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Preface

This text deals with the numerical analysis and efficient numerical treatment of
high-dimensional integrals using sparse grids and related dimension-wise integra-
tion techniques and discusses applications to finance and insurance. The focus on
sparse grid quadrature methods on the one hand is thereby complemented by larger
parts of this text which are devoted to dimension-wise decompositions of high-
dimensional functions, such as the ANOVA or the anchored-ANOVA, on the other
hand. The main intention is to cover these two areas of research, which have at-
tracted independently of each other considerable attention in recent years, in a self-
contained, easily accessible and unified way. In particular the interplay between the
convergence behaviour of sparse grid methods with effective dimensions (which are
a measure for the decay of the dimension-wise decompositions) and with coordinate
transformations (which aim to improve the decay of the dimension-wise decompo-
sitions) is studied. The text moreover aims to investigate potential benefits but also
limitations of these techniques with respect to applications from mathematical fi-
nance and insurance and to give some recommendations based on the theoretical
and numerical results presented in the manuscript.

This manuscript mainly originated during my time from July 2004 to January
2009 at the Institute for Numerical Simulation at the University of Bonn where I
worked in the area of sparse grid methods and high-dimensional integration prob-
lems. I had the chance to participate in several research projects, in which we in-
vestigated, partly in close collaboration with financial institutions, the use of these
methods for applications from financial engineering and insurance. In addition I
was involved in the years 2004–2008 in the teaching of the laboratory ”Compu-
tational Finance” that was offered for master students with special focus on the
computational aspects of option pricing problems from mathematical finance. This
manuscript summarizes material and results which have been developed during
these different research projects and teaching activities in this period of time.

I thank all people who contributed to this work. First of all, I would like to thank
Michael Griebel for his continuous support over the years and then Thomas Ger-
stner for a very pleasant collaboration and many contributions to this manuscript.
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I furthermore thank Ralf Goschnick and Marcus Haep from the Zurich Group Ger-
many for their support with the development of asset-liability management mod-
els for life insurance policies, Ralf Korn from the University of Kaiserslautern for
the introduction to the interesting problem to value performance-dependent op-
tions as well as Angela Kunoth from the Universitiy of Paderborn, Jan Baldeaux,
Frances Kuo and Ian Sloan from the University of New South Wales and Christoph
Schwap from the ETH Zurich for valuable comments and discussions. I would also
like to thank all my colleagues Jutta Adelsberger, Jürgen Braun, Roberto Croce,
Niclas Doll, Martin Engels, Christian Feuersänger, Jan Hamaekers, Frederik Heber,
Alexander Hullmann, Lukas Jager, Margit Klitz, Christina Kürten, Bram Metsch,
Daniel Oeltz, Jens Oettershagen, Tim Osadnik, Eva-Maria Rau, Marc Schweitzer
and Ralf Wildenhues from the Institute for Numerical Simulation of the University
of Bonn who all contributed in some way to this manuscript. Finally, I appreciate
the financial support from the program ”Mathematics for innovations in industry
and service” funded by the German Federal Ministry of Education and Research
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Chapter 1
Introduction

Financial institutions have to understand the risks that their financial instruments
create as precisely as possible. To this end, mathematical models are developed
which are usually based on tools from stochastic calculus. Most of the models are
too complex to be analytically tractable and are hence analysed with the help of
computer simulations which rely on efficient algorithms from scientific computing.

