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Preface

This book has two main objectives in its comprehensive exposition of the important
problem of time-fixed terminal rendezvous around the Earth using chemical propul-
sion. The first objective is to present the mathematics of relative motion in near-
circular orbit, subjected to the perturbations emanating from the oblateness of the
Earth, third-body gravity such as due to the moon and the Sun, and atmospheric
drag, all in analytic form, suitable for fast trajectory prediction, without the need for
numerical integrations, and for further implementation in computer codes that solve
efficiently the required impulsive maneuvers. These analytic solutions are put to use
to create computer programs that calculate the required impulsive maneuver that
initiates the chase trajectory to intercept a passive or non-maneuvering vehicle in a
fixed time, where a second impulse is applied at interception to actually rendezvous
with that vehicle.

Unlike previous attempts to solve this problem in vacuum and analytic form, the
contents of this book provide solutions of this important spaceflight problem, by also
considering the various perturbations affecting the trajectories of both active and
passive vehicles, in analytic form, but also with very high accuracy, because the
classic treatments available in the literature dating back to the early 1960s are
inherently and grossly inaccurate. The gross inaccuracies are mainly due to the
paradigm of using a single rotating reference frame usually attached to the passive
vehicle itself, with respect to which the chase trajectory is constructed through the
initiation of the impulsive velocity change imparted to the active maneuvering
vehicle.

The paradigm of the single reference frame is cast aside here, and the problem of
the time-fixed terminal rendezvous is solved through the use of three different
reference frames at different phases of the calculations, which render possible the
computations of the initiating impulse with very high accuracy, while also taking
into account the precessions of the orbits due to the second zonal harmonic J, of the
oblate Earth. Examples of rendezvous spanning several hours are thus generated
analytically through an iterative scheme, by using a first guess from an analytic
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viii Preface

solution that makes use of a single reference frame located midway between the
active and passive vehicles at the initial time.

After showing the derivations of the analytic second-order approximation to the
Euler-Hill equations of relative motion in Chapter 1, and then generating the analytic
solutions of relative motion as a function of time, by solving the system of the
linearized differential equations with, in turn, the forcing terms for the perturbations
due to third-body gravity, zonal harmonics J, and J;, and atmospheric drag, in
Chapters 2, 3, 4, and 5, the case of the J,-perturbed theory is depicted in Chapter 6 by
also including the second-order approximation to the solution of the linearized
system of equations of relative motion for added accuracy, and still making use of
the single mid-point rotating frame to provide the first guess mentioned earlier. This
first guess is then used in Chapter 7, where the three different frames are employed,
and an iterative scheme applied, to arrive at the highly accurate rendezvous solution
in the near-circular orbit case, and for moderate interception times of the order of
several hours. Numerical examples are shown throughout the chapters to verify the
accuracy of these analytic solutions by comparing them to numerically integrated
ones. The J, theory is derived in Chapter 2, and later used in Chapters 6 and 7,
without showing the derivations again, but nevertheless included in those latter
chapters for ease of reading and completeness, and for making each chapter as
self-contained as possible.

