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Foreword

Teaching and learning are difficult tasks not only when people are involved but
also with regard to computer programs and machines: When the teaching/learning
units are too small, we cannot express sufficient context to teach a differentiated
lesson; when they are too large, the complexity of the learning task can increase
dramatically such that it will take forever to teach and learn a lesson. Thus, the
question arises, how we can teach and learn complex concepts and strategies, or
more specifically: How can the lesson be structured and scaled such that efficient
and effective learning can be achieved?

Reinforcement learning has developed as a successful learning approach for do-
mains that are not fully understood and that are too complex to be described in
closed form. However, reinforcement learning does not scale well to large and con-
tinuous problems; furthermore, knowledge acquired in one environment cannot be
transferred to new environments. Although this latter phenomenon also has been ob-
served in human learning situations to a certain extent, it is desirable to generalize
suitable insights for application also in new situations.

In this book, Lutz Frommberger investigates whether deficiencies of reinforce-
ment learning can be overcome by suitable abstraction methods. He discusses vari-
ous forms of spatial abstraction, in particular qualitative abstraction, a form of rep-
resenting knowledge that has been thoroughly investigated and successfully applied
in spatial cognition research. With his approach, Lutz Frommberger exploits spatial
structures and structural similarity to support the learning process by abstracting
from less important features and stressing the essential ones. The author demon-
strates his learning approach and the transferability of knowledge by having his
system learn in a virtual robot simulation system and consequently transferring the
acquired knowledge to a physical robot.

Lutz Frommberger’s approach is influenced by findings from cognitive science.
In this book, he focuses on the role of knowledge representation for the learning
process: Not only is it important to consider what is represented, but also how it is
represented. It is the appropriate representation of an agent’s perception that enables
generalization in the learning task and that allows for reusing learned policies in
new contexts—without additional effort. Thus, the choice of spatial representation
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vi Foreword

for the agent’s state space is of critical importance; it must be well considered by
the designer of the learning system. This book provides valuable help to support this
design process.

Bremen, September 2010 Christian Freksa



Preface

Abstraction is one of the key capabilities of human cognition. It enables us to con-
ceptualize the surrounding world, build categories, and derive reactions from these
categories to cope with different situations. Complex and overly detailed circum-
stances can be reduced to much simpler concepts, and not until then does it become
feasible to deliberate about conclusions to draw and actions to take.

Such capabilities, which come easily to a human being, can still be a big chal-
lenge for an artificial agent: In the past years of research I investigated how to em-
ploy such human concepts in a learning machine. In particular, my research focused
on utilizing spatial abstraction techniques in agent control, using the machine learn-
ing paradigm of reinforcement learning. This led to results published in journals
and conference proceedings over the years that are now integrated and significantly
extended to a comprehensive study on spatial abstraction in reinforcement learning
in this book. It is spans the whole range from formal aspects to empirical results.

Reinforcement learning allows us to learn successful strategies in domains that
are too complex to be described in a closed model or in cases where the system
dynamics are only partially known. It has been shown to be effectively applicable
to a large number of tasks and applications. However, reinforcement learning in its
“pure” form shows severe limitations in practical use. In particular, it does not scale
well to large and continuous problems, and it does not allow for reuse of already
gained knowledge within the learning task or in new tasks in unknown environ-
ments. Spatial abstraction is an appropriate way to tackle these problems.

When regarding the nature of abstraction, I believe that only a consistent formal-
ization of abstraction allows for a thorough investigation of its properties and effects.
Thus, I present formal definitions that distinguish between three different facets of
abstraction: aspectualization, coarsening, and conceptual classification. Based on
these definitions it can be shown that aspectualization and coarsening can be uti-
lized to achieve the same effect. Hence, the process of aspectualization is to be
preferred when using spatial abstraction in agent control processes, as it is compu-
tationally simple and its features are easily accessible. This allows for coping even
with high-dimensional state spaces. The property of a representation being aspectu-
alizable turns out to be central for agent control.

vii



viii Preface

In order to use abstraction to control artificial agents, I argue for an action-
centered view on abstraction that concentrates on the decisions being drawn at cer-
tain states. I derive criteria for efficient abstraction in agent control tasks and show
that these criteria can most satisfactorily be matched by the use of qualitative rep-
resentations, especially when they model important aspects in the state space such
that they can be accessed by aspectualization.

In sequential decision problems we can distinguish between goal-directed and
generally sensible behavior. The corresponding spatial features form task space and
structure space. As it is of special importance to describe structural elements of the
state space explicitly in an abstract spatial representation, I introduce the concept of
structure space aspectualizable observation spaces. For this kind of state space, two
methods are developed in this book: task space tile coding (TSTC) and a posteri-
ori structure space transfer (APSST). They allow for reusing structural knowledge
while learning to solve a task and also in different tasks in unknown environments.
Furthermore, I introduce structure-induced task space aspectualization (SITSA), a
mechanism for situation-dependent spatial abstraction based on knowledge gained
from a structural analysis of learned policies in previous tasks.