An important example is the quantitative, i.e. model-based, pricing of financial
derivatives. Derivatives are financial instruments whose values are derived from the
value of one or several underlying assets such as stocks, interest rates or commodi-
ties. A fundamental result from mathematical finance is that, under certain model
assumptions, the prices of derivatives can be represented as expected values which
in turn correspond to high-dimensional integrals

Id =
∫

Rd
g(z)ϕ(z) dz (1.1)

over the d-dimensional Euclidean space with the Gaussian weight function ϕ and
z := (z1, . . . ,zd). Alternatively, after a suitable transformation, high-dimensional in-
tegrals

Id =
∫

[0,1]d
f (x) dx (1.2)

over the unit cube can be obtained. The dimension d depends on the number of
sources of uncertainty respected by the model assumptions and is the larger the
more random variables are involved. This way, high-dimensional integrals in hun-
dreds of variables appear in many applications from finance. Since the integrals can
in most cases not be calculated analytically, they have to be computed numerically
up to a prescribed accuracy ε . Today, in 2010, more than 10% of the most powerful
commercially available computer systems worldwide is owned by financial institu-
tions and used for such purposes [106]. This share has more than doubled compared
to the share in 2006 and there are by now more supercomputers working for finance
than for, e.g., weather and climate research, defense or geophysics.

M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in 1
Finance and Insurance, Lecture Notes in Computational Science and Engineering 77,
DOI 10.1007/978-3-642-16004-2 1, c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

For an efficient computation of high-dimensional integrals, one of the key pre-
requisites is that the curse of dimension [7] can be avoided at least to some extent.
The curse of dimension states that the cost to compute an approximation with a
prescribed accuracy ε depends exponentially on the dimension d of the problem.
This is one of the main obstacles for a conventional numerical treatment of high di-
mensional problems. Classical product quadrature methods for the computation of
multivariate integrals [25] achieve with n evaluations of the integrand an accuracy
of

ε(n) = O(n−r/d)

for functions with bounded derivatives up to order r. For fixed r, their convergence
rates r/d thus deteriorate with increasing dimension and are already in moderate
dimensions so small that high accuracies can no longer be obtained in practise. On
the positive side, the case r = d indicates that the problem of a high dimension can
sometimes be compensated by, e.g., a high degree of smoothness. Also other aspects
such as the concentration of measure phenomenon1 or the superposition theorem of
Kolmogorov2 show that there is some chance to treat high-dimensional problems
despite the curse of dimension. Furthermore, it is known from numerical complex-
ity theory [154] that some algorithm classes can break the curse of dimension for
certain function classes.

Randomised methods, so called Monte Carlo methods, are the most well-known
examples of such classes of algorithms. Here, the integrand is approximated by the
average of n function values at random points. Monte Carlo methods were first in-
troduced to derivative pricing by Boyle [10] and are today the workhorses in the
financial industry in particular for complex problems which depend on many vari-
ables. For square integrable functions f , the expected mean square error3 of the
Monte Carlo method with n samples is

ε(n) = O(n−1/2). (1.3)

The convergence rate is thus independent of the dimension d, but quite low and a
high accuracy is only achievable with a tremendously high number n of function
evaluations. This slow convergence of the Monte Carlo method is one of the main
reasons for the enormous need of the financial industry for computer resources.

Under more restrictive assumptions on the smoothness of the integrand it can be
shown that faster rates of convergence can be attained by deterministic integration
methods such as quasi-Monte Carlo methods [55, 97, 114] and sparse grid meth-
ods [16, 146, 168]. Quasi-Monte Carlo methods are number theoretic algorithms
which approximate the integral by the average of n function values at deterministic,

1 The concentration of measure phenomenon [96] says that every Lipschitz function on a suffi-
ciently high dimensional domain is well approximated by a constant function.
2 The theorem of Kolmogorov [89] shows that every continuous function of several variables can
be represented by the superposition of continuous functions that depend on only one variable.
3 The error of a Monte Carlo estimate with n samples is approximately normally distributed with
mean zero and standard deviation σ( f )/

√
n. Here, the term n−1/2 describes the convergence rate

and σ2( f ) can be considered as the constant of the Monte Carlo method.
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uniformly distributed points. For integrands f of bounded variation, their error can
shown to be

ε(n) = O(n−1(logn)d), (1.4)

see [114]. They thus converge with a rate of almost one, almost independent of the
dimension and almost half an order faster than the Monte Carlo method. Sparse grid
methods are deterministic methods based on polynomial exactness, which are con-
structed using certain combinations of tensor products of one-dimensional quadra-
ture rules.4 In their simplest form [146], they achieve

ε(n) = O(n−r(logn)(d−1)(r+1)) (1.5)

for all integrands which have bounded mixed partial derivatives of order r. Their
convergence rate is almost independent of the dimension and increases with higher
smoothness r of the integrand. For analytic functions even spectral convergence is
observed.