The second objective of this book is to apply the theory to the exact long-duration
time-fixed terminal rendezvous problem around the oblate Earth, for the general
elliptic orbit case. The mathematics of relative motion in general elliptic orbit
referred to a rotating coordinate frame attached to the passive non-maneuvering
vehicle, and that drags and precesses due to atmospheric drag and Earth oblateness,
are depicted in Chapter 8 for the coplanar case with drag, and for the noncoplanar
case with drag and J; effects, in Chapters 9 and 10. The system of the exact nonlinear
differential equations are derived in Chapter 9, and the algorithm that provides the
solution through numerical integration and through an iterative scheme is shown in
Chapter 10 with several examples. Chapters 9 and 10 are, of course, related such that
orbit geometry figures depicted in Chapters 8 and 9 are not repeated in Chapter 10.
The theory is exact in the sense that the trajectories are generated by numerically
integrating the full system of 12 first-order differential equations, without any
simplifying assumptions. The higher-order zonal harmonics such as J3, J4, etc., are
not considered, even though they too can be taken into account to describe a more
precise modeling of the oblateness of the Earth. Two-impulse rendezvous trajecto-
ries are, thus, produced for various examples of elliptic orbits, and for different
interception times spanning several hours, and even days. The last chapter shows
how the theories laid out in this book can effectively be applied to station-keep a
Walker constellation in Earth orbit, by implementing a series of impulsive maneu-
vers to counter the drift experienced by the various vehicles, and to maintain the
constellation geometry, thus preventing the symmetric configuration of the constel-
lation from getting disrupted, which would, otherwise, affect the coverage generated
by their onboard sensors. Many of the examples shown in the book use the analytic
solutions generated in Chapter 7 as a starting guess to iterate on, with the full
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nonlinear, and therefore exact dynamics of the later chapters, to arrive at exact
converged solutions that can be flown by actual spacecraft in near-circular orbits.
Even though the perturbations due J3, third-body gravity, and atmospheric drag are
available analytically for the near-circular orbit case in the first chapters, the exam-
ples at hand do not include them as such, but are easily added to the computer
programs to also account for these perturbations. These perturbations can be
included in their numerically integrated form, if needed, for the general elliptic
orbit case. One of the main advantages of the relative motion theory lies in its
being perfectly nonsingular, both for the coplanar, and the J,-perturbed noncoplanar
cases, unlike the equations of motion based on the classical orbital elements which,
of course, exhibit singularities for the circular and equatorial orbits. Equinoctial
elements are, however, nonsingular for both of these important cases, and they can
also be used for guidance applications, even though they are a bit cumbersome and
not as efficient and straightforward as the rotating Cartesian relative rotating coor-
dinates theory of this book which allows to compute easily the rendezvous
trajectory.

This book can be used to design terminal two-impulse time-fixed rendezvous
trajectories, both for the near-circular and the more general elliptic orbit cases, to
carry out trade studies useful in designing both actual vehicles and missions, to fly
actual missions by ground-generated or autonomous onboard-generated solutions
for rendezvous and docking, formation-keeping, inspection, spacecraft servicing,
and relocation applications, among others, in low-Earth orbit, as well as higher orbits
such as the geostationary orbit, and to instruct students as well as researchers in
spaceflight guidance studies, both in universities that provide aerospace and mechan-
ical engineering curriculae, and practitioners in research laboratories and aerospace
companies that design and fly such missions. The theories in this book can be
extended to account for even more precise Earth oblateness models, as well as
standard atmosphere models using tabular data, instead of the exponential models
used here, and to the multi-impulse rendezvous applications through the methods of
optimal control, for truly minimum-fuel solutions, if desired, being understood that
the full nonlinear differential equations for the dragging and precessing reference
frames make it very convenient and straightforward, to calculate the impulsive
maneuvers in an efficient manner.

It is appropriate to mention the teachings of my late teacher and thesis adviser,
Professor John Valentine Breakwell in the Department of Aeronautics and Astro-
nautics at Stanford University, who made the relative motion mathematics referred
to rotating frames, in his classes, a central part of his various graduate courses,
providing the inspiration to carry out the research in this book, with obvious essential
applications in spaceflight guidance for civilian and military programs, especially in
autonomous mode. The complex and difficult typesetting of this book was carried
out by Mary Villanueva, previously of The Aerospace Corporation and currently of
Raytheon Space and Airborne Systems in El Segundo, California, while the tran-
scription of the figures from print and electronic versions to Adobe Illustrator files
was carried out mainly by Yvonne Craig of The Rand Corporation in Arlington,
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Virginia, and by Jason Perez, previously of The Aerospace Corporation. Gratitude is
expressed to all three specialists. The research provided in this book was initially
started at the NASA Jet Propulsion Laboratory in Pasadena, California, then,
followed at Ford Aerospace in Palo Alto, California, and later at The Aerospace
Corporation under contract with the United States Air Force Space and Missile
Systems Center.

La Canada Flintridge, CA, USA Jean Albert Kéchichian
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Chapter 1 ®)
The Second-Order Analytic Approximation <o
to the Solution of the Euler-Hill Equations

