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Preface

The idea for writing this book came up when the authors met at the University of
Valencia in 2005. While comparing our experiences with regard to various aspects
of the linear ordering problem (LOP), we realized that most of the optimization
technologies had been successfully applied to solve this problem. We also found that
there were only a small number of books covering all state-of-the-art optimization
methods for hard optimization problems (especially considering both exact methods
and heuristics together). We thought that the LOP would make an ideal example to
survey these methods applied to one problem and felt the time was ripe to embark
on the project of writing this monograph.

Faced with the challenge of solving hard optimization problems that abound in
the real world, classical methods often encounter serious difficulties. Important ap-
plications in business, engineering or economics cannot be tackled by the solution
methods that have been the predominant focus of academic research throughout the
past three decades. Exact and heuristic approaches are dramatically changing our
ability to solve problems of practical significance and are extending the frontier of
problems that can be handled effectively. In this text we describe state-of-the-art
optimization methods, both exact and heuristic, for the LOP. We actually employ
the LOP to illustrate current optimization technologies and the design of successful
implementations of exact and heuristic procedures. Therefore, we do not limit the
scope of this book to the LOP but, on the contrary, we provide the reader with the
background and strategies in optimization to tackle different combinatorial prob-
lems.

This monograph is devoted to the LOP, its origins, applications, instances and
especially to methods for its effective approximate or exact solution. Our intention
is to provide basic principles and fundamental ideas and reflect the state-of-the-art
of heuristic and exact methods, thus allowing the reader to create his or her per-
sonal successful applications of the solution methods. The book is meant to be of
interest for researchers and practitioners in computer science, mathematics, opera-
tions research, management science, industrial engineering, and economics. It can
be used as a textbook on issues of practical optimization in a master’s course or as
a reference resource for engineering optimization algorithms.
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viii Preface

To make the book accessible to a wider audience, it is to a large extent self-
contained, providing the reader with the basic definitions and concepts in optimiza-
tion. However, in order to limit the size of this monograph we have not included
extensive introductions. Readers interested in further details are referred to appro-
priate textbooks such as [4, 84, 102, 117, 118, 124].

The structure of this book is as follows. Chapter 1 provides an introduction to the
problem and its applications and describes the set of benchmark instances which we
are using for our computational experiments and which have been made publically
available. Chapter 2 describes such basic heuristic methods such as construction
and local searches. Chapter 3 expands on Chapter 2 and covers meta-heuristics in
which the simple methods are now embedded in complex solution algorithms based
on different paradigms, such as evolution or learning strategies. Chapter 4 discusses
branch-and-bound, the principal approach for solving difficult problems to optimal-
ity. A special version based on polyhedral combinatorics, branch-and-cut, is pre-
sented in Chapter 5. Chapter 6 deals in more detail with the linear ordering polytope
which is at the core of branch-and-cut algorithms. The book concludes with Chap-
ter 7, where a number of further aspects of the LOP and potential issues for further
research are described.

Rafael Martı́’s research was partially supported by the Ministerio de Ciencia e
Innovación of Spain (Grant Refs. TIN2006-02696 and TIN2009-07516).

We are in debt to many people, but in particular to some very good friends and
colleagues who helped us to gain a deeper understanding of the linear ordering
problem: Vicente Campos, Thomas, Christof, Angel Corberán, Carlos Garcı́a, Fred
Glover, Martin Grötschel, Michael Jünger, Manuel Laguna and Dionisio Pérez. The
proofreading by Cara Cocking, Elena Fernández, Héctor Fraire, Marcus Oswald,
Rodolfo Pazos, Hanna Seitz, Markus Speth and Pei Wang is particularly acknowl-
edged. Finally, our special thanks go to Abraham Duarte, who implemented most
of the methods described in Chapters 2 and 3 and performed some of the associated
experiments.