A difficulty in higher dimensions is that quasi-Monte Carlo and sparse grid meth-
ods still depend on the dimension d through the logarithmic terms in (1.4) and (1.5).
Furthermore, the implicit constants in (1.4) and (1.5) depend on d and often grow
exponentially with d. Moreover, it is known from numerical complexity theory that
many classes of integration problems are intractable [154] with respect to these de-
terministic methods meaning that even the best quasi-Monte Carlo or the best sparse
grid algorithm can not completely avoid the curse of dimension. For a large dimen-
sion d and a small or moderate number n of sample points, the asymptotic advantage
of the deterministic numerical methods over the Monte Carlo method might thus not
pay off.

Nevertheless, integrals from practise are often in different or smaller problem
classes and thus may be tractable. Paskov and Traub [129] indeed observed in 1995
that quasi-Monte Carlo methods converge nearly independent of the dimension and
faster than Monte Carlo for a 360-dimensional integration problem which was given
to them by the investment bank Goldman Sachs. This empirical observation indi-
cated that the long computing times required by the Monte Carlo method may be
avoided by deterministic integration methods even in high dimensions. It initiated
intensive research to generalise the result of Paskov and Traub to wider classes of
problems and to explain the success of the quasi-Monte Carlo method despite the
high dimension. In the following years also sparse grid methods were successfully
applied to this particular integration problem [45, 46, 118, 130]. These methods
were also clearly superior to Monte Carlo, showing a similar efficiency as quasi-
Monte Carlo.

One explanation for the success of the deterministic quadrature methods, which
is by now widely accepted, is based on the analysis of variance (ANOVA) represen-
tation of the integrand [17]. There, the function f on IRd is decomposed into a sum

4 We refer with sparse grid methods to the generalised sparse grid approach [45, 66, 132, 164].
While the classical sparse grid method [146] is uniquely determined by the choice of the underly-
ing univariate quadrature rule, generalised sparse grid methods leave in addition the choice of an
underlying index set open.
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of 2d terms, where each term describes the relative importance of a subset of vari-
ables with respect to the total variance of f . It turned out that for most integrands
from finance the importance of each variable is naturally weighted by certain hidden
weights. With increasing dimension, the lower-order terms of the ANOVA decom-
position continue to play a significant role, whereas the higher-order terms tend to
be negligible [17, 160]. The integrands are of so-called low effective dimension in
the superposition sense meaning that they can be well approximated by a sum of
low-dimensional functions. Moreover, often coordinate transformations (usually in-
terpreted as path generating methods), such as the Brownian bridge [112], can be
used to exploit the underlying special structure of the problems from finance and
to enforce the importance of the leading dimensions in this way. The correspond-
ing integrands are then of so-called low effective dimension in the truncation sense
meaning that only few of the variables have a significant impact on the output of the
function.

The relation between the effective dimension and the performance of quasi-
Monte Carlo methods has been investigated intensively in recent years. While the
effective dimension has no impact on Monte Carlo methods, quasi-Monte Carlo
methods profit from low effective dimensions in the superposition sense, since low
dimensional projections of their points are especially well-distributed. They also
profit from low effective dimensions in the truncation sense, since their points are
usually better uniformly distributed in smaller dimensions than in higher ones.

Classical sparse grid methods can not utilize low effective dimensions. How-
ever, dimension-adaptive sparse grid methods, as recently introduced by Gerstner
and Griebel [46], take advantage of low effective dimensions in a very general and
automatic way by a dimension-adaptive grid refinement.