of Relative Motion

1.1 Introduction

The first-order solution of the problem of relative motion of a spacecraft in near-
circular orbit is known to degrade in accuracy, when compared to the numerically
integrated exact solution, at greater distances from the origin of the rotating reference
frame. These solutions have been developed to study the problem of the terminal
rendezvous guidance where an active spacecraft at several hundred km from its
rendezvous target centered at the rotating frame, must maneuver to intercept the
target in a given time. In References [1, 2], the relative motion technique was used
for a different purpose, namely to describe the future motion of a spacecraft relative
to the rotating frame, as it is perturbed by the Earth zonal harmonics J, and J3, and by
the luni-solar gravity effects. Although these perturbations have a small effect on
the spacecraft motion which would not wander to great distances from the origin of
the frame, it is felt that because of the presence of initial non-zero velocities, the
subsequent motion may drift to considerable distances from the origin of the frame,
thereby, degrading the accuracy of the analytic first-order solution of the equations
of motion. The initial velocities exist because the orbit determination-generated
osculating orbit is necessarily elliptical in nature with small eccentricity, such that
at time zero, or epoch, a reference circular orbit having the same radius as the radial
distance of the actual spacecraft is assumed, to describe the future motion of the
vehicle itself, which, unlike the frame, experiences the various perturbations just
mentioned. Second-order corrections to the linear solution of Reference [3] have
been obtained in References [4, 5] to extend the region of accuracy of the analytic
solutions at greater distances from the origin. This chapter rederives the second-
order solutions, resolving the errors of Reference [4], and the typographical errors of
Reference [5], by adopting the nomenclature of these two references in defining the
coordinates. The radial coordinate is depicted as y, and the “tangential” coordinate
by x, although x is pointing in the opposite direction of motion. The out-of-plane or

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 1
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z coordinate, is along the orbital angular momentum vector. In References [1, 2], x is
along the radial direction, y along the “tangential” direction in the direction of
motion, and z along the orbital angular momentum vector. When the second-order
expressions developed here are added to the first-order solutions of the perturbed
motion of References [1, 2], the differences in the coordinates must be properly
accounted for.

1.2 Derivation of the Equations of Motion in Rotating
Rectangular Coordinates for an Elliptic Orbit

Let X,¥,Z represent an inertial coordinate system centered at the Earth, and let a
reference elliptic orbit be defined by Q, i, @, with eccentricity e, and semimajor axis
a as in Figure 1.1. Then 6, T, h define a rotating frame with T, a unit vector along the
radial direction ry, 0 a unit vector in the orbital plane and in the direction opposite to
the motion, and h a unit vector along the angular momentum vector to complete the
right-handed system. This reference frame is attached to the reference elliptic orbit at
O’ and rotates at the angular rate & which is a function of angular position 6. The
perigee is at P, and 8" = 6 — w is the true anomaly. The spacecraft position can be

R sic

x4
o}
I
-

4

D-“

-

A
X

Figure 1.1 Geometry of rotating frame.
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referred to the rotating frame by the vector p, and to the inertial frame by the vector
r =1y + p. Because ry and r obey the following differential equations as described in
the inertial system (Reference [5]),

Then with u standing for the gravity constant of the Earth,

! ror
b= u[ﬂ r?)] (13)

This acceleration can also be written directly in terms of the rotating frame as

I R R
ﬁ:ﬁ+2£xp+$x(£x§)+(’3xﬁ (1.4)

where the angular velocity vector in the rotating frame has the form

0
o= |0
0

Writing p and ry in terms of their coordinates in the rotating frame,

p =10+ )T+ zh (1.5)
ro = rof (1.6)

then
® x p=x0F —y0 0 (1.7)
éx((ﬁxﬁ):—ygz?—xae (1.8)
(If)xﬁ:xﬁ?fyé/ﬂ\ (1.9)
® x p=i0T — 00 (1.10)

such that Equation (1.4) becomes
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1

p= (y+2xé—y92+xé)?+(x-zyé—xéz—yé)ﬁuﬁ (1.11)

If Equation (1.3) is resolved into the rotating system directly and compared to
Equation (1.11), the second-order differential equations in x, y, z can be readily
obtained by observing also that

r/z (1.12)

r= {x2+(y+ro)2+z2

These exact equations are given by the following three equations, in perfect agree-
ment with Reference [5].

