Space Technology Library

Jean Albert Kéchichian

Orbital Relative Motion and Terminal Rendezvous

Analytic and Numerical Methods for Spaceflight Guidance Applications

Space Technology Library

Space Technology Library

Published jointly by Microcosm Press and Springer

The Space Technology Library Editorial Board

Managing Editor: James R.Wertz (Microcosm, Inc., El Segundo, CA)

Editorial Board: Roland Doré (Professor and Director International Space

University, Strasbourg)

Tom Logsdon (Senior member of Technical Staff,

Space Division, Rockwell International)

F. Landis Markley (NASA, Goddard Space Flight Center) **Robert G. Melton** (Professor of Aerospace Engineering,

Pennsylvania State University)

Keiken Ninomiya (Professor, Institute of Space&Astronautical Science)

Jehangir J. Pocha (Letchworth, Herts.)

Rex W. Ridenoure (CEO and Co-founder at Ecliptic Enterprises Corporation)

Gael Squibb (Jet Propulsion Laboratory, California Institute of Technology)

Martin Sweeting (Professor of Satellite Engineering, University of Surrey)

DavidA.Vallado (Senior Research Astrodynamicist, CSSI/AGI) **RichardVan Allen** (Vice President and Director, Space Systems Division, Microcosm, Inc.)

Jean Albert Kéchichian

Orbital Relative Motion and Terminal Rendezvous

Analytic and Numerical Methods for Spaceflight Guidance Applications

Jean Albert Kéchichian La Canada Flintridge, CA, USA

Space Technology Library
ISBN 978-3-030-64656-1 ISBN 978-3-030-64657-8 (eBook)
https://doi.org/10.1007/978-3-030-64657-8

 \odot The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To the memory of my brilliant teachers and theses advisers, Baudouin Fraeijs de Veubeke of Liège and John Valentine Breakwell of Stanford.

Preface

This book has two main objectives in its comprehensive exposition of the important problem of time-fixed terminal rendezvous around the Earth using chemical propulsion. The first objective is to present the mathematics of relative motion in near-circular orbit, subjected to the perturbations emanating from the oblateness of the Earth, third-body gravity such as due to the moon and the Sun, and atmospheric drag, all in analytic form, suitable for fast trajectory prediction, without the need for numerical integrations, and for further implementation in computer codes that solve efficiently the required impulsive maneuvers. These analytic solutions are put to use to create computer programs that calculate the required impulsive maneuver that initiates the chase trajectory to intercept a passive or non-maneuvering vehicle in a fixed time, where a second impulse is applied at interception to actually rendezvous with that vehicle.

Unlike previous attempts to solve this problem in vacuum and analytic form, the contents of this book provide solutions of this important spaceflight problem, by also considering the various perturbations affecting the trajectories of both active and passive vehicles, in analytic form, but also with very high accuracy, because the classic treatments available in the literature dating back to the early 1960s are inherently and grossly inaccurate. The gross inaccuracies are mainly due to the paradigm of using a single rotating reference frame usually attached to the passive vehicle itself, with respect to which the chase trajectory is constructed through the initiation of the impulsive velocity change imparted to the active maneuvering vehicle.

The paradigm of the single reference frame is cast aside here, and the problem of the time-fixed terminal rendezvous is solved through the use of three different reference frames at different phases of the calculations, which render possible the computations of the initiating impulse with very high accuracy, while also taking into account the precessions of the orbits due to the second zonal harmonic J_2 of the oblate Earth. Examples of rendezvous spanning several hours are thus generated analytically through an iterative scheme, by using a first guess from an analytic

viii Preface

solution that makes use of a single reference frame located midway between the active and passive vehicles at the initial time.

After showing the derivations of the analytic second-order approximation to the Euler-Hill equations of relative motion in Chapter 1, and then generating the analytic solutions of relative motion as a function of time, by solving the system of the linearized differential equations with, in turn, the forcing terms for the perturbations due to third-body gravity, zonal harmonics J_2 and J_3 , and atmospheric drag, in Chapters 2, 3, 4, and 5, the case of the J_2 -perturbed theory is depicted in Chapter 6 by also including the second-order approximation to the solution of the linearized system of equations of relative motion for added accuracy, and still making use of the single mid-point rotating frame to provide the first guess mentioned earlier. This first guess is then used in Chapter 7, where the three different frames are employed. and an iterative scheme applied, to arrive at the highly accurate rendezvous solution in the near-circular orbit case, and for moderate interception times of the order of several hours. Numerical examples are shown throughout the chapters to verify the accuracy of these analytic solutions by comparing them to numerically integrated ones. The J_2 theory is derived in Chapter 2, and later used in Chapters 6 and 7, without showing the derivations again, but nevertheless included in those latter chapters for ease of reading and completeness, and for making each chapter as self-contained as possible.

The second objective of this book is to apply the theory to the exact long-duration time-fixed terminal rendezvous problem around the oblate Earth, for the general elliptic orbit case. The mathematics of relative motion in general elliptic orbit referred to a rotating coordinate frame attached to the passive non-maneuvering vehicle, and that drags and precesses due to atmospheric drag and Earth oblateness, are depicted in Chapter 8 for the coplanar case with drag, and for the noncoplanar case with drag and J_2 effects, in Chapters 9 and 10. The system of the exact nonlinear differential equations are derived in Chapter 9, and the algorithm that provides the solution through numerical integration and through an iterative scheme is shown in Chapter 10 with several examples. Chapters 9 and 10 are, of course, related such that orbit geometry figures depicted in Chapters 8 and 9 are not repeated in Chapter 10. The theory is exact in the sense that the trajectories are generated by numerically integrating the full system of 12 first-order differential equations, without any simplifying assumptions. The higher-order zonal harmonics such as J_3 , J_4 , etc., are not considered, even though they too can be taken into account to describe a more precise modeling of the oblateness of the Earth. Two-impulse rendezvous trajectories are, thus, produced for various examples of elliptic orbits, and for different interception times spanning several hours, and even days. The last chapter shows how the theories laid out in this book can effectively be applied to station-keep a Walker constellation in Earth orbit, by implementing a series of impulsive maneuvers to counter the drift experienced by the various vehicles, and to maintain the constellation geometry, thus preventing the symmetric configuration of the constellation from getting disrupted, which would, otherwise, affect the coverage generated by their onboard sensors. Many of the examples shown in the book use the analytic solutions generated in Chapter 7 as a starting guess to iterate on, with the full

Preface

nonlinear, and therefore exact dynamics of the later chapters, to arrive at exact converged solutions that can be flown by actual spacecraft in near-circular orbits. Even though the perturbations due J_3 , third-body gravity, and atmospheric drag are available analytically for the near-circular orbit case in the first chapters, the examples at hand do not include them as such, but are easily added to the computer programs to also account for these perturbations. These perturbations can be included in their numerically integrated form, if needed, for the general elliptic orbit case. One of the main advantages of the relative motion theory lies in its being perfectly nonsingular, both for the coplanar, and the J_2 -perturbed noncoplanar cases, unlike the equations of motion based on the classical orbital elements which, of course, exhibit singularities for the circular and equatorial orbits. Equinoctial elements are, however, nonsingular for both of these important cases, and they can also be used for guidance applications, even though they are a bit cumbersome and not as efficient and straightforward as the rotating Cartesian relative rotating coordinates theory of this book which allows to compute easily the rendezvous trajectory.