To describe classes of functions of low effective dimension Sloan and Woźnia-
kowski introduced in [144] weighted Sobolev spaces of functions with bounded
mixed regularity and proved that there exist quasi-Monte Carlo methods which can
avoid the curse of dimension in such spaces, provided the function space weights
decay sufficiently fast with growing dimension. Their results that integration is
tractable in certain weighted spaces with respect to quasi-Monte Carlo were gen-
eralised, also to sparse grid methods [119], and complemented by constructive ap-
proaches, e.g. the CBC-construction of lattice rules [145], in a series of papers and
are still in the focus of active research.

Today many different settings are known in which integration is tractable with
respect to quasi-Monte Carlo and sparse grid methods [119]. However, these set-
tings usually do not apply to applications, since most of them do not satisfy the
smoothness assumptions on bounded mixed regularity. This issue was recently ad-
dressed in [60, 102] with the argument that the lower order terms in the ANOVA
decomposition are in certain cases smoother than the original function. Since the
higher order terms are small because of low effective dimension, this may explain
the fast convergence of the deterministic methods despite the low regularity of the
application problems.
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This surveys most of the important results which have been obtained in recent
years in the area of research that is concerned with the numerical analysis and
with the efficient numerical treatment of high-dimensional integration problems
from finance and insurance. It also describes the motivation and the focus of this
manuscript which relates several different concepts of this active and emerging area
of research. We thereby depart from most of the existing literature in the following
two ways:

• We mostly address the arising integrals directly on IRd and avoid transforma-
tions5 to the unit cube.

• We base the numerical analysis and the numerical methods mainly on the
anchored-ANOVA decomposition6 instead of the (classical) ANOVA.

These approaches lead to valuable insights into the interplay between coordinate
transformations, effective dimensions and the error of sparse grid methods. They
also lead to the developments of dimension-wise quadrature methods, which are
based on the anchored-ANOVA decomposition. This class of methods is designed
to exploit low effective dimension and it includes the class of sparse grid methods as
a special case. We study sparse grid methods in detail and discuss several improve-
ments of these methods with respect to their efficiency and with respect to integrands
from finance. We derive error bounds for sparse grid methods in weighted spaces
and explain why sparse grid methods can profit from low effective dimension and
from smoothness of the integrands much more efficiently than other approaches.
For illustration we provide many numerical experiments which demonstrate for
various applications from finance and insurance that the approaches presented in
this manuscript can be faster and more accurate than Monte Carlo and quasi-Monte
Carlo methods even for integrands with hundreds of dimensions.

We next describe the contents of this manuscript in more detail.

• Based on the anchored-ANOVA decomposition we define the notions of effec-
tive dimension in the classical and in the anchored case, and derive error bounds
which relate these dimensions to approximation and integration errors. We deter-
mine the effective dimensions in the anchored and in the classical case for several
applications from finance with hundreds of dimensions and indicate by theoreti-
cal arguments and by numerical experiments that the performance of sparse grid
methods can be better explained with the help of the effective dimension in the
anchored case than with the classical one.

• We furthermore present the general class of quadrature methods for the computa-
tion of high-dimensional integrals, which we refer to as dimension-wise quadra-

