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Preface

This is a book describing electronic structure theory and application within
the framework of a methodology implemented in the computer code RSPt. In
1986, when the code that was to become RSPt was developed enough to be
useful, it was one of the first full-potential, all-electron, relativistic implemen-
tations of DFT (density functional theory). While RSPt was documented par-
asitically in many publications describing the results of its application, it was
many years before a publication explicitly describing aspects of the method
appeared. In the meantime, several excellent all-electron, full-potential meth-
ods had been developed, published, and become available. So why a book
about RSPt now?

The code that became RSPt was initially developed as a personal research
tool, rather than a collaborative effort or as a product. As such it required
some knowledge of its inner workings to use, and as it was meant to be max-
imally flexible, the code required experience to be used effectively. These at-
tributes inhibited, but did not prevent, the spread of RSPt as a research tool.
While applicable across the periodic table, the method is particularly useful
in describing a wide range of materials, including heavier elements and com-
pounds, and its flexibility provides targeted accuracy and a convenient and
accurate framework for implementing and assessing the effect of new models.
A fair number of informal developers arose in the course of doctoral, post-
doctoral, and professional research, principally at Uppsala University and at
many other institutions as well. As a consequence, a number of innovative
extensions to the code were developed, many of which were never integrated
in the “official” version of RSPt and were consequently lost or shelved, often
to be re-invented at a later date.

This situation started to change in 2006 when a group of researchers with
a stake in the methodology met to establish a protocol for continuous develop-
ment of a single RSPt thread. We established a code repository with develop-
ing branches merged periodically and a web site to facilitate communication,
disseminate stable versions of the code, and provide a forum for user support
and discussion. This group meets yearly to evolve the organization and suggest
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ongoing and future efforts. The results of this organization have been grat-
ifying. Computationally, data structures and memory allocation have been
substantially reworked, eliminating non-standard and annoying remnants of
Fortran 77 and enhancing modularity. RSPt is now k-point-, band-, and FFT-
parallel. In methodology, physics modules such as DMFT and SIC are now
present in the stable version, and forces are finally available without restric-
tion.

No one is explicitly paid to do this development. At best, code and method
development support particular research directions. The development contin-
ues, however, largely because the developers believe that expanding the capa-
bility and efficiency of RSPt will benefit their research, and that making RSPt
more accessible will enhance the research of others. This book, encompassing
electronic structure theory, technical detail, and representative application, is
another step in this process.

Los Alamos John Wills
Uppsala Olle Eriksson
August 2010
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Part I

Formalisms



1

Introductory Information

Abstract In this introductory chapter a short historical note on the history of
linear muffin-tin orbital methods is given, together with general background infor-
mation and units used throughout the book. The main objectives with the book are
presented as well as information about web-based information, which easier enables
using the full-potential linear muffin-tin orbitals method.

1.1 Objectives and What You Will Learn
from Reading This Book

The purpose of this book is to give a full account of an implementation of
a method for calculating the electronic structure of materials, using linear
muffin-tin orbitals as basis functions. The method is referred to as RSPt (rel-
ativistic spin-polarized test), where after some 20 years of use and develop-
ment the letter “t” is a mystery. The invention of linear muffin-tin orbitals
is due to Andersen [11] and the first step toward what now is RSPt was
taken by Wills and Cooper [258]. From reading this book you will be famil-
iar with electronic structure theory in general, including density functional
theory [116, 140], a theory for which Walter Kohn shared the Nobel Prize
in chemistry 1998. You will also be familiar with the use of linear muffin-tin
orbitals as basis functions for calculations of electronic structures of solids.
This book contains in addition to a technical description of linear muffin-
tin orbitals and their implementation in RSPt, several examples of the use
of RSPt in the field of phase stability, magnetism, optics, and excited state
properties. Simple instructions on how to download the source code from the
RSPt web site (http://www.rspt.net/), how to compile it and perform test
runs of the code, and a manual for input and output are also provided here,
with the hope that from reading this book you will be comfortable in setting
up the code, run it on a single- or multi-processor computer architecture, as-
sess the quality of the calculations, and to analyze the calculated results. By
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the time you have read this book, you will find that a database with calcu-
lated electronic structures using the RSPt method is available at the web site
http://gurka.fysik.uu.se/esp/, where tens of thousands of results from already
made electronic structure calculations can be found and extracted.