This book can be used to design terminal two-impulse time-fixed rendezvous trajectories, both for the near-circular and the more general elliptic orbit cases, to carry out trade studies useful in designing both actual vehicles and missions, to fly actual missions by ground-generated or autonomous onboard-generated solutions for rendezvous and docking, formation-keeping, inspection, spacecraft servicing, and relocation applications, among others, in low-Earth orbit, as well as higher orbits such as the geostationary orbit, and to instruct students as well as researchers in spaceflight guidance studies, both in universities that provide aerospace and mechanical engineering curriculae, and practitioners in research laboratories and aerospace companies that design and fly such missions. The theories in this book can be extended to account for even more precise Earth oblateness models, as well as standard atmosphere models using tabular data, instead of the exponential models used here, and to the multi-impulse rendezvous applications through the methods of optimal control, for truly minimum-fuel solutions, if desired, being understood that the full nonlinear differential equations for the dragging and precessing reference frames make it very convenient and straightforward, to calculate the impulsive maneuvers in an efficient manner.

It is appropriate to mention the teachings of my late teacher and thesis adviser, Professor John Valentine Breakwell in the Department of Aeronautics and Astronautics at Stanford University, who made the relative motion mathematics referred to rotating frames, in his classes, a central part of his various graduate courses, providing the inspiration to carry out the research in this book, with obvious essential applications in spaceflight guidance for civilian and military programs, especially in autonomous mode. The complex and difficult typesetting of this book was carried out by Mary Villanueva, previously of The Aerospace Corporation and currently of Raytheon Space and Airborne Systems in El Segundo, California, while the transcription of the figures from print and electronic versions to Adobe Illustrator files was carried out mainly by Yvonne Craig of The Rand Corporation in Arlington,

x Preface

Virginia, and by Jason Perez, previously of The Aerospace Corporation. Gratitude is expressed to all three specialists. The research provided in this book was initially started at the NASA Jet Propulsion Laboratory in Pasadena, California, then, followed at Ford Aerospace in Palo Alto, California, and later at The Aerospace Corporation under contract with the United States Air Force Space and Missile Systems Center.

La Canada Flintridge, CA, USA

Jean Albert Kéchichian

Contents

	Second-Order Analytic Approximation to the Solution
01 til	te Euler-Hill Equations of Relative Motion
1.1	Derivation of the Equations of Motion in Rotating
1.2	
1.3	Rectangular Coordinates for an Elliptic Orbit
1.3	The Second-Order Approximation to the Euler-Hill Equations of Relative Motion
Dofo	rences
Kele	Telices
Ana	lytic Solutions for the Perturbed Motion of a Spacecraft
in N	ear-Circular Orbit, Under the Influence of the J_2 and J_3
Eart	th Zonal Harmonics, in Rotating and Inertial Cartesian
Refe	rence Frames
2.1	Introduction
2.2	Zonal Harmonics Perturbation Acceleration Components
	in Euler-Hill Frame
2.3	General Solution of Perturbed Motion Due to J_2 in Local
	Euler-Hill Frame
2.4	General Solution of Perturbed Motion Due to J_3 in Local Rotating
	Euler-Hill Frame
2.5	General Solution of Perturbed Motion Due to the Combined
	Effect of J_2 and J_3 , in the Euler-Hill Frame
2.6	Refined Analytic Description of Perturbed Motion Due to J_2
	Starting from Any Desired Epoch on a Near-Circular Orbit
2.7	General Solution of Perturbed Motion Due to $J_2 \dots \dots$
2.8	Construction of the Reference Orbit and Generation
	of the Initial Conditions for Forward Propagation
2.9	Numerical Results

xii Contents

	2.10	Comparison of First-Order Analytic Orbit Theory Due to J_2 Perturbation with the Numerically Integrated Solution	50
	2.11	Choice of Reference Orbit and Generation of Corresponding	50
	2.11	Initial Position and Velocity Components to Start the Analytic	
		Solution	50
	2.12	Accuracy Assessments	57
	2.13	Analytic Description of Perturbed Motion Due to J_3 :	
		Comparison with the Numerically Integrated Solution	61
	2.14	General Solution of Perturbed Motion Due to $J_3 \dots \dots$	61
	2.15	General Solution of Perturbed Motion Due to J_2 and J_3	70
	2.16	Numerical Results	73
	2.17	Conclusion	81
	Refer	rences	82
3	Anal	ytic Solutions for the Perturbed Motion of a Spacecraft	
		ear-Circular Orbit, Under the Influence of the Luni-Solar	
		ity, in Rotating and Inertial Cartesian Reference Frames	83
	3.1	Introduction	83
	3.2	Third Body Perturbation Acceleration Components	
		in Euler-Hill Frame	84
	3.3	General Solution of Perturbed Motion Due to Solar Gravity	
		in Rotating Euler-Hill Frame	93
	3.4	General Solution of Perturbed Motion Due to Lunar Gravity	
		in Rotating Euler-Hill Frame	106
	3.5	Comparison of Analytic Solution of Perturbed Motion	
		Due to Luni-Solar Gravity with the Numerically Integrated	
		Solution	110
	3.6	Third Body Gravity Acceleration and Equations of Relative	
		Motion	111
	3.7	Results	122
	Refer	rences	137
4	Effec	t of Luni-Solar Gravity Perturbations on a Near-Circular	
		t: Third-Body Orbit Eccentricity Considerations	139
	4.1	Introduction	139
	4.2	General Form of Third-Body Perturbation Acceleration	
		Components in Rotating Frame	139
	4.3	Derivation of the General Solution	142
	Refer	rence	170
5	Effec	t of Atmospheric Drag Perturbation on Circular Orbits:	
J		osphere Rotation Considerations	171
	5.1	Introduction	171
	5.2	Derivation of the Expression for the Air Relative Velocity	1/1
	٠.٣	in Rotating and Inertial Systems	171

Contents xiii

	5.3	General Solution of Perturbed Motion Due to Atmospheric	
		Drag from a Rotating Atmosphere	180
	5.4	Analytic Solution of Perturbed Motion in Near-Circular	
		Orbit Due to Atmospheric Drag from a Rotating Oblate	
		Atmosphere with Day-to-Night Density Variation	189
		5.4.1 Introduction	189
		5.4.2 Derivation of a Suitable Expression	
		for the Atmospheric Density	190
		5.4.3 General Solution of Perturbed Motion Due	
		to Atmospheric Drag from a Rotating Oblate	
		Atmosphere with Day-to-Night Density Variation	199
	5.5	Effect of Atmospheric Drag Perturbation from an Exponential	
		Rotating Atmosphere on Circular Orbits: Comparison with	
		Numerically Integrated Trajectory	220
		5.5.1 Introduction	220
		5.5.2 General Solution of Perturbed Motion Due	
		to Atmospheric Drag	220
		5.5.3 Numerical Results	225
	Refe	rences	246
6		lytic Solution of Terminal Rendezvous in Near-Circular	
		it Around the Oblate Earth: The Computation	2.47
		e Starting Guess for Iterations	247
	6.1	Introduction	247
	6.2	Equations of Relative Motion Around the Spherical Earth	248
	6.3	Equations of Relative Motion around the Oblate Earth	254
	6.4	Generation of Initial Conditions and Rendezvous Equations	259
	6.5	Numerical Results	264
	6.6	Optimization of Interception Time for Minimum – ΔV	
		Rendezvous	270
	6.7	Conclusion	273
	Refe	rences	273
7	Tech	uniques of Accurate Analytic Terminal Rendezvous	
•		ear-Circular Orbit	275
	7.1	Introduction	275
	7.2	Equations of Relative Motion	277
	7.3	Generation of Initial Conditions and Rendezvous Equations	291
	7.4	Description of Rendezvous Algorithm	297
	7.4	Numerical Results	301
	7.6	Conclusion	307
		rences	307
	IXCIC.	1011008	<i>301</i>