5 Transformation to the unit cube introduce singularities which deteriorate the efficiency of meth-
ods that take advantage of higher smoothness, such as sparse grids.
6 The anchored-ANOVA decomposition expresses a multivariate function as superposition of its
values on lines, faces, hyperplanes, etc., which intersect a certain anchor point and are parallel to
the coordinate axes [135]. Only a finite number of function values is required for its calculation.
The computation of the classical ANOVA decomposition is significantly more expensive, since
here 2d many high-dimensional integrals have to be computed.
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ture methods. These quadrature methods are developed in two steps: First, the
anchored-ANOVA decomposition is truncated either, a priori, based on func-
tion space weights or, a posteriori, in a dimension-adaptive fashion where im-
portant terms of the decomposition are automatically detected. This truncation
introduces a modeling error which is controlled by the effective dimension in the
anchored case. Then, the remaining terms are integrated using appropriate low-
dimensional quadrature rules which may be different from term to term and may
refine the approximation in a locally-adaptive way. This introduces a discretiza-
tion error which only depends on the maximum order of the kept terms in the de-
composition, but not on the nominal dimension d. We present numerical results
using the CUHRE algorithm [8] for the integration of the low-order anchored-
ANOVA terms and quasi-Monte Carlo methods for the higher-order ones. This
way, we obtain mixed CUHRE/QMC methods which are to our knowledge the
first numerical quadrature methods that can profit from low effective dimension
by dimension-adaptivity and can at the same time deal with low regularity by
local adaptivity. A correct balancing of modeling and discretization error is more
difficult with these methods than with sparse grid methods. However, numerical
experiments with an Asian option as a test function from finance with discontin-
uous first derivatives demonstrate that this disadvantage can in some cases more
than compensated by the benefits of the local adaptivity.

• We show that the dimension-wise quadrature methods includes the class of
sparse grid methods as a special case if we use particular tensor product meth-
ods for the integration of the subterms. We explain that sparse grid methods can
be interpreted as a refinement of the anchored-ANOVA decomposition by first
expanding each term of the decomposition into an infinite basis and then truncat-
ing this expansion appropriately. This allows one to intertwine the truncation of
the anchored-ANOVA series and the subsequent discretization and allows one to
balance modeling and discretization error in an optimal way in the sense of [16]
through the choice of the underlying index set. Such optimal index sets can be
found in a dimension-adaptive fashion as in [46] or by using a priori information
on the function space weights similar to [164]. We determine optimal index sets
for integrands from weighted tensor products of Sobolev spaces and discuss cost
and error bounds, which take into account the function space weights and recover
known results in case of equal weights.

• Moreover, we study two special variants of the sparse grid method which can
treat the integral (1.1) directly on IRd avoiding the singular transformation to
the unit cube. For moderate high-dimensional integrals with Gaussian weight
and equally important dimensions, we define sparse grid methods based on the
delayed Genz-Keister sequence using the recent approach from Petras [130]. For
integrals with Gaussian weight, which have a high nominal, but a low effective
dimension, we study dimension-adaptive sparse grid methods based on the slowly
increasing Gauss-Hermite sequence combining ideas from [46, 118, 130]. We
apply the latter method to several applications from finance and observe that this
method can be superior to Monte Carlo, quasi-Monte Carlo and other sparse grid
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methods [46, 116, 130, 146] by several orders of magnitude even in hundreds of
dimensions.

• To further improve the performance of dimension-adaptive sparse grid methods
for problems from finance, we study the impact of different path generating meth-
ods such as the Brownian bridge construction. In particular, we consider the lin-
ear transformation method from Imai and Tan [78]. Here, the main idea is that
the integral (1.1) is invariant with respect to orthonormal transformations, such
as rotations, and hence equals to

Id =
∫

IRd
g(Qz)ϕ(z)dz

for all orthogonal matrices Q ∈ IRd×d . The linear transformation method aims
to identify the matrix Q which minimizes the effective dimension of the inte-
grand for certain function classes and can in this way maximize the performance
of dimension-adaptive sparse grid methods. We provide numerical experiments
with several application problems from finance which illustrate the efficiency of
this approach.

• We also address the difficulty that integrands from finance often have kinks or
even jumps and do therefore not satisfy the high smoothness requirement of
sparse grid methods. To overcome this obstacle we here investigate the approach
first to identify all kinks and jumps and then to decompose the integration do-
main IRd into subdomains Ωi in which the integrand g is smooth. We thus shift
the integration of one discontinuous function to the computation of

Id = ∑
i

∫
Ωi

g(Qz)ϕ(z)dz,

i.e., to the integration of several smooth functions. This way, we can regain the
fast convergence of sparse grid methods in some cases with costs that depend on
the number of terms in the sum and on the complexity of the decomposition. We
show that this approach can be superior to standard methods for the pricing prob-
lems of barrier options and performance-dependent options.7 In the first case, we
study the decomposition of the integration domain with the help of conditional
sampling [55]. In the second case, we summerize the main results of [51, 54].
Here, the decomposition is performed using tools from computational geome-
try for the enumeration and decomposition of hyperplane arrangements in high
dimensions.