Valencia, Heidelberg Rafael Martı́
October 2010 Gerhard Reinelt
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Chapter 1
Introduction

Abstract The linear ordering problem (LOP) is one of the classical combinatorial
optimization problems which was already classified as NP-hard in 1979 by Garey
and Johnson [50]. It has received considerable attention in various application areas
ranging from archeology and scheduling to economics and even mathematical psy-
chology. Solution methods for the LOP have been proposed since 1958, when Chen-
ery and Watanabe outlined some ideas on how to obtain solutions for this problem.
The interest in this problem has continued over the years, resulting in the book [111]
and many recent papers in scientific journals. This chapter surveys the main LOP
applications and instances. We have compiled a comprehensive set of benchmark
problems including all problem instances which have so far been used for conduct-
ing computational experiments. Furthermore we have included new instances. All
of them form the new benchmark library LOLIB. We will use them in the next chap-
ters to report our experiments with heuristics, meta-heuristics and exact approaches
for the LOP.

1.1 Basic definitions

In its graph version the LOP is defined as follows. Let Dn = (Vn,An) denote the com-
plete digraph on n nodes, i.e., the directed graph with node set Vn = {1,2, . . . ,n} and
the property that for every pair of nodes i and j there is an arc (i, j) from i to j and
an arc ( j, i) from j to i. A tournament (or spanning tournament) T in An consists of
a subset of arcs containing for every pair of nodes i and j either arc (i, j) or arc ( j, i),
but not both. A (spanning) acyclic tournament is a tournament without directed cy-
cles, i.e., not containing an arc set of the form {(v1,v2),(v2,v3), . . . ,(vk,v1)} for
some k > 1 and distinct nodes v1,v2, . . . ,vk.

A linear ordering of the nodes {1,2, . . . ,n} is a ranking of the nodes given as
linear sequence, or equivalently, as a permutation of the nodes. We denote the lin-
ear ordering that ranks node v1 first, v2 second, etc., and vn last by 〈v1,v2 . . . ,vn〉
and write vi ≺ v j if node vi is ranked before node v j. If σ denotes a linear

R. Martı́ and G. Reinelt, The Linear Ordering Problem, Exact and Heuristic Methods
in Combinatorial Optimization 175, DOI: 10.1007/978-3-642-16729-4 1,
c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

ordering, then σ(i) gives the position of node i in this ordering. We will also con-
sider partial orderings where only a subset of the nodes is ranked or only some pairs
are compared.

It is easy to see that an acyclic tournament T in An corresponds to a linear or-
dering of the nodes of Vn and vice versa: the node ranked first is the one without
entering arcs in T , the node ranked second is the one with one entering arc (namely
from the node ranked first), etc., and the node ranked last is the one without leaving
arcs in T .

Usually, ordering relations are weighted and we have weights ci j giving the ben-
efit or cost resulting when node i is ranked before node j or, equivalently, when
the arc (i, j) is contained in the acyclic tournament. The (weighted) linear ordering
problem is defined as follows.

Linear ordering problem

Given the complete directed graph Dn = (Vn,An) with arc weights ci j

for every pair i, j ∈Vn, compute a spanning acyclic tournament T in An

such that ∑(i, j)∈T ci j is as large as possible.

Alternatively, the LOP can be defined as a matrix problem, the so-called trian-
gulation problem.

Triangulation problem

Let an (n,n)-matrix H = (Hi j) be given. Determine a simultaneous per-
mutation of the rows and columns of H such that the sum of superdiag-
onal entries becomes as large as possible.

Obviously, by setting arc weights ci j = Hi j for the complete digraph Dn, the trian-
gulation problem for H can be solved as a linear ordering problem in Dn. Conversely,
a linear odering problem for Dn can be transformed to a triangulation problem for
an (n,n)-matrix H by setting Hi j = ci j and the diagonal entries Hii = 0.

Consider as an example the (5,5)-matrix

H =

⎛
⎜⎜⎜⎜⎝

0 16 11 15 7
21 0 14 15 9
26 23 0 26 12
22 22 11 0 13
30 28 25 24 0

⎞
⎟⎟⎟⎟⎠

.