xiv Contents

8	_	anar Two-Impulse Rendezvous in General Elliptic Orbit	
	with	Drag	309
	8.1	Introduction	309
	8.2	General Analysis	310
	8.3	Analytic Solution of the Two-Impulse Coplanar Rendezvous	
		in Vacuum for Target in Circular Orbit	318
	8.4	Numerical Solution of the Two-Impulse Coplanar Rendezvous	
		in Vacuum with Reference in Circular Orbit	324
	8.5	Numerical Solution of the Two-Impulse Coplanar Rendezvous	
		with Drag with Reference Attached to Passive Vehicle	
		in General Elliptic Orbit	327
	8.6	Conclusion	329
	Refer	rences	330
9		Analysis of the Relative Motion in General Elliptic	
		t with Respect to a Dragging and Precessing Coordinate	
		1e	331
	9.1	Introduction	331
	9.2	Euler's Exact Form of the Components of Inertial	
		Acceleration Along Rotating Axes and Its Extension	
		to Orbital Motion	332
	9.3	The Treatment of the Drag and Oblateness Accelerations	342
	9.4	Conclusion	354
	Refer	rences	354
10		Algorithm of the Two-Impulse Time-Fixed Noncoplanar	255
		lezvous with Drag and Oblateness Effects	355
	10.1	Introduction	355
	10.2	Initialization and Rendezvous Algorithm Description	358
	10.3	Numerical Results	368
	10.4	Conclusion	372
		rences	375
11		Analysis and Implementation of In-Plane Stationkeeping	
		ontinuously Perturbed Walker Constellations	377
	11.1	Introduction	377
	11.2	Geometry of Symmetric Walker Constellation	378
	11.3	Perturbation of the Satellite Orbits	380
	11.4	Relative Motion with Respect to Precessing Frames	383
	11.5	In-plane Maneuvering for Targeting to Center of Rotating	
		Frame	387
	11.6	Conclusion	404
	Refer	rences	404
12		Mathematical Models of the Jet Propulsion Laboratory	. =
) Artificial Satellite Analysis Program (ASAP)	405
	12.1	Introduction	405
	12.2	Cowell's Method of Special Perturbation	405

Contents xv

12.3	Central Body Disturbing Function	406
	Third-Body Disturbing Function	
12.5	Equations of Motion Due to Air Drag	408
Refer	ences	409
Index		411

Chapter 1 The Second-Order Analytic Approximation to the Solution of the Euler-Hill Equations of Relative Motion

1.1 Introduction

The first-order solution of the problem of relative motion of a spacecraft in nearcircular orbit is known to degrade in accuracy, when compared to the numerically integrated exact solution, at greater distances from the origin of the rotating reference frame. These solutions have been developed to study the problem of the terminal rendezvous guidance where an active spacecraft at several hundred km from its rendezvous target centered at the rotating frame, must maneuver to intercept the target in a given time. In References [1, 2], the relative motion technique was used for a different purpose, namely to describe the future motion of a spacecraft relative to the rotating frame, as it is perturbed by the Earth zonal harmonics J_2 and J_3 , and by the luni-solar gravity effects. Although these perturbations have a small effect on the spacecraft motion which would not wander to great distances from the origin of the frame, it is felt that because of the presence of initial non-zero velocities, the subsequent motion may drift to considerable distances from the origin of the frame, thereby, degrading the accuracy of the analytic first-order solution of the equations of motion. The initial velocities exist because the orbit determination-generated osculating orbit is necessarily elliptical in nature with small eccentricity, such that at time zero, or epoch, a reference circular orbit having the same radius as the radial distance of the actual spacecraft is assumed, to describe the future motion of the vehicle itself, which, unlike the frame, experiences the various perturbations just mentioned. Second-order corrections to the linear solution of Reference [3] have been obtained in References [4, 5] to extend the region of accuracy of the analytic solutions at greater distances from the origin. This chapter rederives the secondorder solutions, resolving the errors of Reference [4], and the typographical errors of Reference [5], by adopting the nomenclature of these two references in defining the coordinates. The radial coordinate is depicted as y, and the "tangential" coordinate by x, although x is pointing in the opposite direction of motion. The out-of-plane or z coordinate, is along the orbital angular momentum vector. In References [1, 2], x is along the radial direction, y along the "tangential" direction in the direction of motion, and z along the orbital angular momentum vector. When the second-order expressions developed here are added to the first-order solutions of the perturbed motion of References [1, 2], the differences in the coordinates must be properly accounted for.

1.2 Derivation of the Equations of Motion in Rotating Rectangular Coordinates for an Elliptic Orbit

Let $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ represent an inertial coordinate system centered at the Earth, and let a reference elliptic orbit be defined by Ω , i, ω , with eccentricity e, and semimajor axis a as in Figure 1.1. Then $\hat{\mathbf{\theta}}, \hat{\mathbf{r}}, \hat{\mathbf{h}}$ define a rotating frame with $\hat{\mathbf{r}}$, a unit vector along the radial direction \mathbf{r}_0 , $\hat{\mathbf{\theta}}$ a unit vector in the orbital plane and in the direction opposite to the motion, and $\hat{\mathbf{h}}$ a unit vector along the angular momentum vector to complete the right-handed system. This reference frame is attached to the reference elliptic orbit at O' and rotates at the angular rate $\hat{\theta}$ which is a function of angular position θ . The perigee is at P, and $\theta^* = \theta - \omega$ is the true anomaly. The spacecraft position can be

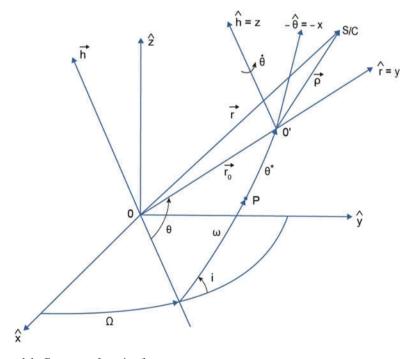


Figure 1.1 Geometry of rotating frame.

referred to the rotating frame by the vector ρ , and to the inertial frame by the vector $\mathbf{r} = \mathbf{r}_0 + \rho$. Because \mathbf{r}_0 and \mathbf{r} obey the following differential equations as described in the inertial system (Reference [5]),

$$\ddot{\mathbf{r}}_{0}^{I} = -\frac{\mu \ddot{\mathbf{r}}_{0}}{r_{0}^{3}} \tag{1.1}$$

$$\ddot{\mathbf{r}} = -\frac{\overset{I}{\mu} \mathbf{r}}{r^3} \tag{1.2}$$

Then with μ standing for the gravity constant of the Earth,

$$\ddot{\ddot{\mathbf{p}}} = -\mu \left[\frac{\dot{\mathbf{r}}}{r^3} - \frac{\dot{\mathbf{r}}_0}{r_0^3} \right] \tag{1.3}$$

This acceleration can also be written directly in terms of the rotating frame as

$$\ddot{\ddot{\boldsymbol{\rho}}} = \ddot{\ddot{\boldsymbol{\rho}}} + 2 \overset{R}{\boldsymbol{\omega}} \times \overset{R}{\dot{\boldsymbol{\rho}}} + \overset{R}{\boldsymbol{\omega}} \times \left(\overset{R}{\boldsymbol{\omega}} \times \overset{R}{\boldsymbol{\rho}} \right) + \overset{R}{\boldsymbol{\omega}} \times \overset{R}{\boldsymbol{\rho}}$$
(1.4)

where the angular velocity vector in the rotating frame has the form

$$\stackrel{R}{\mathbf{\omega}} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix}$$

