Siegfried Siegesmund Rolf Snethlage *Editors*

Stone in Architecture

Properties, Durability

4th Edition

Stone in Architecture

Fourth Edition

Siegfried Siegesmund · Rolf Snethlage Editors

Stone in Architecture

Properties, Durability

Fourth Edition

Editors Prof. Dr. Siegfried Siegesmund Universität Göttingen Geoscience Center Göttingen Goldschmidtstr. 3 37077 Göttingen Germany ssieges@gwdg.de

Prof. Dr. Rolf Snethlage Naturstein, Bauchemie und Bauphysik in der Denkmalpflege Wetzelstraße 24 96047 Bamberg Germany rolf@snethlage.net

ISBN 978-3-642-14474-5 e-ISBN 978-3-642-14475-2 DOI 10.1007/978-3-642-14475-2 Springer Heidelberg Dordrecht London New York

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Natural stone is a topic of interest to geologists and natural stone producers, as well as for architects, building specialists, conservators, monument curators, and of course, building owners. It is one of the oldest and more durable construction materials. However, its importance for the construction industry has changed over time and so has its perception by society. In the last three decades, a significantly increased demand has been noticed that can be attributed to its use as cladding material. Predictions suggest an even greater growth rate in the demand. Natural stone is a construction material with a favourable ecological rating com-

pared to manufactured materials such as Portland cement, or bricks. In architecture, this material is particularly valued for its design possibilities, especially with regards to color, shape and surface processing. This gives the building a unique value.

In past centuries, master builders and sculptors used locally available stones, since transport from distant sources was difficult and very expensive. Therefore, whole towns were built with a single type of stone. This resulted in the development of cultural landscapes that are characterized solely by the type of stone used. With globalisation, this local type of landscape construction is being valued again, especially since natural stones are in essence a part of the landscape. They reflect tradition and identity and are fundamental to both the local community and tourism.

Although there may be a general belief that natural building stones are durable materials, all rocks undergo weathering and will literally turn to dust. The use of natural stones in buildings requires that the stone type have the required suitability for the intended purpose. Otherwise, their deterioration will occur even after short periods of time. The weathering and deterioration of historical buildings, as well as that of many monuments or sculptures using natural stones is a problem that has been known since anitiquity. Although much of the observed world-wide destruction of these monuments can be ascribed to war and vandalism, many other factors contribute significantly to their deterioration, such as negligence and poor maintenance. There has been a significant increase in deteriorating structures during the past two centuries. This prompted Winkler (1973) to make a pessimistic prediction, that at the end of the last millennium these structures would largely be destroyed because of predominantly anthropogenic environmental influences.

Erhard M. Winkler's book Stone: Properties, Durability in Man's Environment first published in 1973 marks a milestone in the series of publications on the

conservation of our cultural heritage. In the year the book was published, science was not yet concerned with conservation and was still at the level of knowledge that had been accumulated by scientists at the turn of the 19th to 20th century and the two decades between the two world wars. Conservation interventions were not widespread at that time and treatment with chemicals was barely in its infancy. Clever restorers used promising chemical products and applied them to stone conservation, but kept their formulas a trade secret.

Winkler was among the first who embraced the ideas of pre-war scientists, such as Hirschwald, Schaffer and Kieslinger. They advanced the idea that stone conservation should be placed into the context of understanding the processes of weathering and deriving remedies against deterioration. Therefore, he stressed the geologists' role in leading conservation interventions that start with the anamnesis of the building, followed by a correct diagnosis of the problem and then the development of an appropriate therapy. Simultaneously, other relevant disciplines, such as chemistry, biology and material science took interest in the conservation of architectural and archaeological heritage sites. In 1972, the first international meeting on this topic was held in LaRochelle under the name of "International Symposium on the Deterioration and Conservation of Building Stone." Since then, ten more meetings were convened regularly, and the name simplified to "Deterioration and Conservation of Stone." Other international conferences were also organized, such as the "Conservation of Monuments in the Mediterranean Basin" meetings.

In the 1980s, the forest decline resulting from increased pollution raised the awareness that "acid rain" could accelerate the deterioration of exterior works of art. This induced politicians – mainly in Europe and in North America – to support research into the effects of air pollution on materials. As a result, the volume of knowledge grew exponentially. In conjunction, the advances in instrumental analysis as well as in technology in general, allowed the development of various chemical compounds that could be adapted for the consolidation or the protection of stone. In the last issue of his book published in 1994, E.M. Winkler added a comprehensive chapter on conservation, a topic which had only been slightly touched upon in the previous editions.

