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Preface 

The problem of finding the densest packing of congruent circles in a square is ob
viously an interesting challenge of discrete and computational geometry with all its 
surprising structural forms and regularities. It is easy to understand what the problem 
is: to position a given number of equal circles in such a way that the circles fit fully 
in a square without overlapping. 

With a large number of circles to be packed, the solution is very difficult to find. 
This difficulty is highlighted by many features. On one hand it is clear that an optimal 
solution can be rotated, reflected, or the circles can be reordered, and hence the number 
of equivalent optimal solutions blows up as the number of circles increases. On the 
other hand, in several cases there even exists a circle in an optimal packing that can 
be moved slightly while retaining the optimality. Such free circles (or rattles) mean 
that there exist not only a continuum of optimal solutions, but the measure of the set 
of optimal solutions is positive! 

One nice aspect of circle packing is that the problem is clear without any further 
explanation, and a solution can be provided by a figure. In a certain sense, the num
ber of circles for which we know the optimal packing with certainty indicates how 
sophisticated the available theoretical and computational tools are. One can think that 
it is a kind of measure of our technological and scientific capabilities. 

Beyond the theoretically challenging character of the problem, there are several 
ways in which the solution methods can be applied to practical situations. Direct 
applications are related to cutting out congruent two-dimensional objects from an 
expensive material, or locating points within a square in such a way that the shortest 
distance between them is maximal. Circle packing problems are closely related to 
the 'obnoxious facility location' problems, to the Tammes problem (locate a given 
number of points on a sphere in such a way that the minimal distance among them is 
maximal), and less closely related to the Kissing Number Problem (determine how 
many unit spheres can touch a given unit sphere in an n-dimensional space). The 
emerging computational algorithms can also be well utilized in other hard-to-solve 
optimization problems like molecule conformation. 



X Preface 

The involvement of the authors with circle packing began in 1993 when one of the 
authors, Tibor Csendes, visited the University of Karlsruhe in Germany. His colleague, 
Dietmar Ratz, showed him a paper written in the IBM Nachrichten (42(1992) 76-77) 
about the difficulties involved in packing ten circles in the unit square. The problem 
seemed to fit the interval arithmetic-based reliable optimization algorithms they were 
investigating. 

However, the first tries were disappointing: not even the trivial three-circle prob
lem instance could be solved with the hardware and software environments available 
at that time. It became clear that symmetric equivalent solutions made the problem 
hard to solve. 

A couple of years later a PhD student, Peter Gabor Szabo, asked Tibor Csendes for 
an operations research subject. Among those offered was the circle packing problem, 
since Peter graduated as a mathematician (and not as a computer science expert, as 
do the majority of the PhD students at the Institute of Informatics of the University of 
Szeged). He began with an investigation of the structural questions of circle packing. 

The Szeged team collaborated with the Department of Computer Architecture 
and Electronics at the University of Almeria in Spain in optimization, first in the 
framework of a Tempus project, and then for some years within a European Erasmus 
/ Socrates programme. The head of the Spanish department, Inmaculada Garcia, sent 
two PhD students to Szeged for a few months. One of the PhD students, Leocadio 
Gonzalez Casado, was interested in the circle packing problem and invested some time 
in a new approximating solution algorithm. Peter Gabor Szabo visited the Almeria 
team, and the joint work resulted in the first double article reporting six world best 
packings at that time. These candidate optimal packings were all beaten later by the 
results of Eckard Specht at the University of Magdeburg. His collaboration with the 
Hungarian team brought other publications on the subject. 

The last member joining the present team was Mihaly Csaba Markot. He was a 
PhD student supervised by Tibor Csendes, but was working on another topic, im
proving the efficiency of interval arithmetic-based global optimization algorithms. 
His interest turned relatively late to circle packing, when the interval optimization 
methods seemed to be effective enough to tackle such tough problems. It was very 
interesting to see what kind of utilization of the problem specialities was necessary 
to build a numerically reliable computer procedure that cracked the next unsolved 
problem instances of 28, 29, and 30 circles. That produced a kind of happy end for 
this nearly 10-year story—and a return to the first hopeless-looking technique. 