Writing ρ and \mathbf{r}_0 in terms of their coordinates in the rotating frame,

$$\mathbf{\rho} = x\hat{\mathbf{\theta}} + y\hat{\mathbf{r}} + z\hat{\mathbf{h}} \tag{1.5}$$

$$\mathbf{r}_0 = r_0 \hat{\mathbf{r}} \tag{1.6}$$

then

$$\overset{R}{\mathbf{\omega}} \times \overset{R}{\mathbf{\rho}} = x \dot{\theta} \hat{\mathbf{r}} - y \dot{\theta} \hat{\mathbf{\theta}}$$
 (1.7)

$$\overset{R}{\mathbf{\omega}} \times \left(\overset{R}{\mathbf{\omega}} \times \overset{R}{\mathbf{\rho}} \right) = -y \dot{\boldsymbol{\rho}}^2 \hat{\mathbf{r}} - x \dot{\boldsymbol{\rho}}^2 \hat{\boldsymbol{\theta}}$$
 (1.8)

$$\overset{R}{\mathbf{\omega}} \times \overset{R}{\mathbf{\rho}} = x \ddot{\theta} \, \hat{\mathbf{r}} - y \ddot{\theta} \, \hat{\mathbf{\theta}} \tag{1.9}$$

$$\overset{R}{\mathbf{\omega}} \times \overset{R}{\mathbf{\rho}} = \dot{x}\dot{\theta}\,\hat{\mathbf{r}} - \dot{y}\dot{\theta}\,\hat{\mathbf{\theta}} \tag{1.10}$$

such that Equation (1.4) becomes

$$\overset{l}{\ddot{\boldsymbol{\rho}}} = \left(\ddot{y} + 2\dot{x}\dot{\boldsymbol{\theta}} - y\dot{\boldsymbol{\theta}}^2 + x\ddot{\boldsymbol{\theta}} \right) \hat{\mathbf{r}} + \left(\ddot{x} - 2\dot{y}\dot{\boldsymbol{\theta}} - x\dot{\boldsymbol{\theta}}^2 - y\ddot{\boldsymbol{\theta}} \right) \hat{\boldsymbol{\theta}} + \ddot{z}\hat{\boldsymbol{h}}$$
(1.11)

If Equation (1.3) is resolved into the rotating system directly and compared to Equation (1.11), the second-order differential equations in x, y, z can be readily obtained by observing also that

$$r^{3} = \left[x^{2} + (y + r_{0})^{2} + z^{2}\right]^{3/2}$$
 (1.12)

These exact equations are given by the following three equations, in perfect agreement with Reference [5].

$$\ddot{x} - 2\dot{y}\dot{\theta} - x\dot{\theta}^2 - y\ddot{\theta} + \mu x \left[x^2 + (y + r_0)^2 + z^2 \right]^{-3/2} = 0$$
 (1.13)

$$\ddot{y} + 2\dot{x}\dot{\theta} - y\dot{\theta}^2 + x\ddot{\theta} + \mu(y + r_0)\left[x^2 + (y + r_0)^2 + z^2\right]^{-3/2} - \mu r_0^{-2} = 0$$
 (1.14)

$$\ddot{z} + \mu z \left[x^2 + (y + r_0)^2 + z^2 \right]^{-3/2} = 0$$
 (1.15)

The eccentricity and the semimajor axis of the reference elliptic orbit enter into these equations through the angular velocity $\dot{\theta}$ and acceleration $\ddot{\theta}$. These latter two parameters are obtained as follows:

The orbit equations given in polar form are

$$\ddot{r}_0 - r_0 \dot{\theta}^2 = -\mu/r_0^2 \tag{1.16}$$

$$r_0\ddot{\theta} + 2\dot{r}_0\dot{\theta} = 0 \tag{1.17}$$

The last equation is of course equivalent to $\frac{d}{dt}(r_0^2\dot{\theta})=0$, yielding the constant angular momentum $h=r_0^2\dot{\theta}$, which in turn gives

$$\dot{\theta} = \frac{h}{r_0^2} = \frac{\mu^{1/2} (1 + ec_{\theta^*})^2}{a^{3/2} (1 - e^2)^{3/2}}$$
(1.18)

where $h^2 = \mu a (1 - e^2)$, and $r_0 = (h^2/\mu)(1 + ec_{\theta^*})^{-1}$ has been used. Because θ^* is a function of θ , the angular position, $\dot{\theta}$ is also a function of θ such that along an elliptic reference orbit, $\ddot{\theta}$ the non-zero angular acceleration is obtained from Equation (1.17)

$$\ddot{\theta} = -\frac{2r_0\dot{\theta}}{r_0} \tag{1.19}$$

Because $\dot{r}_0 = -\frac{\mu}{\hbar} e s_{\theta^*}$ by direct differentiation of r_0 , then

$$\ddot{\theta} = \frac{-2\mu e s_{\theta^*} (1 + e c_{\theta^*})^3}{a^3 (1 - e^2)^3}$$
(1.20)

For a circular reference orbit, $\dot{\theta} = \mu^{1/2} a^{-3/2} = n$, the mean motion, and $\ddot{\theta} = 0$ as expected. Given the initial conditions on the position and velocity components and in view of Equations (1.18) and (1.20), the exact differential equations of motion relative to an elliptic reference orbit can now be integrated numerically. These equations are shown in Equations (1.13) through (1.15).

For spacecraft in near-circular orbits, it is appropriate to consider a circular reference orbit, in which case, the equations of motion simplify to take the following form:

$$\ddot{x} - 2n\dot{y} - n^2x + n^2x \left[\left(1 + \frac{y}{r_0} \right)^2 + \frac{x^2}{r_0^2} + \frac{z^2}{r_0^2} \right]^{-3/2} = 0$$
 (1.21)

$$\ddot{y} + 2n\dot{x} - n^2(y + r_0) + n^2(y + r_0) \left[\left(1 + \frac{y}{r_0} \right)^2 + \frac{x^2}{r_0^2} + \frac{z^2}{r_0^2} \right]^{-3/2} = 0$$
 (1.22)

$$\ddot{z} + n^2 z \left[\left(1 + \frac{y}{r_0} \right)^2 + \frac{x^2}{r_0^2} + \frac{z^2}{r_0^2} \right]^{-3/2} = 0$$
 (1.23)

Here r_0 is the radius of the reference cicular orbit. If x, y, z are considered to be small compared to r_0 , then, the term in brackets appearing in the preceding expressions can be expanded as

$$\left[\left(1 + \frac{y}{r_0} \right)^2 + \frac{x^2}{r_0^2} + \frac{z^2}{r_0^2} \right]^{-3/2} = (1 + \eta)^{-3/2} \simeq 1 - \frac{3}{2}\eta + \frac{15}{8}\eta^2 - \frac{35}{16}\eta^3 + \cdots$$

If terms up to the third-order in x/r_0 etc. . . . , are retained, then,

$$(1+\eta)^{-3/2} \simeq 1 - \frac{3y}{r_0} - \frac{3}{2} \left(\frac{x}{r_0}\right)^2 - \frac{3}{2} \left(\frac{z}{r_0}\right)^2 + 6\left(\frac{y}{r_0}\right)^2 + \frac{15}{2} \left(\frac{y}{r_0}\right) \left(\frac{x}{r_0}\right)^2 + \frac{15}{2} \left(\frac{y}{r_0}\right) \left(\frac{z}{r_0}\right)^2 - 10\left(\frac{y}{r_0}\right)^3 + O_4$$

$$(1.24)$$

Then, the equations of motion containing third-order terms in the expansions are obtained as:

$$\ddot{x} - 2n\dot{y} - 3n^2 \frac{xy}{r_0} - \frac{3n^2}{2} \frac{x^3}{r_0^2} - \frac{3n^2}{2} \frac{xz^2}{r_0^2} + 6n^2 \frac{xy^2}{r_0^2} = 0$$
 (1.25)

$$\ddot{y} + 2n\dot{x} - 3n^2y - \frac{3n^2x^2}{2r_0} - \frac{3n^2z^2}{2r_0} + 3n^2\frac{y^2}{r_0} + 6n^2\frac{yx^2}{r_0^2} + 6n^2\frac{yz^2}{r_0^2} + 6n^2\frac{yz^2}{r_0^2} - 4n^2\frac{y^3}{r_0^2} = 0$$
(1.26)

$$\ddot{z} + n^2 z \left(1 - \frac{3y}{r_0} - \frac{3}{2} \frac{x^2}{r_0^2} - \frac{3}{2} \frac{z^2}{r_0^2} + \frac{6y^2}{r_0^2} \right) = 0$$
 (1.27)