• One of the most complex applications from finance and insurance is the simula-
tion of stochastic asset-liability management (ALM) models in life insurance. In
such models the development of the capital markets, the behaviour of the poli-
cyholders and the decisions of the company’s management have simultaneously
be taken into account as well as guarantees and option-like features of the insur-

7 Barrier options are financial derivatives which become worthless if the underlying asset crosses
a specified barrier. Performance-dependent options are financial derivatives whose payoff depends
on the performance of one asset in comparison to a set of benchmark assets.



8 1 Introduction

ance products, see, e.g., [49]. New regulations, stronger competitions and more
volatile capital markets have increased the demand for such simulations in recent
years. The numerical simulation of such models is usually performed by Monte
Carlo methods, which, however, often lead to unsatisfactorily long computing
times of several days even on a supercomputer. Here, we follow [47] where it is
shown that quasi-Monte Carlo and sparse grid methods can successfully be ap-
plied to these problems. To this end, we explain how the ALM simulation prob-
lem can be rewritten as a multivariate integration problem and then be solved
by deterministic methods in combination with adaptivity and dimension reduc-
tion techniques. We provide various numerical experiments with a general ALM
model framework, which incorporates the most important features of ALM sim-
ulations in life insurance such as the surrender of contracts, a reserve-dependent
surplus declaration, a dynamic asset allocation and a two-factor stochastic capital
market. The results demonstrate that in particular the quasi-Monte Carlo methods
often converge faster, less erratic and produce more accurate results than Monte
Carlo simulation even for small sample sizes n and complex models with many
variables. We determine the effective dimensions and the important variables of
different ALM models and indicate that ALM model problems are of very low
effective dimension, or can be transformed to be of low effective dimension by
coordinate transformations. This way, we also provide a theoretical explanation
for the success of the deterministic quadrature methods.

The remainder of this monograph is organized as follows. In Chapter 2, we in-
troduce the classical ANOVA and the anchored-ANOVA decomposition of a mul-
tivariate function f . Based on these decompositions, we then define the notions of
effective dimensions in the classical and the anchored case and discuss error bounds
for approximation and integration.

In Chapter 3, we start with a short survey of classical numerical methods for the
computation of high-dimensional integrals. Then, we define the class of dimension-
wise quadrature methods. These methods proceed dimension-wise and are con-
structed by truncation of the anchored-ANOVA decomposition and by integration
of the remaining terms using one or several of the classical numerical methods. We
derive cost and error bounds for the methods and discuss a priori and a posteriori
approaches to exploit low effective dimension.

We specify some components of the dimension-wise quadrature methods in
Chapter 4, which leads us to the class of sparse grid methods. We then consider
these methods in more detail. We first define two special variants of sparse grid
methods based on delayed Genz-Keister and on slowly increasing Gauss-Hermite
sequences. Then, we discuss optimal index sets of sparse grid constructions for in-
tegrands from weighted Sobolev spaces.

The scope of Chapter 5 are approaches which can be used to improve the per-
formance of sparse grid methods by dimension reduction and by the smoothing of
the integrands. Here, we consider different path generating methods to reduce the
dimension and discuss domain decompositions and conditional sampling to regain
smoothness.