The authors had intended this volume to be a summary of results achieved in the past 
few years, providing the reader with a comprehensive view of the theoretical and com
putational achievements. One of the major aims was to publish all the programming 
codes used. The checking performed by the wider scientific community has helped 
in having the computational proofs accepted. The open source codes we used will 
enable the interested reader to improve on them and solve problem instances that still 
remain challenging, or to use them as a starting point for solving related application 
problems. 



Preface XI 

The present book can be recommended for those who are interested in discrete ge
ometrical problems and their efficient solution techniques. The volume is also worth 
reading by operations research and optimization experts as a report or as a case study 
of how utilization of the problem structure and specialities enabled verified solutions 
of the previously hopeless high-dimensional nonlinear optimization problems with 
nonlinear constraints. The outlined history of the whole solution procedure provides 
a balanced picture of how theoretical results, like repeated patterns, lower and upper 
bounds on possible optimum values, and approximate stochastic optimization tech
niques, supported the final resolution of the original problem. 
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ticipated in the research. This work was supported by the Grants OTKA T 016413, 
T 017241, T 034350, FKFP 0739/97, and by the Grants OMFB D-30/2000, OMFB 
E-24/2001. It was also supported by the SOCRATES-ERASMUS programme (25/ 
ERMOB/1998-99), by the Spanish Ministry of Education (CICYT TIC96-1125-C03-
03) and by the Consejeria de Educacion de la Junta de Andalucia (07/FSC/MDM). 
All grants obtained are gratefully acknowledged, and the authors hope they have been 
used in an efficient and effective way - as in part reflected by the present volume. 
Mihaly Csaba Markot would like to thank the Advanced Concepts Team of the Eu
ropean Space Agency, Noordwijk, The Netherlands for the possibility to prepare the 
manuscript during his postdoctoral fellowship. The authors are grateful to Jose Anto
nio Bermejo (University of Almeria, Spain) for preparation of the enclosed CD-ROM, 
and to David R Curley for checking this book from a linguistic point of view. 
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Introduction and Problem History 

1.1 Problem description and motivation 

The general mathematical problem of finding the densest packing of equal objects in 
a bounded shape arises in many fields of the natural sciences, in engineering design, 
and also in everyday life. Some applications that involve the packing of identical 
circles are the following: 

- coverage: place radio towers in a geographical region such that the coverage of 
the towers is maximal, with as little interference as possible; 

- storage: place as many identical objects as possible (e.g. barrels) into a storage 
container; 

- packaging: determine the smallest box into which one can pack a given number 
of bottles; 

- tree exploitation: plant trees in a given region such that the forest is as dense as 
possible, but the trees allow each other to grow up to their maximal desired size; 

- cutting industry: cut out as many identical disks as possible from a given (in the 
general case, irregular) piece of material. 

All the above applications require the solution of the following general problem: 

Place n > 2 identical circles (disks) in a given, bounded subset of the plane 
without overlapping, in such a way that the density of the packing is maximal (The 
density of the packing is defined as the ratio of the filled and total available area.) 

In this book we mainly deal with the problems of packing equal circles in the 
square. However, some of the results (especially, the stochastic algorithms of Chapters 
4 and 5) can be applied or generalized to more general packing scenarios as well. 
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Fig. 1.1. The Malfatti circles. 

1.2 The history of circle packing 

The circle packing problem has a long history in mathematics, see e.g. [94,118,130]. 
In this section we will review some of the existing results, starting from the early 
investigations. 

1.2.1 The problem of Malfatti 

In European mathematics, one of the first examples of looking for some kind of optimal 
packing of circles is the famous 'Malfatti Problem \ In 1803, the Italian mathematician 
Gianfrancesco Malfatti (1731-1807) posed the following question: Consider a right 
prism with a right triangular base. How do we cut out three cylinders (perhaps of 
different sizes) from the prism, such that the total volume of the cylinders is maximal? 