}73/2

X—Zy@—xéz—yé—|—,ux[x2+(y+ro)z+zz =0 (1.13)

—3/2

y+2x9—y92+xé+ﬂ(y+r(,)[x2+(y+r0)2+z2} —wrg? =0 (1.14)

}73/2 ~0 (1.15)

Z—th[xz + (y—&-ro)2 + 2

The eccentricity and the semimajor axis of the reference elliptic orbit enter into these
equations through the angular velocity @ and acceleration . These latter two
parameters are obtained as follows:

The orbit equations given in polar form are

Fo — rod” = —p/r2 (1.16)
700 + 2i0 = 0 (1.17)

The last equation is of course equivalent to %(r%é) =0, yielding the constant
angular momentum h = ré&, which in turn gives

P21 + ecp )’

AR PR (1.18)

b="—
o
where b = pa(l — €%), and ry = (hz/y) (1+ ec@»«)_l has been used. Because 6 is a

function of 6, the angular position, € is also a function of 8 such that along an elliptic
reference orbit, 8 the non-zero angular acceleration is obtained from Equation (1.17)

_2rof
ro

0= (1.19)

Because iy = — %esa* by direct differentiation of r,, then
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- —2uesy (1 + ecy)’
a3(1—e2)?

(1.20)

For a circular reference orbit, 0= /41/ 2q73/2 = n, the mean motion, and 0=0 as
expected. Given the initial conditions on the position and velocity components and
in view of Equations (1.18) and (1.20), the exact differential equations of motion
relative to an elliptic reference orbit can now be integrated numerically. These
equations are shown in Equations (1.13) through (1.15).

For spacecraft in near-circular orbits, it is appropriate to consider a circular
reference orbit, in which case, the equations of motion simplify to take the following
form:

2 » » 3/2
% — 20y — nPx + n’x (1+y> +5+50 =0 (1.21)
ro 5o 1o
2 x2 2 3/2
¥+ 2nk — n?(y + ro) + n2(y + ro) <1+l> +5+50 =0 (1.22)
ro rg g
) —3/2
. 72
i 4n’z <1+1) +5+5 =0 (1.23)
o rnooTo

Here r is the radius of the reference cicular orbit. If x, y, z are considered to be small
compared to o, then, the term in brackets appearing in the preceding expressions can
be expanded as

2 o 27 315, 35
Y Xz — =3/2 42, 41202 3.3
(1+ro) - (Tbn) ™" = L =St o = +
If terms up to the third-order in x/ry etc. .. ., are retained, then,

2 2 2
Sy 3(x) _3(z Y
R S R R
2 2 3
2 ro ro 2 ro ro ro

Then, the equations of motion containing third-order terms in the expansions are
obtained as:

(1.24)
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2 3 2 .2 2
x-zny—3nzﬂ—3ix—2—3ixi2+6n2xiz:0 (1.25)
ro 25 2o o
2 2.2 2
j}+2n)'c—3n2yf3%x—zf3lzf+3 2y—+6nzyxz
T 2 r rg (1.26)
22 4 a) '
o o
. 3y 3% 32 67
”"QZ(“%‘W—E?*% =0 (1:27)
0 0 0
If only second-order terms are retained, then,
3&—2ny—3n2)%:0 (1.28)
C L 3,32 3n%2 :
2,2, 22X N 2y
¥+ 2nx — 3n°y 2 T2 +3n p 0 (1.29)
spnz(1-2) = (1.30)
ro

If second-order terms are also neglected, then the Euler-Hill equations are obtained
as:

¥—2ny =0 (1.31)
y+2nk —3n’y =0 (1.32)
P4+nPz=0 (1.33)

in which the x and y motion is decoupled from the out-of-plane z motion, and whose
general solution is given by

x1=ky Sy +ky ey +kznt+ kg (134)
Vi = ks cur + ko Sue + k7 (1.35)
= k8 Cnt + k9 Snt (136)

with the coefficients given in terms of the initial conditions as

ky :4%—6)10 (1.37)

ky = —2§,/n (1.38)
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ks = 6y, — 3io/n (1.39)
ks = 2y/n + x0 (1.40)
ks = 2xo/n — 3y, (1.41)
ke = yo/n (1.42)
ky :4y0—2% (1.43)
ks = zo (1.44)
ko = zo/n (1.45)