If only second-order terms are retained, then,

$$\ddot{x} - 2n\dot{y} - 3n^2 \frac{xy}{r_0} = 0 ag{1.28}$$

$$\ddot{y} + 2n\dot{x} - 3n^2y - \frac{3}{2}n^2\frac{x^2}{r_0} - \frac{3}{2}\frac{n^2z^2}{r_0} + 3n^2\frac{y^2}{r_0} = 0$$
 (1.29)

$$\ddot{z} + n^2 z \left(1 - \frac{3y}{r_0} \right) = 0 \tag{1.30}$$

If second-order terms are also neglected, then the Euler-Hill equations are obtained as:

$$\ddot{x} - 2n\dot{y} = 0 \tag{1.31}$$

$$\ddot{y} + 2n\dot{x} - 3n^2y = 0 \tag{1.32}$$

$$\ddot{z} + n^2 z = 0 ag{1.33}$$

in which the x and y motion is decoupled from the out-of-plane z motion, and whose general solution is given by

$$x_1 = k_1 \, s_{nt} + k_2 \, c_{nt} + k_3 \, nt + k_4 \tag{1.34}$$

$$y_1 = k_5 c_{nt} + k_6 s_{nt} + k_7 (1.35)$$

$$z_1 = k_8 c_{nt} + k_9 s_{nt} ag{1.36}$$

with the coefficients given in terms of the initial conditions as

$$k_1 = 4\frac{\dot{x}_0}{n} - 6y_0 \tag{1.37}$$

$$k_2 = -2\dot{y}_0/n \tag{1.38}$$

$$k_3 = 6y_0 - 3\dot{x}_0/n \tag{1.39}$$

$$k_4 = 2\dot{y}_0/n + x_0 \tag{1.40}$$

$$k_5 = 2\dot{x}_0/n - 3y_0 \tag{1.41}$$

$$k_6 = \dot{y}_0/n$$
 (1.42)

$$k_7 = 4y_0 - 2\frac{\dot{x}_0}{n} \tag{1.43}$$

$$k_8 = z_0 (1.44)$$

$$k_9 = \dot{z}_0/n \tag{1.45}$$

These equations were used in Reference [3] to solve the problem of the terminal rendezvous guidance which was used in the Gemini program. These equations give accurate results only in the vicinity of the origin of the Euler-Hill frame, and break down rather quickly at greater distances. This is critical for the rendezvous problem, because the active spacecraft must apply the correct velocity change, several hundred km away from the passive target vehicle, which is considered to be fixed at the origin O' of the frame. London, in Reference [4], provided the second-order correction to these equations to extend their accuracy to greater distances from the origin, by solving Equations (1.28) through (1.30), which retain the second-order terms in the expansions, using the method of successive approximations. In Reference [5], Anthony and Sasaki extended these results to the case of the elliptic orbit with small eccentricity, and recovered the second-order solutions of London, pointing out however, some errors in the final solutions. This chapter rederives these equations, and finds a typographical error in Anthony and Sasaki's solutions. It is claimed that the solutions derived here are the final and exact form for the second-order corrections. Carrying out the second-order corrections, enhances the accuracy of our trajectory propagation scheme used in the orbit determination element of the navigation subsystem at a small cost in computing time and computer memory storage, but at a considerable effort in deriving these solutions.

1.3 The Second-Order Approximation to the Euler-Hill Equations of Relative Motion

Using Equations (1.28) through (1.30), London observed that the second-order approximation x_2 , y_2 , z_2 , must satisfy

$$\ddot{x}_2 - 2n\dot{y}_2 = \frac{3n^2}{r_0}x_1y_1\tag{1.46}$$

$$\ddot{y}_2 + 2n\dot{x}_2 - 3n^2y_2 = -\frac{3n^2}{r_0} \left[y_1^2 - \frac{1}{2} \left(x_1^2 + z_1^2 \right) \right]$$
 (1.47)

$$\ddot{z}_2 + n^2 z_2 = 3n^2 \frac{y_1 z_1}{r_0} \tag{1.48}$$

where x_1 , y_1 , z_1 , represent the first-order solutions given in Equations (1.34) through (1.36). London's approach in solving the preceding equations consists of guessing the form of the solution as

$$x_2 = \alpha_0 + \alpha_1 nt + \alpha_2 s_{nt} + \alpha_3 c_{nt} + \alpha_4 s_{2nt} + \alpha_5 c_{2nt} + \alpha_6 nt s_{nt} + \alpha_7 nt c_{nt}$$
 (1.49)

$$y_2 = \beta_0 + \beta_1 nt + \beta_2 (nt)^2 + \beta_3 s_{nt} + \beta_4 c_{nt} + \beta_5 s_{2nt} + \beta_6 c_{2nt} + \beta_7 nt s_{nt} + \beta_8 nt c_{nt}$$
(1.50)

$$z_2 = \gamma_0 + \gamma_1 \, s_{nt} + \gamma_2 \, c_{nt} + \gamma_3 \, s_{2nt} + \gamma_4 \, c_{2nt} + \gamma_5 \, nt \, s_{nt} + \gamma_6 \, nt \, c_{nt}$$
 (1.51)

and then, substituting these expressions and their first and second time derivatives in Equations (1.46), (1.47) and (1.48), and comparing coefficients term by term, which results in a set of simultaneous equations which can be solved for the various α_i , β_i , and γ_i constants.

The method used in this chapter is the same as in References [1, 2], where the differential equations are solved directly. From Equation (1.46) and in view of Equations (1.34) and (1.35),

$$x_1 y_1 = A_1 c_{nt}^2 + B_1 s_{nt}^2 + C_1 s_{nt} c_{nt} + D_1 nt c_{nt} + E_1 nt s_{nt} + G_1 s_{nt} + F_1 c_{nt} + I_1 nt + J_1$$
(1.52)

where

$$A_1 = k_2 k_5 = -\frac{4\dot{x}_0 \dot{y}_0}{n^2} + 6y_0 \frac{\dot{y}_0}{n}$$
 (1.53)

$$B_1 = k_1 k_6 = \frac{4\dot{x}_0 \dot{y}_0}{n^2} - 6y_0 \frac{\dot{y}_0}{n} = -A_1 \tag{1.54}$$

$$C_1 = k_1 k_5 + k_2 k_6 = \frac{8\dot{x}_0^2}{n^2} - 24y_0 \frac{\dot{x}_0}{n} + 18y_0^2 - 2\frac{\dot{y}_0^2}{n^2}$$
 (1.55)

$$D_1 = k_3 k_5 = 21 \frac{\dot{x}_0}{n} y_0 - 18 y_0^2 - \frac{6 \dot{x}_0^2}{n^2}$$
 (1.56)

$$E_1 = k_3 k_6 = 6y_0 \frac{\dot{y}_0}{n} - 3\dot{x}_0 \frac{\dot{y}_0}{n^2}$$
 (1.57)

$$F_1 = k_2 k_7 + k_4 k_5 = -14 y_0 \frac{\dot{y}_0}{n} + 8 \dot{x}_0 \frac{\dot{y}_0}{n^2} + 2 x_0 \dot{x}_0 - 3 x_0 y_0$$
 (1.58)

$$G_1 = k_1 k_7 + k_4 k_6 = 28 \frac{\dot{x}_0 y_0}{n} - 8 \frac{\dot{x}_0^2}{n^2} - 24 y_0^2 + 2 \frac{\dot{y}_0^2}{n^2} + \frac{x_0 \dot{y}_0}{n}$$
 (1.59)

$$I_1 = k_3 k_7 = 24 y_0^2 - 24 \frac{\dot{x}_0}{n} y_0 + \frac{6 \dot{x}_0^2}{n^2}$$
 (1.60)

$$J_1 = k_4 k_7 = 8y_0 \frac{\dot{y}_0}{n} - 4 \frac{\dot{x}_0 \dot{y}_0}{n^2} + 4x_0 y_0 - 2x_0 \frac{\dot{x}_0}{n}$$
 (1.61)