Malfatti thought that the solution was to construct three circles in the triangle, in 
such a way that each one of them touched the other two circles and two sides of the 
triangle. In mathematical literature, the geometric construction of such circles in an 
arbitrary triangle is called the Malfatti Problem (Figure 1.1). However, it is worth 
mentioning that this latter problem was previously studied and solved earlier by the 
Japanese mathematician Chokuen Ajima (1732-1798) [30]. 

Interestingly, it turned out only about a hundred years later (according to our 
knowledge) that the Malfatti circles do not necessarily give the densest packing of 
three (non-identical) circles in a triangle: In 1930, H. Lob and H. W. Richmond [59] 
showed that in an equilateral triangle a different packing can give a greater density 
than those of the Malfatti circles (see Figure 1.2). 

The problem of finding the densest possible configuration in an arbitrary triangle 
was solved in 1992 by V. A. Zalgaller and G. A. Los' [131]. 

1.2.2 The circle packing studies of Farkas Bolyai 

It seems likely that the Hungarian mathematician Farkas Bolyai (1775-1856) was the 
first scientist who investigated the density of circle packing sequences in bounded 
regions and published the related results. In his main work - usually referred to as the 
'Tentamen', 1832-33 [6] - , a dense packing of equal circles in an equilateral triangle 
was worked out, as depicted in Figure 1.3. 
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Fig. 1.2. The Malfatti circles and a denser packing in an equilateral triangle. 

Fig. 1.3. The example of Bolyai for packing 19 equal circles in an equilateral triangle. 

This particular packing is obtained by dividing the triangle into congruent equilat
eral triangles and placing the circles in these smaller triangles. Then three additional 
circles with the same radius can be placed in the positions which are surrounded by 
six circles. 

Bolyai defined an infinite packing sequence based on the refinement of the subdi
vision of the large triangle, and investigated the limit of the 'vacuitas' (in Latin, the 
area not covered by the circles). It is easy to demonstrate that the limit density of the 
resulting packing sequence is 7r/\/l2. 

An interesting historical question is the motivation behind the studies of Bolyai 
in this subject. According to research of mathematical history, he was about to apply 
for a position in the forestry commission, and this led him to the investigation of 
problems like planting trees in given regions such that 'they share the same amount 
of light and air'. Figures 1.4 and 1.5 show some of his other packing examples in this 
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Fig. 1.4. Two examples by Farkas Bolyai for planting trees in a square-shaped region. 

Fig. 1.5. Two examples by Farkas Bolyai for planting trees in a triangular region. 

subject. Reference [113] gives more detailed information on this topic with further 
examples. 

It should be mentioned here that the above packings of Farkas Bolyai are not 
necessarily optimal in terms of density. For instance, the packing of Figure 1.3 has 
been recently shown to be suboptimal: if the sides of the triangle are chosen to have 
unit length, the common radius of the circles in the packing of Bolyai is approximately 
0.072169. However, in 1995, R. L. Graham and B. D. Lubachevsky discovered the 
packing configurations portrayed in Figure 1.6 with the approximate radii of 0.074360, 
0.074326, and 0.074323, respectively [35]. (Recall that Bolyai did not intend to look 
for the densest packings, but actually investigated the convergence of the sequence 
of densities.) 
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r-0.074360 r-0.074326 r=0.074323 

Fig. 1.6. The packings of 19 circles with densities larger than that of the example by Bolyai. 

Fig. 1.7. A Japanese Sangaku. 

1.2.3 Packing problems from ancient Japan 

Historically, the work of Bolyai was not the very first on the packing of circles. There 
are other interesting early packings in fine arts, relics of religions, in nature [121], and 
also outside Europe. For instance, many of the Japanese ' Sangaku's of the Edo period 
(1603-1867) deal with various problems of locating circles in various context. The 
name Sangaku means mathematical tablet in English. These wooden tablets usually 
contain geometrical problems. They were displayed in temples and Shinto shrines, 
probably for meditation purposes (Figure 1.7). 