In order to successfully absorb the information provided in this book,
it is recommended that you have studied elementary textbooks in solid state
physics, e.g., the book of Kittel [134], Marder [163], or by Ashcroft and Mermin
[22]. It is also recommended to study a book on molecular orbital theory, e.g.,
the book by Atkins [24].

1.2 On Units

Throughout this book we make use of atomic Rydberg units, in which � = 1,
e2 = 2, and the electron mass m = 1/2. The unit of length is the Bohr
radius a0 = �

2/me2 = 0.529178 Å, the unit of energy is the Rydberg, Ry =
e2/2a0 = 13.6058 eV, and the rest energy of the electron mc2 = e2/a0α

2 where
α ∼ 1/137 is the fine-structure constant.

1.3 Obtaining RSPt and the RSPt Web Site

The source code, RSPt, can be downloaded from http://www.rspt.net/. Here
one finds also a manual for the input and the output of the code, information
on how to install the source code, as well as a user’s forum, where one can
obtain answers for most technical questions concerning installing and running
RSPt. A full account of the installation and running of RSPt is given in
Chap. 9. The RSPt source code is freely available.

1.4 A Short Comment on the History of Linear
Muffin-Tin Orbitals and RSPt

The RSPt method is an all-electron, full-potential (FP) implementation of
density functional theory using linear muffin-tin orbitals (LMTOs) as basis
functions, and the technique is in general often referred to as an FP-LMTO
method. By “all-electron” it is meant that all electrons in the solid are con-
sidered in the calculation of electron density and total energy (as opposed, for
instance, to a pseudo-potential method, where only the valence electrons are
considered). The term “full potential” implies that no approximation is made
to the shape of the electron density or the electronic potential (as opposed
to the popular atomic sphere approximation, ASA [11], where the crystal is
considered to be composed of space-filling atomic spheres, with a spherically
symmetric potential inside each sphere).
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The development of linear muffin-tin orbitals is due to Andersen, as is the
use of linear augmented plane waves [11]. The LMTO basis set can be ob-
tained from the older Korringa–Kohn–Rostocker (KKR) method [139, 142],
where the main difference is the linearization of the energy-dependent basis
functions. We will describe this technical difference between the two methods
in Chaps. 5 and 6. The use of linear muffin-tin orbitals is by now well docu-
mented, and since the original suggestion of their usefulness some 4,000 appli-
cations have to this date been published (according to ISI web of knowledge).
By now, several implementations of electronic structure methods which are
based on LMTOs can be found, with varying degrees of sophistication. The
most efficient and computationally least demanding variant of the method
relies on the aforementioned atomic sphere approximation (ASA). An early
account of this method, which often is described as LMTO-ASA, is the orig-
inal reference of Andersen, but also in the book of Skriver [209] and in the
works of [38]. Extensions of the original ideas of LMTOs can be found in the
tight-binding version of the method [12], as well as the full-charge density im-
plementation of it [248]. The LMTO-ASA method has also been adopted in a
Green’s function formalism with the capability of treating disordered alloys in
the coherent-potential approximation (CPA) [1, 210, 254]. In addition to the
RSPt implementation of a full-potential LMTO method, there exists other
independent, separate full-potential implementations using linear muffin-tin
orbitals [199]. It should also be mentioned here that a derivative of the LMTO
method exists in the form of the exact muffin-tin orbitals method (EMTO)
[13, 247].

The main advantage with a full-potential implementation using linear
muffin-tin orbitals, as described here, is that the electronic structure prob-
lem is solved with very high accuracy, so that total energies and Hellman–
Feynman forces can be calculated with high precision, while maintaining a
limited basis set, which makes the analysis of the calculated results straight-
forward. As will be shown in Chap. 11, an accuracy of the total energy (or
rather difference in total energy for two different crystallographic geometries)
of order μRy is needed to calculate, e.g., the elastic constants of materials.
In Chap. 12 it is argued that an accuracy better than 0.1 μRy is needed to
calculate the difference in total energy for two different magnetic orientations
of regular magnetic transition metals like bcc Fe or hcp Co, and that the RSPt
method can reach such high accuracy.