These equations were used in Reference [3] to solve the problem of the terminal
rendezvous guidance which was used in the Gemini program. These equations give
accurate results only in the vicinity of the origin of the Euler-Hill frame, and break
down rather quickly at greater distances. This is critical for the rendezvous problem,
because the active spacecraft must apply the correct velocity change, several hun-
dred km away from the passive target vehicle, which is considered to be fixed at the
origin O’ of the frame. London, in Reference [4], provided the second-order correc-
tion to these equations to extend their accuracy to greater distances from the origin,
by solving Equations (1.28) through (1.30), which retain the second-order terms in
the expansions, using the method of successive approximations. In Reference [5],
Anthony and Sasaki extended these results to the case of the elliptic orbit with small
eccentricity, and recovered the second-order solutions of London, pointing out
however, some errors in the final solutions. This chapter rederives these equations,
and finds a typographical error in Anthony and Sasaki’s solutions. It is claimed that
the solutions derived here are the final and exact form for the second-order correc-
tions. Carrying out the second-order corrections, enhances the accuracy of our
trajectory propagation scheme used in the orbit determination element of the navi-
gation subsystem at a small cost in computing time and computer memory storage,
but at a considerable effort in deriving these solutions.

1.3 The Second-Order Approximation to the Euler-Hill
Equations of Relative Motion

Using Equations (1.28) through (1.30), London observed that the second-order
approximation X, y,, zp, must satisfy

. . 3n?
X2 —2ny, = r_oxlyl (1.46)
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. . 3
$ + 20k, — 3n’y, = — L [)ﬁ (x% + Z%)} (1.47)

% iy = 3n2y;—§l (1.48)

where x1, y1, 21, represent the first-order solutions given in Equations (1.34) through
(1.36). London’s approach in solving the preceding equations consists of guessing
the form of the solution as

X =g+ oqnt + o) Sy + a3 Cop + A4 Sop + s Copy + Agnt Sy + 70t ¢y (1.49)

Y = ﬁ() +/))1 nt +ﬂ2(nt)2 +,[7)3 Snt +ﬁ4 Cnt +ﬂ5 Sont +ﬂ6 Cont +ﬁ7 nt Spy
+ fgnt ¢y (1.50)

2 =70+ Y1 S+ V2 Cur + 73 Som + Yy Come + V51 Syt + YNt Cpe (1.51)

and then, substituting these expressions and their first and second time derivatives in
Equations (1.46), (1.47) and (1.48), and comparing coefficients term by term, which
results in a set of simultaneous equations which can be solved for the various a;, f3;,
and y; constants.

The method used in this chapter is the same as in References [1, 2], where the
differential equations are solved directly. From Equation (1.46) and in view of
Equations (1.34) and (1.35),

x1y; =A; cﬁt + B sﬁt + Ci Sps Cpr + Dy nt ¢y + Ey 0t Sy + Gy Spy

+Ficy+1int+J; (1.52)
where
Ay = koks = 4x°y° + 6y 0 (1.53)
B :klkﬁzé"%o—éyoy—oz—m (1.54)
Ci = kiks + koke = %—24 3o+ 1853 —2y° (1.55)
Dy = ksks :21%)}0— 18y%—6n—§% (1.56)
Ey = kakg = 6y0y—°—3x0y—g (1.57)

Fi = kokq + ksks = —]4y0 + 8)(?0 ) + 2xpXx0 — 3x0Yy (1 58)
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. .2 ) .
X X, X
Gy = kiky + kgke = 28073107 Sn—g—24y%+2y—g+07y°

W 6
Iy = ksky = 2453 — 2422 0+@

J1 = kaky = syoyo 4%0% °y° + 40y — 230>

In a similar way, from Equations (1.47), (1.34), (1.35) and (1.36),

. . 3 2 1
5o 20k = 3y, = =S [ -5 (5 + D)

1
y% 5 (x% —1—1%) =A; cm + B, s .+ C2 Spy Cop + Do nt cpy + Ep it sy

+ F» cn,+G2sn,+H2nt +ILnt+J,

where,
KB kg 4% 2
2
A2:k5—72—7_ —2+9y5 — 120 ——50
KBk v z
— 2_71_7977_ 70_ 7_70
B, = ki 573 = o 8 18y0+240 2
Cy = 2kske — klszkgkg—lz’“’yo 18y0y;°—10%°
o
D, = —koks = 12y0)% — 630
2
E2 = —k1k3 —42y0 + 36y0 + 12—
Fy = 2ksky — koky = 28y, =2 — ﬁ—242+4&+24xb
2 5K7 — Koky yo 2 Yo 2 07
A Xoy X
G2 = 2k6k7 — k1k4 = 20;0)10 — 12}1—20 — 4)6070 + 6x0y0
—k3 2 9x20 Xo
12 = —k3k4 = —12y0)ﬁ— 6x0y0 _’_6)(70_;;70_'_ 3)60@
n n n
_ kézt 2 _ y(z) B Yo 2 i Xo

and finally for the z equation,

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)
(1.65)