The sum of its superdiagonal elements is 138. An optimum triangulation is ob-
tained if the original numbering (1,2,3,4,5) of the rows and columns is changed to
(5,3,4,2,1), i.e., the original element H12 becomes element Hσ(1)σ(2) = H̃54 in the
permuted matrix. Thus the optimal triangulation of H is
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H̃ =

⎛
⎜⎜⎜⎜⎝

0 25 24 28 30
12 0 26 23 26
13 11 0 22 22
9 14 15 0 21
7 11 15 16 0

⎞
⎟⎟⎟⎟⎠

.

Now the sum of superdiagonal elements is 247.

1.2 Applications of the Linear Ordering Problem

We review some of the many applications of the linear ordering problem.

1.2.1 Equivalent Graph Problems

The acyclic subdigraph problem (ASP) is defined as follows. Given a directed graph
D = (V,A) with arc weights di j, for all (i, j) ∈ A, determine a subset B ⊆ A which
contains no directed cycles and has maximum weight d(B) = ∑(i, j)∈B di j.

It can easily be seen that this problem is equivalent to the LOP. For a given ASP
define a LOP on Dn, where n = |V |, by setting for 1 ≤ i, j ≤ n, i �= j:

ci j =

{
max{0,di j}, if (i, j) ∈ A,

0, otherwise.

If T is a tournament of maximum weight, then B = {(i, j) ∈ T ∩A | ci j > 0} is an
acyclic subdigraph of D of maximum weight. In the opposite direction, by adding a
suitably large constant, we can transform a given LOP into an equivalent one where
all weights are strictly positive. Then an acyclic subdigraph of maximum weight is
a tournament.

The feedback arc set problem (FBAP) in a weighted digraph D = (V,A) consists
of finding an arc set B of minimum weight such that A\B is acyclic, i.e., such that
B is a so-called feedback arc set intersecting every dicycle of D. Obviously, FBAP
and ASP are equivalent because they are complementary questions.

Fig. 1.1 shows a digraph on 9 nodes where the arcs of a minimum feedback arc
set are drawn as dotted lines. If the six arcs of the feedback arc set are removed, we
obtain an acyclic arc set.
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Fig. 1.1 A digraph with
minimum feedback arc set

1.2.2 Related Graph Problems

There are some further problems dealing with acyclic subdigraphs. The node in-
duced acyclic subdigraph problem asks for a node set W ⊆ V such that the subdi-
graph (W,A(W )) is acyclic. (Here A(W ) denotes the set of arcs with both end nodes
in W .) The problem can be defined either with node weights d, and d(W ) is to be
maximized, or with arc weights c where c(A(W )) has to be maximum. Analogously,
the feedback node set problem is to find a set W ⊆V such that (V \W,A(V \W )) is
acyclic. Here, sums of node weights or arc weights have to be minimized.

The request that solution digraphs have to be node induced adds a further com-
plexity. These problems cannot be transformed to a pure linear ordering problem
and are even more difficult.

1.2.3 Aggregation of Individual Preferences

Linear ordering problems may occur whenever rankings of some objects are to
be determined. Consider for example the following situation. A set of n objects
O1,O2, . . . ,On is given which have to be rated by m persons according to their in-
dividual preferences. Then a ranking of these objects is to be found which reflects
these single rankings as closely as possible. The first question to be answered is
how the individual rankings can be obtained. One solution is a pairwise comparison
experiment. For any pair Oi and O j, 1 ≤ i < j ≤ n, of objects each person decides
whether Oi should be preferred to O j or vice versa. The results of these m

(n
2

)
com-

parisons are stored in an (n,n)-matrix H = (Hi j) where Hi j = number of persons
preferring object Oi to object O j. A ranking of these objects which infers as few
contradictions to the individual rankings as possible can be obtained by triangulat-
ing H. It should be remarked that there are various statistical methods to aggregate
single preference relations to one relation.

This area of application is the oldest one of the LOP. In 1959 Kemeny [77] posed
the following problem (Kemeny’s problem). Suppose that there are m persons and
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each person i, i = 1, . . . ,m, has ranked n objects by giving a linear ordering Ti of
the objects. Which common linear ordering aggregates the individual orderings in
the best possible way? We can solve this problem as a linear ordering problem by
setting ci j = number of persons preferring object Oi to object O j. Note that this is
basically the problem stated above, but this time the relative ranking of the objects
by each single person is consistent (which is not assumed above).