This implementation in RSPt is the result of both planning and evolu-
tion. One motivation for developing the method that eventually became RSPt
was to be able to investigate the properties of f -electron elements and com-
pounds, testing the applicability of density functional theory (DFT), in the
local or nearly local approximation in describing the often unusual properties
of these materials. Thus RSPt was born as a “full-potential” electronic struc-
ture method, expressing the shape of the electron density and potential in full
generality. There were (and are) several other approximations to overcome,
such as the “frozen core” approximation, in which the core electron density
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is an external, constant input, and the lack of relativistic effects, particularly
the spin–orbit interaction. RSPt treats all electrons on the same footing (“all-
electron”) and includes relativistic effects such as the spin–orbit interaction
in the one-electron Hamiltonian as well as spin polarization.

Another motivation for developing a new method was to provide a basis,
based on first principles, for going beyond DFT, to include many-electron
effects (strong correlation). The first use of the method, in fact, was to
parametrize a Schrieffer–Wolff Hamiltonian to treat hybridization-mediated
magnetic interactions in cerium monopnictides [258]. The Schreiffer–Wolff
Hamiltonian, like most phenomenological Hamiltonians treating strong corre-
lation in solids, treats on-site correlation explicitly. As this was a motivating
factor for the development of a new method, therefore, the natural choice
was to use a site-centered basis. Thus RSPt uses linear muffin-tin orbitals
(LMTOs), described in this book, as the basis for one-electron wave func-
tions. Chapter 7 illustrates the usefulness of this choice. By choosing LMTO
bases, RSPt, like other FP-LMTO methods, builds on a minimal basis set,
emphasizing the applicability of the basis functions rather than basis set size,
simplicity, or completeness.

The FP-LMTO method, as expressed in RSPt, solves the DFT electronic
structure problem using a standard variational procedure based on the Kohn–
Sham procedure [140] with a local (e.g., LDA [140]) or nearly local (e.g., GGA
[179, 180]) approximation for the exchange and correlation functional as ap-
propriate for that procedure. An input potential, an estimate of the exact
potential (RSPt uses the one-electron potential as the variational parame-
ter), is used to construct a one-electron Hamiltonian, and the eigenvalues and
eigenvectors of this Hamiltonian are found within the span of a particular
basis (the FP-LMTO method uses non-orthogonal linear muffin-tin orbitals).
The Fermi energy is found by occupying the eigenstates in order, constrained
by the required number of electrons, and the electron density is constructed
by summing the occupied one-electron densities and used to construct a new
one-electron potential. This potential is combined with the input potential
to produce a new estimate of the exact potential, and the process continued
until the input and output potentials are identical within a specified toler-
ance. When this self-consistency is achieved, the total energy calculated from
self-consistent potential is the accurate ground state energy for the exchange-
correlation functional used.

There have been several “FP-LMTO” implementations [168, 198, 199, 225,
255, 258]. In what follows, we try to distinguish features common to many
implementations (labeled as “FPLMTO”) from our particular methodology
(labeled “RSPt”).
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Density Functional Theory
and the Kohn–Sham Equation

Abstract The basic formulas of density functional theory (DFT) are derived, to-
gether with a discussion about the form and accuracy of different approximations
to the energy functional used in DFT. Central concepts in DFT, like exchange and
correlation hole, exchange and correlation energy, and the Kohn–Sham equation are
presented. A short description about the historical development of density functional
theory as also given.

Calculations of material properties using density functional theory (DFT)
have become a very active field of research in recent years. The basic idea
of DFT is to use the electron charge density n(r) as the basic variable in-
stead of the many-electron wave function used in Hartree–Fock theory. This
seemingly small – but in reality very nontrivial – step has provided the frame-
work for fast and efficient calculations on highly complex materials, so it is
easy to understand that DFT is popular. Figure 2.1 illustrates how the field
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Fig. 2.1. Number of publications per year with topic “density functional” according
to Web of Science (www.isiknowledge.com)
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has grown in recent years. The number of publications per year in the field
appears to have increased nearly exponentially during the last two decades.
Nowadays, DFT-based computational methods are must-have tools in mate-
rials research and quantum chemistry. In recognition of the enormous success
of DFT and computational schemes based on DFT, Walter Kohn and John A.
Pople received the 1998 Nobel Prize in chemistry.