(1.66)
(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

(1.72)
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5+ iz = 32 0L
"o (1.73)
yizi = As c2, + C3 Sy Cu + B3 52, + F3 ¢t + G 5y
where,
Az = kskg = Z%ZO - 3}’020 (174)
By = keko = yg# (1.75)
X0z 0, Y
C3:k5k9+k6kg:2%—3y0;0+;°z() (1.76)
Fs = koks = 4y,z0 — 2%@ (1.77)
Gs = kyko = 4y, 0 — 27020 (1.78)
n n
The z equation takes the following form:
N 3n?
% 4+ 1’z = r_’:) (A3 Cﬁt + B3 sit + C3 Syt ot + F3 ¢y + G3 sn,) (1.79)
whose general solution is given by
2 =) S+ & Cnr
t
+ 3_” (A3 Civ + BB Siv + Q Sony + F3 Cny + G3 Snv)
ro Jo 2
x sinn(t — v)dv (1.80)

and because the initial conditions on z, and z( are already absorbed in the first-order
solutions, we let c’, = c’2 = 0, such that, after carrying out the various integrations,

3 [(A3+B;3) (A3 +2B3) Cs G3) Cs
Zz—a{ i SR R L
B A . ; (1.81)
+%52m + 737”‘ Snt — 73’” Cnt:|

which is of the form given in Equation (1.51), such that, by direct comparison

_3 _ 3 (%0 _ Yol
70 =75, (A3 +B3) =5 (2 PRAl R (1.82)
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_ G 3 XoZ 20 |, YoZ

%0z .
r2= v~ 14 = —(A3 +2B3)/ro = <2 200 1 3y 02)%)/”)

_ Gy [ XoZo , 3 YoZ0 _YoZo
r3= 2r0_< n2+2n_ /7o

(As — B3) Xozo | 3 Yoo
ra= g =TTy Tty )/

3 20X
Ys = 2_roF3 = (6yozo - 3%)/%

3 Z X0
76_—2—r0G3_<—6 0+3 00)/7‘0

Now, the differential equation in x, can be integrated once, such that, from,

(1.83)

(1.84)

(1.85)

(1.86)

(1.87)

(1.88)

. 3n? 3n?
—2ny, :%xlyl (Al ¢, + By s .+ C1 Syt €y + Dy nt ¢y + Eq 1t sy

+Fy e + Gy Sm-l-ll nH-Jl)

3n2 : g
fo =20y, + 2 (A 4+ B) 5+ (Ey+ F) ot (D1 - G) 2|

2

Con n
42nt+D1 tsp — Eq ICnt+117+J1t:| + K,

S2
+(A1 — By) Znt -G

where K| is determined from (i), = 0, with (y2)o = O too, so that

(1.89)

(1.90)

Using the preceding expression for x, in the differential equation for y,, and

regrouping terms, yields

. . 3n? 1
2 2 2 2
Vo + 20k — 307y, = T [)’1 ) (xl +Zl)}
3n?
= - (Az o+ Ba sy, + C Sy Cu + Do it Cy)

+E2 nt Syt + Fa Cor + Ga Sy + Hy 8 + I nt + J5)

Yy + 17y, = —2nK | + a1 Sy + @2 Cu + @3 S2p + Ay Copg + as nt

“+aent s,; + aynt ¢, + ag n*i “+ a9
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whose general solution can be written as

1 t
Yo = kll Spt + k/g Cnt + |:}’l/ (*anl + ai Spy + a2 Cpy + a3 Sony + a4 Copy ( )
0 1.91

+asnv + aghv sy, + any cp, + agn®v? + ag) sinn(t — v)dv}

Once again the constants k] and k), are zero because the initial conditions are
already absorbed in the first-order solutions. The various coefficients a; are given by:

3n?
3n?
a) = —?(ZD] — 261 +F2) (193)
2
513:—;l(Al — B+ C)) (1.94)
o
3n?
a4:—Tm(A2—Bz—C|) (195)
3n?
a5:—?(A1+Bl+2J1+12) (196)
3n?
ag — —X(le +E2) (197)
3n?
a7 = === (D = 2E) (1.98)
2
ag = f%(h + H,) (1.99)
2
a9:73i<m+h> (1.100)
ro 2