1 Introduction 9

In Chapter 6, we finally present several applications from finance which can
efficiently be treated by sparse grid methods. Using the pricing problems of dif-
ferent interest rate derivatives we study the effects of coordinate transformations
and compare the performance of different sparse grid methods. Then, we consider
path-dependent options, which lead to integrands with kinks or jumps. To overcome
this obstacle we describe the approach to apply local adaptivity in the low-order
anchored-ANOVA terms using the CUHRE algorithm and consider smoothing by
conditional sampling. Moreover, we discuss the efficient pricing of performance-
dependent options using domain decompositions to regain smoothness. Finally, we
consider the simulation of stochastic asset-liability management models in life in-
surance using deterministic integration methods.

We conclude with a summary of the presented results and some remarks on areas
of future research in Chapter 7.

In Appendix A, we formally define reproducing kernel Hilbert spaces and the
notions of tractability and discrepancy and summarize some related results as com-
plementary information.



Chapter 2
Dimension-wise Decompositions

In this chapter, we introduce the classical ANOVA and the anchored-ANOVA de-
composition of a multivariate function f . Based on these decompositions, we then
define different notions of effective dimensions of f and derive error bounds for
approximation and integration.

We start with the introduction of general dimension-wise decompositions. To this
end, let Ω ⊆ R be a set and let

dµ(x) =
d

∏
j=1

dµ j(x j) (2.1)

denote a d-dimensional product measure defined on Borel subsets of Ω d . Here,
x = (x1, . . . ,xd) and µ j, j = 1, . . . ,d, are probability measures on Borel subsets of
Ω . Let V (d) denote the Hilbert space of all functions f : Ω d → IR with the inner
product

( f ,g) :=
∫

Ω d
f (x)g(x)dµ(x).

For a given set u⊆D , where D := {1, . . . ,d} denotes the set of coordinate indices,
the measure µ induces projections Pu : V (d) →V (|u|) by

Pu f (xu) :=
∫

Ω d−|u|
f (x)dµD\u(x). (2.2)

Thereby, xu denotes the |u|-dimensional vector containing those components of x
whose indices belong to the set u and dµD\u(x) := ∏ j 6∈u dµ j(x j). In this notation
the case u = /0 is included for which it holds

P/0 f (x /0) :=
∫

Ω d
f (x)dµ(x) =: I f .

The projections define a decomposition of f ∈V (d) into a finite sum according to

M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in 11
Finance and Insurance, Lecture Notes in Computational Science and Engineering 77,
DOI 10.1007/978-3-642-16004-2 2, c© Springer-Verlag Berlin Heidelberg 2011
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f (x1, . . . ,xd) = f0 +
d

∑
i=1

fi(xi)+
d

∑
i, j=1
i< j

fi, j(xi,x j)+ . . .+ f1,...,d(x1, . . . ,xd)

which is often written in the more compact notation

f (x) = ∑
u⊆D

fu(xu). (2.3)

The 2d terms fu describe the dependence of the function f on the dimensions j ∈ u
with respect to the measure µ . They are recursively defined by

fu(xu) := Pu f (xu)− ∑
v⊂u

fv(xv) (2.4)

and can also be given explicitly by

fu(xu) = ∑
v⊆u

(−1)|u|−|v|Pv f (xv), (2.5)

see [92]. The resulting decomposition (2.3) is unique for a fixed measure µ and
orthogonal in the sense that

( fu, fv) = 0 (2.6)

for u 6= v, see, e.g., [57, 135].

Example 2.1. For the case d = 2 the dimension-wise decomposition of f is given by

f (x1,x2) = f0 + f1(x1)+ f2(x2)+ f1,2(x1,x2)

with the constant term

f0 =
∫

Ω

∫
Ω

f (x1,x2)dµ1(x1)dµ2(x2),

the one-dimensional functions

f1(x1) =
∫

Ω

f (x1,x2)dµ2(x2)− f0

f2(x2) =
∫

Ω

f (x1,x2)dµ1(x1)− f0

and the highest-order term

f1,2(x1,x2) = f (x1,x2)− f1(x1)− f2(x2)− f0

= f (x1,x2)−
∫

Ω

f (x1,x2)dµ2(x2)−
∫

Ω

f (x1,x2)dµ1(x1)+ f0.