We will study the effect of the proposed techniques on an instance of structure
space aspectualizable state spaces, namely le-RLPR, an abstract spatial represen-
tation tailored for robot navigation in indoor environments. It describes the circu-
lar order of landmarks around the moving robot and the relative position of walls
with regard to the agent’s moving direction. Compared to coordinate-based metri-
cal approaches, le-RLPR enables us to learn successful strategies for goal-directed
navigation tasks considerably faster. Policies learned with le-RLPR also allow for
generalization within the actual learning task as well as for transferring knowledge
to new scenarios in unknown environments. As a final demonstration we will see
that RLPR-based policies learned in a simulator can also be transferred to a real
robotics system with little effort and allow for sensible navigation behavior of a
robot in office environments.
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Chapter 1
Introduction

One of the most essential properties of a cognitive being is its ability to learn. Learn-
ing is the “process of acquiring modifications in existing knowledge, skills, habits,
or tendencies through experience, practice, or exercise” (Encyclopædia Britannica,
2007). These modifications lead to a performance improvement of the cognitive be-
ing (also called cognitive agent) in the tasks it has to solve in its daily routines.
Learning provides the agent with a preferably good adaptation of its behavior to the
situations it is confronted with.

While most of the learning efforts of human beings and animals are achieved
in the early years, learning is generally a life-long process. Perceived situations
may change over time, and even the perception abilities themselves may change,
and the dynamics of the agent may vary due to age or abrasion. These changes
require continuous adaptations of the acquired strategies and behaviors over a longer
period of time. It is desirable to find this ability also in artificial cognitive agents,
for example, in autonomous robots.

1.1 Learning Machines

Much effort has been spent in the field of artificial intelligence (AI) to investigate
methods for machine learning. This field of research spans two distinct paradigms.
Supervised learning requires external knowledge given by an expert, who supervises
the learning process. The learning agent is supposed to find a mapping between its
input values and the desired output that is given by the expert. In contrast, unsuper-
vised learning autonomously constructs a classification of the input without inter-
vention from outside. Many types of machine learning approaches exist somewhere
between supervised and unsupervised learning.

This book concentrates on one of the most influential machine learning tech-
niques: the learning paradigm of reinforcement learning (RL) (Sutton and Barto,
1998). In RL, learning does not take place by teaching or supervision, but by in-
teraction with a dynamic and uncertain environment. It can be seen as a form of
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2 1 Introduction

weakly supervised learning. The concept of reinforcement learning was addressed
very early in psychology and cybernetics and has gained a still increasing popularity
in machine learning research over the last two decades. Basically, it implements a
mechanism of reinforcing tendencies that lead the system to a “positive” state. Re-
inforcement learning is trial-and-error learning. Positive reinforcement is only given
when the system reaches a well-defined goal state. The aim of this mechanism is to
find the optimal way to reach this goal state. This way is given by a sequence of
actions, each usually performed after a decision at a given, discrete point in time.
Reinforcement learning methods are mostly applied to operate on a special case of
sequential decision problems, so-called Markov decision processes (MDPs).

Reinforcement learning is very valuable when the characteristics of the under-
lying system are not known and/or difficult to describe or when the environment
of an acting agent is only partially known or completely unknown. Various applica-
tions have been realized with reinforcement learning approaches, mostly concerning
game playing, robotics, and control problems.

1.1.1 An Agent Control Task

Autonomous agents are in continuous interaction with the world they are operating
in. Navigation in space, which is an essential ability of such agents, is a complicated
process of perceiving the environment with their sensory system and performing
physical actions according to an adequate interpretation of the collected sensory
data. What is adequate in this context depends on the problem the agent has to
solve.

Example 1.1. Imagine a discrete grid world with 6×6 grid cells (Fig. 1.1). An agent
is always within one of the grid cells and can go from there to the adjacent grid cells
in cardinal directions. The world is unknown to the agent, and its task is to reach
a specified goal location from any position within the grid. There are 36 different
positions the robot can be in, the system states or, for short, the states. This problem

Fig. 1.1 A grid cell exam-
ple. The robot is at position
(4,4). Its goal (G) is to reach
the bottom left cell (1,1). Its
primitive actions are move-
ments to neighbored cells to
the left, right, top, and bottom
of its position 1 2 3 4 5 6

6

5

4

3

2

1 G



1.1 Learning Machines 3

Fig. 1.2: A robot in a simulated office environment: the state space of this problem
is continuous

can be formulated as a Markov decision process and can therefore be solved with
reinforcement learning.

During the training process, the agent learns a policy that returns a particular ac-
tion to execute for every state the agent is in. The policy is based on the value func-
tion that maintains an assessment of states with regard to solving the overall prob-
lem. For the simple problem in Example 1.1, a reinforcement learning algorithm is
able to learn a solution after executing a few hundred actions. The complexity of
RL scales linearly with the number of states: To give an impression, Kaelbling et al.
(1996) report the need for 531,000 learning steps for a grid world with 3,277 states.

Long training times are a general problem of reinforcement learning. RL methods
are proved to converge to an optimal solution, but the prerequisite is that each sys-
tem state be continuously updated—which is practically impossible in larger state
spaces. Even worse, most real-world state spaces are not discrete. Figure 1.2 shows
a robot in an office environment—a continuous world with an infinite number of
states.

An important question that arises here is how to describe a system state in a
given context. Sensor readings of the robot are given in real numbers and form a
continuous state space. That means that the value function has a continuous domain
and cannot be stored easily in a table as in the case of a discrete one. To cope with
continuous state spaces, some kind of value function approximation is used. Various
approaches exist for this. What is common to all of them is that the incorporation
of these methods introduces, besides a bunch of new parameters to cope with, un-
certainty in the representation that may have unwanted effects. If the approximation
is too rough, states may not be distinguished even if they had to be; if it is too fine,
the training times will become unacceptably long. The choice of the right function
approximation and the choice of its parameters usually requires solid expert knowl-