In a similar way, from Equations (1.47), (1.34), (1.35) and (1.36),

$$\ddot{y}_2 + 2n\dot{x}_2 - 3n^2y_2 = -\frac{3n^2}{r_0} \left[y_1^2 - \frac{1}{2} \left(x_1^2 + z_1^2 \right) \right]$$

$$y_1^2 - \frac{1}{2} \left(x_1^2 + z_1^2 \right) = A_2 c_{nt}^2 + B_2 s_{nt}^2 + C_2 s_{nt} c_{nt} + D_2 nt c_{nt} + E_2 nt s_{nt}$$

$$+ F_2 c_{nt} + G_2 s_{nt} + H_2 n^2 t^2 + I_2 nt + J_2$$

$$(1.62)$$

where,

$$A_2 = k_5^2 - \frac{k_2^2}{2} - \frac{k_8^2}{2} = \frac{4\dot{x}_0^2}{n^2} + 9y_0^2 - 12y_0 \frac{\dot{x}_0}{n} - 2\frac{\dot{y}_0^2}{n^2} - \frac{z_0^2}{2}$$
 (1.63)

$$B_2 = k_6^2 - \frac{k_1^2}{2} - \frac{k_9^2}{2} = \frac{\dot{y}_0^2}{n^2} - 8\frac{\dot{x}_0^2}{n^2} - 18y_0^2 + 24y_0\frac{\dot{x}_0}{n} - \frac{\dot{z}_0^2}{2n^2}$$
 (1.64)

$$C_2 = 2k_5k_6 - k_1k_2 - k_8k_9 = 12\frac{\dot{x}_0\dot{y}_0}{n^2} - 18y_0\frac{\dot{y}_0}{n} - z_0\frac{\dot{z}_0}{n}$$
(1.65)

$$D_2 = -k_2 k_3 = 12 y_0 \frac{\dot{y}_0}{n} - 6 \frac{\dot{x}_0 \dot{y}_0}{n^2}$$
 (1.66)

$$E_2 = -k_1 k_3 = -42 y_0 \frac{\dot{x}_0}{n} + 36 y_0^2 + 12 \frac{\dot{x}_0^2}{n^2}$$
 (1.67)

$$F_2 = 2k_5k_7 - k_2k_4 = 28y_0\frac{\dot{x}_0}{n} - 8\frac{\dot{x}_0^2}{n^2} - 24y_0^2 + 4\frac{\dot{y}_0^2}{n^2} + 24x_0\frac{\dot{y}_0}{n}$$
 (1.68)

$$G_2 = 2k_6k_7 - k_1k_4 = 20\frac{\dot{y}_0}{n}y_0 - 12\frac{\dot{x}_0\dot{y}_0}{n^2} - 4x_0\frac{\dot{x}_0}{n} + 6x_0y_0 \tag{1.69}$$

$$H_2 = \frac{-k_3^2}{2} = -18y_0^2 - \frac{9}{2}\frac{\dot{x}_0^2}{n^2} + 18y_0\frac{\dot{x}_0}{n}$$
 (1.70)

$$I_2 = -k_3 k_4 = -12 y_0 \frac{\dot{y}_0}{n} - 6x_0 y_0 + 6 \frac{\dot{x}_0 \dot{y}_0}{n^2} + 3x_0 \frac{\dot{x}_0}{n}$$
 (1.71)

$$J_2 = \frac{-k_4^2}{2} + k_7^2 = -2\frac{\dot{y}_0^2}{n^2} - \frac{x_0^2}{2} - 2x_0\frac{\dot{y}_0}{n} + 16y_0^2 + 4\frac{\dot{x}_0^2}{n^2} - 16y_0\frac{\dot{x}_0}{n}$$
(1.72)

and finally for the z equation,

$$\ddot{z}_2 + n^2 z_2 = 3n^2 \frac{y_1 z_1}{r_0}$$

$$y_1 z_1 = A_3 c_{nt}^2 + C_3 s_{nt} c_{nt} + B_3 s_{nt}^2 + F_3 c_{nt} + G_3 s_{nt}$$

$$(1.73)$$

where,

$$A_3 = k_5 k_8 = 2 \frac{\dot{x}_0}{n} z_0 - 3y_0 z_0 \tag{1.74}$$

$$B_3 = k_6 k_9 = \frac{\dot{y}_0 \dot{z}_0}{n^2} \tag{1.75}$$

$$C_3 = k_5 k_9 + k_6 k_8 = 2 \frac{\dot{x}_0 \dot{z}_0}{n^2} - 3y_0 \frac{\dot{z}_0}{n} + \frac{\dot{y}_0}{n} z_0$$
 (1.76)

$$F_3 = k_7 k_8 = 4y_0 z_0 - 2\frac{\dot{x}_0}{n} z_0 \tag{1.77}$$

$$G_3 = k_7 k_9 = 4y_0 \frac{\dot{z}_0}{n} - 2 \frac{\dot{x}_0 \dot{z}_0}{n^2}$$
 (1.78)

The z equation takes the following form:

$$\ddot{z}_2 + n^2 z_2 = \frac{3n^2}{r_0} \left(A_3 c_{nt}^2 + B_3 s_{nt}^2 + C_3 s_{nt} c_{nt} + F_3 c_{nt} + G_3 s_{nt} \right)$$
 (1.79)

whose general solution is given by

$$z_{2} = c'_{1} s_{nt} + c'_{2} c_{nt}$$

$$+ \frac{3n}{r_{0}} \int_{0}^{t} \left(A_{3} c_{nv}^{2} + B_{3} s_{nv}^{2} + \frac{C_{3}}{2} s_{2nv} + F_{3} c_{nv} + G_{3} s_{nv} \right)$$

$$\times \sin n(t - v) dv$$

$$(1.80)$$

and because the initial conditions on z_0 and \dot{z}_0 are already absorbed in the first-order solutions, we let $c_1' = c_2' = 0$, such that, after carrying out the various integrations,

$$z_{2} = \frac{3}{r_{0}} \left[\frac{(A_{3} + B_{3})}{2} - \frac{(A_{3} + 2B_{3})}{3} c_{nt} + \left(\frac{C_{3}}{3} + \frac{G_{3}}{2} \right) s_{nt} - \frac{C_{3}}{6} s_{2nt} + \frac{(B_{3} - A_{3})}{6} c_{2nt} + \frac{F_{3}}{2} nt s_{nt} - \frac{G_{3}}{2} nt c_{nt} \right]$$

$$(1.81)$$

which is of the form given in Equation (1.51), such that, by direct comparison

$$\gamma_0 = \frac{3}{2r_0}(A_3 + B_3) = \frac{3}{2r_0} \left(2\frac{\dot{x}_0 z_0}{n} - 3y_0 z_0 + \frac{\dot{y}_0 \dot{z}_0}{n^2} \right)$$
(1.82)

$$\gamma_1 = -2\gamma_3 - \gamma_6 = \frac{C_3}{r_0} + \frac{3}{2r_0}G_3 = \left(-\frac{\dot{x}_0\dot{z}_0}{n^2} + 3\frac{y_0\dot{z}_0}{n} + \frac{\dot{y}_0z_0}{n}\right)/r_0 \tag{1.83}$$

$$\gamma_2 = -\gamma_0 - \gamma_4 = -(A_3 + 2B_3)/r_0 = \left(-2\frac{\dot{x}_0 z_0}{n} + 3y_0 z_0 - 2\frac{\dot{y}_0 \dot{z}_0}{n^2}\right)/r_0 \quad (1.84)$$

$$\gamma_3 = -\frac{C_3}{2r_0} = \left(-\frac{\dot{x}_0 \dot{z}_0}{n^2} + \frac{3}{2} \frac{y_0 \dot{z}_0}{n} - \frac{\dot{y}_0 z_0}{2n}\right) / r_0 \tag{1.85}$$

$$\gamma_4 = -\frac{(A_3 - B_3)}{2r_0} = \left(-\frac{\dot{x}_0 z_0}{n} + \frac{3}{2}y_0 z_0 + \frac{\dot{y}_0 \dot{z}_0}{2n^2}\right) / r_0 \tag{1.86}$$

$$\gamma_5 = \frac{3}{2r_0} F_3 = \left(6y_0 z_0 - 3\frac{z_0 \dot{x}_0}{n} \right) / r_0 \tag{1.87}$$

$$\gamma_6 = -\frac{3}{2r_0}G_3 = \left(-6y_0\frac{\dot{z}_0}{n} + 3\frac{\dot{x}_0\dot{z}_0}{n^2}\right)/r_0 \tag{1.88}$$

