð1:116Þ
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β6 ¼ 1
2r0

A2 � B2 � C1ð Þ ð1:117Þ

and using the identifies E2 ¼ � 2D1 and D2 ¼ 2E1,

β7 ¼ 3
2r0

E2 þ 3G1

r0
� 3F2

2r0
ð1:118Þ

β8 ¼ 3E1

r0
þ 3F1

r0
þ 3G2

2r0
ð1:119Þ

and in terms of the initial conditions,

β0 ¼ 3
r0

x20
2
þ _x20
n2

þ 7
2
y20 �

_y20
2n2

� 4_x0y0
n

þ z20
4
þ _z20
4n2

� �
ð1:120Þ

β1 ¼ � 3
r0

2x0y0 � x0
_x0
n
þ 4y0

_y0
n
� 2

_x0 _y0
n2

� �
ð1:121Þ

β2 ¼ � 9
2r0

4y20 � 4y0
_x0
n
þ _x20
n2

� �
ð1:122Þ

β3 ¼ 1
r0

12y0
_y0
n
þ 6x0y0 � 7

_x0 _y0
n2

� 3x0
_x0
n
þ z0

_z0
n

� �
ð1:123Þ

β4 ¼ 1
r0

� 3
2
x20 � 5

_x20
n2

� 15y20 þ 2
_y20
n2

þ 18y0
_x0
n
� _z20
n2

� z20
2

� �
ð1:124Þ

β5 ¼ 1
r0

2
_x0 _y0
n2

� 3y0
_y0
n
� z0

_z0
2n

� �
ð1:125Þ

β6 ¼ 1
r0

9
2
y20 þ 2

_x20
n2

� 1
2
_y20
n2

þ _z20
4n2

� z20
4
� 6y0

_x0
n

� �
ð1:126Þ

β7 ¼ � 3
r0

7y0
_x0
n
� 2

_x20
n2

� 6y20

� �
ð1:127Þ

β8 ¼ 3
r0

� _x0 _y0
n2

þ 2
y0 _y0
n

� �
ð1:128Þ

with the solution given by

y2 ¼ β0 þ β1 nt þ β2 n
2t2 þ β3 snt þ β4 cnt þ β5 s2nt þ β6 c2nt þ β7 nt snt

þ β8 nt cnt ð1:129Þ

Using this solution in Equation (1.89) for _x2, and integrating once more, yields the x2
solution
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x2 ¼ 2nβ0 þ K1ð Þt þ b1
2n

n2t2 þ b2
3n

n3t3 þ b8 � b3ð Þ cnt
n
þ b4 þ b7ð Þ snt

n

þ b6
2n

s2nt � b5
2n

c2nt þ b8 t snt � b7 t cnt þ K 0
1 ð1:130Þ

The constant K 0
1 is determined from (x2)0 ¼ 0 at time zero,

K 0
1 ¼

b3
n
þ b5
2n

� b8
n

ð1:131Þ

The other constants appearing in Equation (1.130) are given by

b1 ¼ 2nβ1 þ 3n
r0

J1 ð1:132Þ

b2 ¼ 2nβ2 þ 3n
2r0

I1 ð1:133Þ

b3 ¼ 2nβ3 þ 3n
r0

E1 þ F1ð Þ ð1:134Þ

b4 ¼ 2nβ4 þ 3n
r0

D1 � G1ð Þ ð1:135Þ

b5 ¼ 2nβ5 þ 3n
2r0

A1 ð1:136Þ

b6 ¼ 2nβ6 � 3n
4r0

C1 ð1:137Þ

b7 ¼ 2nβ7 þ 3n
r0

D1 ð1:138Þ

b8 ¼ 2nβ8 � 3n
r0

E1 ð1:139Þ

Using the βi expressions developed earlier, the first two coefficients reduce to b1¼ 0,
b2 ¼ 0, which, then, gives to x2 the form in Equation (1.49), such that

α0 ¼ �α3 � α5 ð1:140Þ

α1 ¼ � 3
r0

A2 þ B2ð Þ � 6J2
r0

� 4
H2

r0
� 9
r0

G1 � D1 þ C1

4

� �
ð1:141Þ

α2 ¼ 2β4 þ 3G1

r0
� 3F2

r0
ð1:142Þ

α3 ¼ �2β3 þ 3F1

r0
þ 3G2

r0
ð1:143Þ
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