Figure 1.8 shows an example where six equal circles have been packed in a 
rectangle, also from Japan. For more information on this interesting area of the history 
of mathematics, see [30], say. 
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Fig. 1.8. The packing of six equal circles in a rectangle, carved on a rock in Japan. 

1.2.4 A circle packing from Hieronymus Bosch 

Perhaps the most extraordinary example depicting circle packings is the famous pic
ture by the Dutch painter Hieronymus Bosch (c. 1450-1516): On the left wing of 
his triptych 'The Garden of Earthly Delights' (c. 1500), an arrangement of circles is 
displayed on the surface of a sphere. Interestingly, the packing is very hard to discover 
even in high-quality catalogues; the details become visible only after magnification 
(Figure 1.9). 

1.2.5 The densest packing of circles in the plane 

The first solution to the problem of determining the densest packing of equal circles in 
the plane was given by the Norwegian mathematician Axel Thue (1863-1922)—see 
[123, 124]. One can prove that the densest packing is the one coming from intuition: 
the hexagonal structure, where each circle is surrounded by six others (Figure 1.10). 
In 1773, J. L. Lagrange (1736-1813) proved that this structure results in the densest 
lattice packing on the plane [58]. The density of the hexagonal packing is 7 r / \ / l2 , 
equal to the limit of the earlier mentioned packing sequence of Farkas Bolyai. 

Note that the first optimality proof by Thue was not very convincing; it was 
completed by the Hungarian mathematician Laszlo Fejes Toth (1915-2005) in 1940 
[21]. 
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Fig. 1.9. Circles on a sphere in 'The Garden of Earthly Delights' by Hieronymus Bosch. 

Fig. 1.10. The densest packing of identical circles in the plane. 

1.2.6 Circle packings in bounded shapes 

The literature of the studies related to the densest packing of identical circles in 
bounded regions is very rich. Besides the problem class of packing in a square, there 
are notable results for the packing of circles in a circle [26,27, 28, 33, 37, 57, 76, 96, 
101], in an equilateral triangle [35, 74, 77, 78, 91, 92], in an isosceles right triangle 
[45], and in a rectangle [103]. 
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1.2.7 Generalizations and related problems 

One can formulate the circle packing problems in such a way that the packing is 
carried out in some non-Euclidean geometry (e.g. in Bolyai-Lobachevsky geometry). 
However, in such cases even the proper way of defining the concept of density raises 
some difficulties [7]. Furthermore, the problem can be modified so that we can use 
a metric other than the usual Euclidean one [4, 22, 25]. Of course, one can consider 
packings in higher dimensions; see, for example the famous Kepler Problem [42], 
and the Kissing Number problem class [12]. 

1.2.8 Packing of equal circles in a unit square 

The first appearance of this particular problem in the mathematical literature is the 
publication by Leo Moser [82] from 1960, in which he raised the following conjec
ture: ''eight points in or on a unit square determine a distance less than or equal 
to I sec 15^ '\ (For historical completeness, however, note that from the memoirs of 
L. Fejes Toth it turns out that he and his compatriot Dezso Lazar (1913- c. 1943) had 
already investigated the problem before 1940 [112, 117].) 

The above conjecture of Moser was proved by J. Schaer and A. Meir [105] in 
1965. In the latter publication the authors mentioned that for n = 6 there already 
exists a proof by R. L. Graham, and they were also aware of a proof for n = 7. In the 
end, neither of these claimed proofs was published. (The optimal arrangements are 
obvious up to n = 5.) Schaer sent his early proof for n = 7 to P. G. Szabo (one of the 
authors of this volume), adding a comment that he thought it was an 'ugly proof, so 
he had decided not to publish it. To the best of our knowledge, no optimality proof for 
the case n = 7 has yet been published (with purely mathematical tools, i.e. without 
using computers). The n = 6 case was later solved by B. L. Schwartz [108] in 1970 
and by H. Melissen [75] in 1994, independently of each other. 