After carrying out the various integrations in Equation (1.91), and regrouping
identical terms, the y, solution takes the form

ag 2 2K1 a 2a3 as ag
= (a5 T Grt 3 B4

n n
+(%-F%—%-F%)Cm—%czm—%Sm (1.101)
+ (gt oo+ (g5 = gy e o+
+ 4a—n72n2t2 Spt — 4a—n62nzt2 Cnt + Z—gnztz

which is of the same form as Equation (1.50), such that,
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2 K
,/)’():%—n—zag—z?1 (1.102)
B, = as/n’ (1.103)
pr = ag/n’ (1.104)

a 2613 as ay

Pr=52t 32" 2 an (1.105)
ﬁ4=%+%—%+2% (1.106)
Bs = _3‘% (1.107)
s = _% (1.108)
br=sati5 (1.109)
[}8:%—% (1.110)
The coefficients ag and a; are zero because E, = — 2D; and D, = 2E,. Now,
another identify is /; = — 3 H,, such that,
By = ;70(A2+Bz)_3r—{)2_2r—ff_6r—?+6r—’21_32—% (L.111)
Using the identify I, = — %J 1,
B = — =1, (1.112)
2ro
and using the identify I, = —$H,,
B = -1, (1.113)
4ro
Also by inspection
Py = =P — 205 — P (1.114)
Ps=—PBo—Bs (1.115)
ﬁs_Q L(AI_BI) (1.116)

o 2}"0 27’0
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1

Ps = o (A2 — B, — Cy)

and using the identifies E, = — 2D; and D, = 2E,,
3 3G, 3F;
A T T T

By = 3E;  3F, 3Gy

ro ro 27‘0

and in terms of the initial conditions,

=+ 4
n

By == Bk T 3 4oy 3
0 2 Tt e T Ty T

)

2
_0

T

3 X Yo _ 5Xo

B = ™ (ngyo —x0;0+4y0 P 0)
_ 9 ) X0, %o
ﬁz——2—m<4yo—4)’o;+n2

| .

ﬁ3:r_0<12y0%0+6x0y0 7 y°—3 —-l—Zo—)

_1/(3 i 2 A% Yo B %
ﬁ4_ro<—2x§—5nz—15y0+2nz+18y0n—nz—

1 X Z
ﬁ5=—<2 0o 30y0 ZOZ_;);)

ro n?
ﬂ7——r3<7}’05;0—23_6 %)
s :r3_0( xz§o+2y(;qyo)

with the solution given by

Y2 = ﬂO +/))l nt +ﬂ2 nZIZ +ﬂ3 Snt +ﬂ4 Cnt +ﬁ5 S$ont +ﬂ6 Cont +ﬁ7 nt Spt

+ fg nt ¢y

(1.117)

(1.118)

(1.119)

(1.120)

(1.121)

(1.122)

(1.123)

(1.124)

(1.125)

(1.126)

(1.127)

(1.128)

(1.129)

Using this solution in Equation (1.89) for x,, and integrating once more, yields the x,

solution
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by b 0
x = (20 + K\t + 50’ + 32078 + (b — by - (b4+b7)st
who g DS bt —bitey+ K, (1.130)
2n nt 2n nt nt nt 1 .

The constant K| is determined from (x2)o = 0 at time zero,

/ b bS 7%
Ky=—+2—- (1.131)

The other constants appearing in Equation (1.130) are given by

by =2I’lﬂ1+::,_—gl.]] (1132)
3n
b3—2nﬁ3 (E1+F1) (1134)
b4:2nﬁ4+%(D1 _Gl) (1135)
3n
b5 = 2nﬂ5 +TMA] (1136)
3n
b6:2nﬁ6—4—r0C1 (1137)
b7:2nﬁ7+3r—:D1 (1.138)
3n
by = 2nfy — L Ey (1.139)

Using the j3; expressions developed earlier, the first two coefficients reduce to b; =0,
b, = 0, which, then, gives to x, the form in Equation (1.49), such that

apg = —a3 — 05 (1140)
__3 _6h_  Hy 9 G
m= (At By) o2 -4l (G- D+ ) (1.141)
0!222/54-#@—& (1.142)
ro ro
F
:—2ﬂ3+3—‘+3G (1.143)

o