In the following we will specify the measure dµ in (2.1) using the Lebesgue and
the Dirac measure which will lead us to the ANOVA and to the anchored-ANOVA
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decomposition. Other choices are also possible, see e.g. [74], but not further inves-
tigated here.

2.1 Classical ANOVA Decomposition

For Ω = [0,1] and the example of the Lebesgue measure dµ(x) = dx in (2.1), the
space V (d) is the space of square integrable functions and the projections are given
by

Pu f (xu) =
∫

[0,1]d−|u|
f (x)dxD\u.

The decomposition (2.3) then corresponds to the well-known analysis of variance
(ANOVA) decomposition which is used in statistics to identify important variables
and important interactions between variables in high-dimensional models. It goes
back to [73] and has been studied in many different contexts and applications, e.g.,
[34, 66, 81, 155]. Recently, it has extensively been used for the analysis of quasi-
Monte Carlo methods, see, e.g., [17, 97, 98, 102, 148] and the references cited
therein.

In the ANOVA the orthogonality (2.6) implies that the variance

σ
2( f ) :=

∫
Ω d

( f (x)− I f )2 dµ(x)

of the function f can be written as

σ
2( f ) = ∑

u⊆D
u 6= /0

σ
2( fu), (2.7)

where σ2( fu) denotes the variance of the term fu.1 The values σ2( fu)/σ2( f ), called
global sensitivity indices in [147, 148], can then be used to measure the relative
importance of the term fu with respect to the function f .

Example 2.2. For the class of polynomials in two variables of the form

f (x1,x2) := a+bx1 + cx2 +d x1x2

with parameters a,b,c and d ∈R one easily calculates that the terms of the ANOVA
decomposition are given by

1 Note that I fu :=
∫

Ω d fu(xu)dµ(x) = 0 for u 6= /0.
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f0 = a+ b
2 + c

2 + d
4

f1(x1) = (b+ d
2 )(x1− 1

2 )

f2(x2) = (c+ d
2 )(x2− 1

2 )

f1,2(x1,x2) = d
4 (2x1−1)(2x2−1).

For the specific case a = 0, b = 12, c = 6 and d =−6, i.e. for the polynomial

f (x1,x2) := 12x1 +6x2−6x1x2

one obtains
f0 = 15/2

f1(x1) = 9x1−9/2

f2(x2) = 3x2−3/2

f1,2(x1,x2) = −6x1x2 +3x1 +3x2−3/2.

The variance of f is given by σ2( f ) = 31/4 and we see that σ2( f1) = 27/4,
σ2( f2) = 3/4 and σ2( f1,2) = 1/4. Hence, the one-dimensional terms f1 and f2
explain about 87% and 10% of σ2( f ), respectively. The highest-order term f1,2
contributes the remaining 3% of the total variance.

Example 2.3. For the slightly modified polynomial

f (x1,x2) := 12x2
1 +6x2

2−6x1x2

we obtain
f0 = 9/2

f1(x1) = 12x2
1−3x1−5/2

f2(x2) = 6x2
2−3x2−1/2

f1,2(x1,x2) = −6x1x2 +3x1 +3x2−3/2.

It holds σ2( f ) = 35/4, σ2( f1) = 151/20, σ2( f2) = 19/20 and σ2( f1,2) = 1/4. The
first-order terms f1 and f2 explain about 86% and 11% of the variance of f and the
second-order term f1,2 about 3% of the variance.

Example 2.4. For given univariate functions g j ∈ L2([0,1]), j = 1, . . . ,d, let

Ig j :=
∫

[0,1]
g j(x)dx and σ

2(g j) :=
∫

[0,1]
(g j(x)− Ig j)

2 dx.

For the classes of purely additive or multiplicative functions

f +(x) :=
d

∑
j=1

g j(x j) and f ∗(x) :=
d

∏
j=1

g j(x j)