Now, the differential equation in x_2 can be integrated once, such that, from,

$$\ddot{x}_{2} - 2n\dot{y}_{2} = \frac{3n^{2}}{r_{0}}x_{1}y_{1} = \frac{3n^{2}}{r_{0}}\left(A_{1}\ c_{nt}^{2} + B_{1}\ s_{nt}^{2} + C_{1}\ s_{nt}\ c_{nt} + D_{1}\ nt\ c_{nt} + E_{1}\ nt\ s_{nt} + F_{1}\ c_{nt} + G_{1}\ s_{nt} + I_{1}\ nt + J_{1}\right)$$

$$\dot{x}_{2} = 2ny_{2} + \frac{3n^{2}}{r_{0}}\left[\left(A_{1} + B_{1}\right)\frac{t}{2} + \left(E_{1} + F_{1}\right)\frac{s_{nt}}{n} + \left(D_{1} - G_{1}\right)\frac{c_{nt}}{n}\right] + \left(A_{1} - B_{1}\right)\frac{s_{2nt}}{4n} - C_{1}\frac{c_{2nt}}{4n} + D_{1}\ ts_{nt} - E_{1}\ tc_{nt} + I_{1}\frac{nt^{2}}{2} + J_{1}t\right] + K_{1}$$

$$(1.89)$$

where K_1 is determined from $(\dot{x}_2)_0 = 0$, with $(y_2)_0 = 0$ too, so that

$$K_1 = -\frac{3n}{r_0} \left(D_1 - G_1 - \frac{C_1}{4} \right) \tag{1.90}$$

Using the preceding expression for \dot{x}_2 in the differential equation for y_2 , and regrouping terms, yields

$$\ddot{y}_2 + 2n\dot{x}_2 - 3n^2y_2 = -\frac{3n^2}{r_0} \left[y_1^2 - \frac{1}{2} \left(x_1^2 + z_1^2 \right) \right]$$

$$= -\frac{3n^2}{r_0} \left(A_2 c_{nt}^2 + B_2 s_{nt}^2 + C_2 s_{nt} c_{nt} + D_2 nt c_{nt} \right)$$

$$+ E_2 nt s_{nt} + F_2 c_{nt} + G_2 s_{nt} + H_2 n^2 t^2 + I_2 nt + J_2 \right)$$

$$\ddot{y}_2 + n^2 y_2 = -2nK_1 + a_1 s_{nt} + a_2 c_{nt} + a_3 s_{2nt} + a_4 c_{2nt} + a_5 nt$$

$$+ a_6 nt s_{nt} + a_7 nt c_{nt} + a_8 n^2 t^2 + a_9$$

whose general solution can be written as

$$y_{2} = k'_{1} s_{nt} + k'_{2} c_{nt} + \left[\frac{1}{n} \int_{0}^{t} (-2nK_{1} + a_{1} s_{nv} + a_{2} c_{nv} + a_{3} s_{2nv} + a_{4} c_{2nv} + a_{5}nv + a_{6}nv s_{nv} + a_{7}nv c_{nv} + a_{8}n^{2}v^{2} + a_{9}) \sin n(t - v) dv \right]$$

$$(1.91)$$

Once again the constants k'_1 and k'_2 are zero because the initial conditions are already absorbed in the first-order solutions. The various coefficients a_i are given by:

$$a_1 = -\frac{3n^2}{r_0}(2E_1 + 2F_1 + G_2) \tag{1.92}$$

$$a_2 = -\frac{3n^2}{r_0}(2D_1 - 2G_1 + F_2) \tag{1.93}$$

$$a_3 = -\frac{3n^2}{2r_0}(A_1 - B_1 + C_2) \tag{1.94}$$

$$a_4 = -\frac{3n^2}{2r_0}(A_2 - B_2 - C_1) \tag{1.95}$$

$$a_5 = -\frac{3n^2}{r_0}(A_1 + B_1 + 2J_1 + I_2) \tag{1.96}$$

$$a_6 = -\frac{3n^2}{r_0}(2D_1 + E_2) \tag{1.97}$$

$$a_7 = -\frac{3n^2}{r_0}(D_2 - 2E_1) \tag{1.98}$$

$$a_8 = -\frac{3n^2}{r_0}(I_1 + H_2) \tag{1.99}$$

$$a_9 = -\frac{3n^2}{r_0} \left(\frac{A_2 + B_2}{2} + J_2 \right) \tag{1.100}$$

After carrying out the various integrations in Equation (1.91), and regrouping identical terms, the y_2 solution takes the form

$$y_{2} = \left(\frac{a_{9}}{n^{2}} - \frac{2}{n^{2}}a_{8} - \frac{2K_{1}}{n}\right) + \left(\frac{a_{1}}{2n^{2}} + \frac{2a_{3}}{3n^{2}} - \frac{a_{5}}{n^{2}} - \frac{a_{7}}{4n^{2}}\right)s_{nt}$$

$$+ \left(\frac{a_{4}}{3n^{2}} + \frac{2a_{8}}{n^{2}} - \frac{a_{9}}{n^{2}} + \frac{2K_{1}}{n}\right)c_{nt} - \frac{a_{4}}{3n^{2}}c_{2nt} - \frac{a_{3}}{3n^{2}}s_{2nt}$$

$$+ \left(\frac{a_{2}}{2n^{2}} + \frac{a_{6}}{4n^{2}}\right)nt\ s_{2nt} + \left(\frac{a_{7}}{4n^{2}} - \frac{a_{1}}{2n^{2}}\right)nt\ c_{nt} + \frac{a_{5}}{n^{2}}nt$$

$$+ \frac{a_{7}}{4n^{2}}n^{2}t^{2}\ s_{nt} - \frac{a_{6}}{4n^{2}}n^{2}t^{2}\ c_{nt} + \frac{a_{8}}{n^{2}}n^{2}t^{2}$$

$$(1.101)$$

which is of the same form as Equation (1.50), such that,

$$\beta_0 = \frac{a_9}{n^2} - \frac{2}{n^2} a_8 - 2\frac{K_1}{n} \tag{1.102}$$

$$\beta_1 = a_5/n^2 \tag{1.103}$$

$$\beta_2 = a_8/n^2 \tag{1.104}$$

$$\beta_3 = \frac{a_1}{2n^2} + \frac{2a_3}{3n^2} - \frac{a_5}{n^2} - \frac{a_7}{4n^2} \tag{1.105}$$

$$\beta_4 = \frac{a_4}{3n^2} + \frac{2a_8}{n^2} - \frac{a_9}{n^2} + 2\frac{K_1}{n} \tag{1.106}$$

$$\beta_5 = -\frac{a_3}{3n^2} \tag{1.107}$$

$$\beta_6 = -\frac{a_4}{3n^2} \tag{1.108}$$

$$\beta_7 = \frac{a_2}{2n^2} + \frac{a_6}{4n^2} \tag{1.109}$$

$$\beta_8 = \frac{a_7}{4n^2} - \frac{a_1}{2n^2} \tag{1.110}$$

The coefficients a_6 and a_7 are zero because $E_2 = -2D_1$ and $D_2 = 2E_1$. Now, another identify is $I_1 = -\frac{4}{3}H_2$, such that,

$$\beta_0 = -\frac{3}{2r_0}(A_2 + B_2) - \frac{3J_2}{r_0} - \frac{2H_2}{r_0} - \frac{6G_1}{r_0} + \frac{6D_1}{r_0} - \frac{3C_1}{2r_0}$$
 (1.111)