In 1965, Schaer solved the n = 9 case as well [103]. In 1970, M. Goldberg 
reviewed the previous results [32] and gave conjecturally optimal packings up to 
n = 27 and for some further number of circles. Between 1970 and 1990, at least ten 
papers reported solutions forn = 10 [32,38,39,40,79, 80,95,104,107,126]. Table 
1.1 gives an overview of the improvements of the best-known packings until 1990, 
when C. de Groot, R. Peikert, and D. Wiirtz found the densest packing and proved 
its optimality with a computer-assisted method [39]. In the table, rio denotes the 
common radius of the circles (given to six decimal places) packed in the unit square. 

A conventional proof for the optimality for ten circles still does not exist, although 
there are many promising results in this direction as well - see, for example, the work 
of M. Hujter [49]. 

Based on their computer technique, in 1992 R. Peikert, D. Wiirtz, M. Monagan, 
and C. de Groot published the densest circle packings up to n = 20 [94]. 

In 1983, G. Wengerodt reported an optimality proof for n = 16 [127], using only 
conventional mathematical tools. In 1987, he extended his results for the optimality 
of n = 14 [128], n - 25 [129], and (together with K. Kirchner) for n = 36 [53]. 
However, recently there have been some doubts raised concerning the correctness of 



1.2 The history of circle packing 

Table 1.1. Results for the packing of 10 circles. 

Year 
1970 
1971 
1979 
1987 
1989 
1990 
1990 
1990 
1990 

Author(s) 
M. Goldberg 

J. Schaer 
K. Schluter 
R. Milano 
G. Valette 

B. Griinbaum 
M. Grannell 

M. Mollard and C. Payan 
C. de Groot, R. Peikert, and D. Wiirtz 

rio 
0.147060 
0.147770 
0.148204 
0.147920 
0.148180 
0.148197 
0.148204 
0.148204 
0.148204 

Reference 
[32] 

[104] 
[107] 
[79] 

[126] 
[40] 
[38] 
[80] 
[39] 

the proofs for n = 25,36; for details, see the notes of R. Blind in the Mathematical 
Reviews (MR1453444). 

In 1995, C. D. Maranas, C. A. Floudas, and P. M. Pardalos reported packings 
for up to 30 circles [66] (without proving their optimality), using the nonlinear pro
gramming solver MINOS. Later it turned out that the published result for n = 21 
was incorrect: namely, the reported function value was better than that of the proven 
optimum obtained a couple of years later. This also indicates that special care must 
be taken (that is, numerically reliable calculations must be used) when computer 
techniques are applied to find approximate or optimal packings. 

In 1996, T. Tamai and Zs. Caspar [122] improved the packing configuration by 
M. Goldberg [32] for n = 19 (independently of the results of Peikert et al.) and 
reported upper bounds for the packing densities. 

In 1997, K. J. Nurmela and P. R. J. Ostergard published approximately optimal 
packings up to n = 50 [86]. In their work, some new classes of packing patterns were 
introduced. These classes were extended by R. L. Graham and B. D. Lubachevsky 
[36] with the aid of new results obtained by a method called billiard simulation. 

In 1999, K. J. Nurmela and P. R. J. Ostergard gave computer-assisted optimality 
proofs for the cases n < 27 [87]. Together with R. aus dem Spring, they published 
new theoretical lower bounds for the optimum values, and determined a conjecturally 
optimal packing sequence [89]. 

In 2000, D. W. Boll, J. Donovan, R. L. Graham, and B. D. Lubachevsky improved 
the best-known packings for n = 32,37,48,50 [5]. In the same year, P. Ament and 
G. Blind claimed an improved packing for n = 34 (although at that time a better 
solution was already known for that case) [3]. 

In 2002, M. Locatelli and U. Raber developed a deterministic computer method, 
which enabled them to improve the existing best packings for n == 32 and 37, and to 
prove the approximate optimality of the best existing packings for n = 10 — 35,38 
and 39 [61]. 

In 2005, B. Addis, M. Locatelli, and F. Schoen fiirther improved the previously 
known best packings for n = 53,59,66,68,73,77,85,86 [1]. 

Overall, then, the currently available results for the problem class are the following: 



1 Introduction and Problem History 

Table 1.2. The authors of the known optimal packings. 