Over the years, the original formulation of DFT and the Kohn–Sham
approach has been extended to cover a large number of situations, as, for
instance, degenerate ground states [138], spin-polarized systems [188, 250],
relativistic systems [162, 189], diamagnetic effects [246], finite temperature
[166], excited states [102, 182, 234], fractional occupation numbers [158, 183],
or multicomponent systems like electron–hole liquids [130, 196] and systems
where the Born–Oppenheimer approximation is not valid [44]. In this chap-
ter, we give a brief overview of the basic DFT machinery. More complete
treatments can be found, e.g., in [75, 164].

2.1 The Many-Particle Problem

The basic problem in condensed matter theory which DFT attempts to solve
is how to deal mathematically with the interactions of a large number of par-
ticles. If the system we are interested in is an atom or a small molecule, the
number of particles is still rather small, but if we are dealing with larger sys-
tems, describing the wave function of the system explicitly becomes infeasible.

Despite these seemingly insurmountable difficulties, let us anyway start by
writing the full Hamiltonian, in the non-relativistic case, of the many-body
problem for a metal or other material in terms of the individual coordinates of
each particle. The solid is a strongly coupled system consisting of two species –
electrons and nuclei – with Coulomb interaction both between themselves and
each other. The Hamiltonian (in SI units) will therefore consist of the following
terms:

H = −�
2

2

∑

I

∇2
I

MI
+

1
2

∑

I �=J

ZIZJe
2

4πε0|RI − RJ | −
�

2

2m

∑

i

∇2
i

+
1
2

∑

i�=j

e2

4πε0|ri − rj | −
∑

i,I

ZIe
2

4πε0|ri − RI | , (2.1)

where the indices i, j are used for electrons and I, J are for atomic nuclei,
MI denotes nuclear masses, m is the electron mass, RI and ri stand for nu-
clear and electron coordinates, respectively, and ZI denotes atomic number.
All attempts to find the eigenvectors and eigenvalues to this Hamiltonian in-
volve approximations. To begin with, the nuclei are far more massive than
the electrons and their velocities are therefore relatively low in comparison.
Therefore, one may assume that the time scale for electron relaxation is much
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shorter than the time scale of atom movement, so that the electron cloud can
be assumed to be completely relaxed at any moment even if the atoms are,
e.g., vibrating. This is called the Born–Oppenheimer (BO) approximation,
which permits us to separate the time scales of electron and atom motion and
thus to treat the terms in (2.1) dealing with the electron states separately
from the ones dealing with the atomic nuclei. Further, the BO approximation
allows us to recast the term describing the Coulomb interaction between the
atomic nuclei and the electron cloud – the last term in (2.1) – as an external
potential acting on the electrons. Although the Born–Oppenheimer approxi-
mation is very accurate in most cases, it does not always apply. One example
is graphene [128].

Thus, our many-particle problem has been reduced to a strongly inter-
acting “gas”1 or liquid of electrons moving in an external potential, and the
Hamiltonian acting on the electrons can now be written as

H = −1
2

∑

i

∇2
i +

1
2

∑

i�=j

e2

|ri − rj | −
∑

i,I

ZIe
2

|ri − RI | = T +W + Vext . (2.2)

The first term, T , is the kinetic energy operator of the electrons. The second,
W , is the Coulomb potential from electron–electron interaction, and the third
term, Vext, is the external potential, i.e., the Coulomb potential from the
interactions between the electrons and the nuclei. The corresponding total
energy E is the expectation value of H in (2.2), i.e.,

E = 〈Ψ |H|Ψ〉 = T +W +
∫

d3r Vext(r)n(r) , (2.3)

with T and W now denoting the expectation values of the kinetic energy and
electron–electron interaction operators, respectively. From classical physics we
know that the Coulomb energy of a charge density interacting with itself is

EHartree =
1
2

∫
d3r d3r′

n(r)n(r′)
|r − r′| . (2.4)

This term is called the Hartree energy and is an important part of the middle
term W in (2.3), but obviously not the full story. To begin with, the Hartree
energy contains a spurious self-interaction. Further, since electrons are parti-
cles, their motions will be correlated causing a depletion in the charge density
around each electron. In addition, the quantum-mechanical nature of elec-
trons causes a special type of correlation – exchange – due to the exclusion
principle. These extra terms are usually grouped together in the so-called
exchange-correlation energy Exc.

1 The original meaning of the word gas, chaos, may provide a better association.