Using the identify $I_2 = -\frac{3}{2}J_1$,

$$\beta_1 = -\frac{3}{2r_0} J_1 \tag{1.112}$$

and using the identify $I_1 = -\frac{4}{3}H_2$,

$$\beta_2 = -\frac{3}{4r_0}I_1\tag{1.113}$$

Also by inspection

$$\beta_3 = -\beta_1 - 2\beta_5 - \beta_8 \tag{1.114}$$

$$\beta_4 = -\beta_0 - \beta_6 \tag{1.115}$$

$$\beta_5 = \frac{C_2}{2r_0} + \frac{1}{2r_0} (A_1 - B_1) \tag{1.116}$$

$$\beta_6 = \frac{1}{2r_0}(A_2 - B_2 - C_1) \tag{1.117}$$

and using the identifies $E_2 = -2D_1$ and $D_2 = 2E_1$,

$$\beta_7 = \frac{3}{2r_0}E_2 + \frac{3G_1}{r_0} - \frac{3F_2}{2r_0} \tag{1.118}$$

$$\beta_8 = \frac{3E_1}{r_0} + \frac{3F_1}{r_0} + \frac{3G_2}{2r_0} \tag{1.119}$$

and in terms of the initial conditions,

$$\beta_0 = \frac{3}{r_0} \left(\frac{x_0^2}{2} + \frac{\dot{x}_0^2}{n^2} + \frac{7}{2} y_0^2 - \frac{\dot{y}_0^2}{2n^2} - \frac{4\dot{x}_0 y_0}{n} + \frac{z_0^2}{4} + \frac{\dot{z}_0^2}{4n^2} \right)$$
(1.120)

$$\beta_1 = -\frac{3}{r_0} \left(2x_0 y_0 - x_0 \frac{\dot{x}_0}{n} + 4y_0 \frac{\dot{y}_0}{n} - 2 \frac{\dot{x}_0 \dot{y}_0}{n^2} \right)$$
 (1.121)

$$\beta_2 = -\frac{9}{2r_0} \left(4y_0^2 - 4y_0 \frac{\dot{x}_0}{n} + \frac{\dot{x}_0^2}{n^2} \right) \tag{1.122}$$

$$\beta_3 = \frac{1}{r_0} \left(12y_0 \frac{\dot{y}_0}{n} + 6x_0 y_0 - 7 \frac{\dot{x}_0 \dot{y}_0}{n^2} - 3x_0 \frac{\dot{x}_0}{n} + z_0 \frac{\dot{z}_0}{n} \right)$$
(1.123)

$$\beta_4 = \frac{1}{r_0} \left(-\frac{3}{2} x_0^2 - 5 \frac{\dot{x}_0^2}{n^2} - 15 y_0^2 + 2 \frac{\dot{y}_0^2}{n^2} + 18 y_0 \frac{\dot{x}_0}{n} - \frac{\dot{z}_0^2}{n^2} - \frac{z_0^2}{2} \right)$$
(1.124)

$$\beta_5 = \frac{1}{r_0} \left(2 \frac{\dot{x}_0 \dot{y}_0}{n^2} - 3y_0 \frac{\dot{y}_0}{n} - z_0 \frac{\dot{z}_0}{2n} \right) \tag{1.125}$$

$$\beta_6 = \frac{1}{r_0} \left(\frac{9}{2} y_0^2 + 2 \frac{\dot{x}_0^2}{n^2} - \frac{1}{2} \frac{\dot{y}_0^2}{n^2} + \frac{\dot{z}_0^2}{4n^2} - \frac{z_0^2}{4} - 6y_0 \frac{\dot{x}_0}{n} \right)$$
(1.126)

$$\beta_7 = -\frac{3}{r_0} \left(7y_0 \frac{\dot{x}_0}{n} - 2\frac{\dot{x}_0^2}{n^2} - 6y_0^2 \right) \tag{1.127}$$

$$\beta_8 = \frac{3}{r_0} \left(-\frac{\dot{x}_0 \dot{y}_0}{n^2} + 2 \frac{y_0 \dot{y}_0}{n} \right) \tag{1.128}$$

with the solution given by

$$y_2 = \beta_0 + \beta_1 nt + \beta_2 n^2 t^2 + \beta_3 s_{nt} + \beta_4 c_{nt} + \beta_5 s_{2nt} + \beta_6 c_{2nt} + \beta_7 nt s_{nt} + \beta_8 nt c_{nt}$$
(1.129)

Using this solution in Equation (1.89) for \dot{x}_2 , and integrating once more, yields the x_2 solution

$$x_{2} = (2n\beta_{0} + K_{1})t + \frac{b_{1}}{2n}n^{2}t^{2} + \frac{b_{2}}{3n}n^{3}t^{3} + (b_{8} - b_{3})\frac{c_{nt}}{n} + (b_{4} + b_{7})\frac{s_{nt}}{n} + \frac{b_{6}}{2n}s_{2nt} - \frac{b_{5}}{2n}c_{2nt} + b_{8}t s_{nt} - b_{7}t c_{nt} + K'_{1}$$

$$(1.130)$$

The constant K'_1 is determined from $(x_2)_0 = 0$ at time zero,

$$K_1' = \frac{b_3}{n} + \frac{b_5}{2n} - \frac{b_8}{n} \tag{1.131}$$

The other constants appearing in Equation (1.130) are given by

$$b_1 = 2n\beta_1 + \frac{3n}{r_0}J_1 \tag{1.132}$$

$$b_2 = 2n\beta_2 + \frac{3n}{2r_0}I_1 \tag{1.133}$$

$$b_3 = 2n\beta_3 + \frac{3n}{r_0}(E_1 + F_1) \tag{1.134}$$

$$b_4 = 2n\beta_4 + \frac{3n}{r_0}(D_1 - G_1) \tag{1.135}$$

$$b_5 = 2n\beta_5 + \frac{3n}{2r_0}A_1 \tag{1.136}$$

$$b_6 = 2n\beta_6 - \frac{3n}{4r_0}C_1 \tag{1.137}$$

$$b_7 = 2n\beta_7 + \frac{3n}{r_0}D_1 \tag{1.138}$$

$$b_8 = 2n\beta_8 - \frac{3n}{r_0}E_1 \tag{1.139}$$

Using the β_i expressions developed earlier, the first two coefficients reduce to $b_1 = 0$, $b_2 = 0$, which, then, gives to x_2 the form in Equation (1.49), such that

$$\alpha_0 = -\alpha_3 - \alpha_5 \tag{1.140}$$

$$\alpha_1 = -\frac{3}{r_0}(A_2 + B_2) - \frac{6J_2}{r_0} - 4\frac{H_2}{r_0} - \frac{9}{r_0}\left(G_1 - D_1 + \frac{C_1}{4}\right)$$
(1.141)

$$\alpha_2 = 2\beta_4 + \frac{3G_1}{r_0} - \frac{3F_2}{r_0} \tag{1.142}$$

$$\alpha_3 = -2\beta_3 + \frac{3F_1}{r_0} + \frac{3G_2}{r_0} \tag{1.143}$$