Year 
1965 
1970 
1983 
1987 
1992 
1999 
2004 
2005 

Authors 
J. Schaer and A. Meir [103, 105] 
B.L.Schwartz [108] 
G.Wengerodt[127] 
G. Wengerodt[128] 
R. Peikert et al. [94] 
K. J. Nurmela and R R. J. Ostergard [87] 
M. Cs. Markot [68] 
M. Cs. Markot and T. Csendes [70] 

Results for n 
8,9 
6 
16 
14 
1 0 - 2 0 
7 , 2 1 - 2 7 
28 
2 9 - 3 0 

- Proven (optimal) packings are known up to n = 30. The cases n == 2 , . . . , 6,8,9, 
14 and 16 are solved by conventional mathematical tools, while the others are 
results of computer-assisted methods. Table 1.2 summarizes the known optimal 
packings and the corresponding publications. 

- Approximate packings (i.e. packings determined by various methods without proof 
of optimality) are reported in the literature for up to 200 circles. Table 1.3 con
tains the most important improvements of the last decade. These numerical results 
have been obtained via several different strategies; for instance, using billiard 
simulation [36, 62, 65], the minimization of an energy function [86], standard 
BFGS quasi-Newton algorithm [94], a nonlinear programming solver (MINOS 
5.3) [66], simulated annealing and threshold accepting techniques [11], and the 
Cabri-Geometre software [80]. Although it is not known whether these solutions 
are optimal, in some cases the numerical results can help us find better solutions 
when they are used as lower bounds of the optimal (maximal) solutions. For in
stance, several strategies described in the packing literature, like that of R. Peikert 
et al. in [94], are based on the knowledge of a good lower bound of the optimum 
value. 

- Finally, numerous other related results (concerning e.g. patterns, bounds, and 
various properties of the optimal solutions) have been published as well [36, 61, 
89,114,118]. 

Some other details on the history of the problem of packing equal circles in a 
square (PECS) can be found in [8, 9, 66, 94, 118, 120, 130]. 
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Table 1.3. The authors of approximate packings between 1995 and 2006. 

Year Authors Results for n 
1995 C. D. Maranas et al. [66] up to 30 
1996 R. L. Graham and B. D. Lubachevsky [36] up to 61 
1997 K. J. Nurmela and R R. J. Ostergard [86] up to 50 
2000 D. W. Boll et al. [5] 32,37,48,50 
2001 L. G. Casado et al. [11] up to 100 
2002 M. Locatelli and U. Raber [61] up to 39 
2005 B. Addis etal.[l] 50-100 
2006 R G. Szabo and E. Specht [ 120] up to 200 



Problem Definitions and Formulations 

In this chapter we will specify the densest packing of equal circles in a square problem, 
and discuss some equivalent problem settings. Since, besides the geometric investi
gations, we also consider the problem from a global optimization point of view, some 
possible mathematical programming models will be included here. 

2.1 Geometrical models 

Informally speaking, the packing circles in a square and its related problems can be 
described in the following ways: 

Problem 2.1. Place n > 2 equal and non-overlapping circles in a square, such that 
the common radius of the circles is maximal. 

Problem 2.2. Place n > 2 points in a square, such that the minimum of the pairwise 
distances is maximal. 

Problem 2.3. Place n > 2 equal and non-overlapping circles with the common radius 
in the smallest possible square. 

Problem 2.4. Place n > 2 points with pairwise distances of at least a given positive 
value in the smallest possible square. 

Of course, in order to investigate these problems and their relations in detail, we 
need their formal definitions and a consistent system of notation. 

Formal description of Problem 2 J: 

Definition 2.5. P{rn-> S) G Pr^ is a circle packing with the 
the square [0, S]'^, where Pr^ = {{{xi,yi),... ,{xn,yn)) ^ [0,3]'^'^ \ {xi - Xj)"^+ 
iVi - Vjf > ^rl;xi,yi G [rn,5 - Tn] {1 < i < j < n)}. P{rn,S) G Pr^ is an 
optimal circle packing ,iffrt— max r^. 