Slater [119], in 1961, asked for the minimum number of arcs that have to be
reversed to convert a given tournament T into an acyclic tournament. In the context
of preferences, the input now is a collection of rankings for all pairs i and j of objects
stating whether i should be preferred to j or vice versa and the problem is to find
a the maximum number of pairwise rankings without contradiction. Also Slater’s
problem can also be solved as a LOP, namely by setting

ci j =

{
1, if (i, j) ∈ T,

0, otherwise.

Questions of this type naturally occur in the context of voting (How should a fair
distribution of seats to parties be computed from the votes of the electors?) and have
already been studied in the 18th century by Condorcet [37].

1.2.4 Binary Choice Probabilities

Let Sn denote the set of all permutations of {1,2, . . . ,n} and let P be a probability
distribution on Sn.

Define the induced (binary choice) probability system p for {1,2, . . . ,n} as the
mapping p : {1,2 . . . ,n}×{1,2 . . .,n} \ {(i, i) | i = 1,2, . . . ,n}→ [0,1] where

p(i, j) = ∑
S∈Sn, i≺ j in S

P(S).

The question of whether a given vector p is a vector of binary choice probabilities
according to this definition is of great importance in mathematical psychology and
the theory of social choice (see [48] for a survey).

In fact, the set of binary choice vectors is exactly the linear ordering polytope
which will play a prominent role later in this book.

1.2.5 Triangulation of Input-Output Tables

One field of practical importance in economics is input-output analysis. It was pi-
oneered by Leontief [88, 89] who was awarded the Nobel Prize in 1973 for his
fundamental achievements. The central component of input-output analysis is the
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so-called input-output table which represents the dependencies between the differ-
ent branches of an economy. To make up an input-output table the economy of a
country is divided into sectors, each representing a special branch of the economy.
An input-output table shows the transactions between the single sectors in a certain
year. To be comparable with each other all amounts are given in monetary values.
Input-output analysis is used for forecasting the development of industries and for
structural planning (see [69] for an introductory survey).

Triangulation is a means for a descriptive analysis of the transactions between
the sectors. In a simple model of production structure the flow of goods begins in
sectors producing raw material, then sectors of manufacturing follow, and in the
last stage goods for consumption and investments are produced. A real economy, of
course, does not show such a strict linearity in the interindustrial connections, here
there are flows between almost any sectors. Nevertheless it can be observed that the
main stream of flows indeed goes from primary stage sectors via the manufacturing
sectors to the sectors of final demand. Triangulation is a method for determining a
hierarchy of all sectors such that the amount of flow incompatible with this hierar-
chy (i.e., from sectors ranked lower to sectors ranked higher) is as small as possible.
Such rankings allow interpretations of the industrial structure of a country and com-
parisons between different countries.

1.2.6 Optimal Weighted Ancestry Relationships

This application from anthropology has been published in [56]. Consider a cemetery
consisting of many individual gravesites. Every gravesite contains artifacts made
of different pottery types. As gravesites sink over the years and are reused, it is
a reasonable assumption that the depth of a pottery type is related to its age. So
every gravesite gives a partial ordering of the pottery types contained in it. These
partial orderings may not be consistent in the sense that pairs of pottery types may
be ranked differently depending on the gravesite. The task of computing a global
ordering with as few contradictions as possible amounts to solving a linear ordering
problem in the complete directed graph where the nodes correspond to the pottery
types and the arc weights are aggregations of the individual partial orderings. In [56]
several possibilities for assigning arc weights are discussed and a simple heuristic
for deriving an ordering is presented.

1.2.7 Ranking in Sports Tournaments

In many soccer leagues each team plays each other team twice. The winner of a
match gets three points, in case of a tie both teams get one point. In the stan-
dard procedure, the final ranking of the teams in the championship is made up
by adding these points and breaking ties by considering the goals scored. Another