The offer from Springer Publishing Company to prepare a new edition to address more thoroughly all the acquired knowledge over the past twenty years will serve to follow the trail that Winkler blazed. The book will cover a wider spectrum with significantly more details in all topics addressed. Therefore, an attempt was made to develop a natural stone nomenclature from a geoscientific point of view. The suitability of a given stone to the considered function it will have in a building or object is extremely important, therefore different structural engineering and relevant petrophysical and rock technical parameters were compiled for the different rock groups. Since negative material properties of a stone may become evident after a long or very long exposure, suitable testing methods are required for a meaningful stone evaluation. The resistance to weathering is extremely important because every stone at the outcrop or in a building is subjected to the destructive physical, chemical and biological influences of weathering. Next to these geogenic factors, anthropogenic influences on the material properties and weathering processes are also decisive. These can be deduced from laboratory experiments and also from experiences on historical buildings.

Rocks will react to changing environmental conditions; especially when high "multi-pollutant" situations dominate that are caused by various chemical pollutants, suspended particles, and dust. The pollution during the last two centuries has deteriorated many of our cultural assets that may be considered as "contaminated sites". Moreover, through climatic changes such as more precipitation, higher temperatures, freeze-thaw impacts, etc., the pollutants may react following different paths and new deterioration scenarios will develop.

Changes on the rock surface produced by weathering processes can be described with the aid of a specific terminology to avoid misunderstandings. To overcome this problem and to harmonise all the existing classification approaches, an updated version was produced by the ICOMOS-ISCS. These will help in the mapping of the various deterioration patterns and their intensity.

The objective of the new edition is to address practitioners like architects, civil engineers, stone producers, restorers etc. as well as students who are interested in qualifying themselves for a career. All these professions require a basic understanding and experience in many disciplines such as geology, chemistry, material science and biology. In the course of the past 20 years, knowledge has grown to such an extent that a single person can hardly acquire an overview of the field or even write a textbook on the subject. Therefore, the editors decided to elicit the aid of further specialists to create an up-to-date book containing the most recent progress in this field of science: A. Elena Charola for deterioration processes and salt decay, Michael Steiger for salt and weathering processes, Katja Sterflinger for biological deterioration and conservation issues. Peter Brimblecombe contributed to air pollution and climate change, Helmut Dürrast for the rock technical properties, Heiner Siedel for the characterization of stone deterioration on buildings and Akos Török for the petrographical characterization of building stones. The editors are indebted to these colleagues for their essential and valuable help. Likewise, the editors want to express immense thanks to the following persons: J. Ruedrich, T. Weiss, W.-D. Grimm, B. Fitzner, K. Heinrichs, C. Schneider, G. Hundertmark, M. Reich, R. Kögler, P. Oyhantcabal, K. Rank, B. Siegesmund, M. Siegesmund, and A. Elena Charola and Christian J. Gross, who made great efforts in correcting the linguistic deficiencies of the German speaking authors.

Göttingen and Bamberg (Germany) 2010

Siegfried Siegesmund and Rolf Snethlage

Contents

1	Natural Stones in Architecture: Introduction Rolf Snethlage	1
2	Building Stones	11
3	Physical and Mechanical Properties of Rocks	97
4	Weathering and Deterioration	227
5	Environment and Architectural Stone	317
6	Characterisation of Stone Deterioration on Buildings	347
7	Stone Conservation	411
Su	bject Index	545

Contributors

Peter Brimblecombe School of Environmental Sciences, University of East Anglia, Norwich, UK, p.brimblecombe@uea.ac.uk

A. Elena Charola Research Associate, Museum Conservation Institute, Smithsonian Institution, Washington, DC, USA, charola_ae@yahoo.com

Helmut Dürrast Department of Physics, Prince of Songkla University, HatYai, 90112, Thailand, d.helmut@gmail.com

Heiner Siedel Institute of Geotechnical Engineering, Chair of Applied Geology, Dresden University of Technology, 01062 Dresden, Germany, Heiner.Siedel@tu-dresden.de

Siegfried Siegesmund Geoscience Centre, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany, ssieges@gwdg.de

Rolf Snethlage Natural Stone, Building Chemistry and Building Physics for the Conservation of Monuments, Wetzelstraße 24, 96047 Bamberg, Germany, rolf@snethlage.net

Michael Steiger Department of Chemistry, Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany, michael.steiger@chemie.uni-hamburg.de

Katja Sterflinger Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 8, A-1190 Wien, Austria, katja.sterflinger@boku.ac.at

Ákos Török Department of Construction Materials and Engineering Geology, Budapest Technical University, H-1111 Budapest, Hungary, torokakos@mail.bme.hu

Chapter 1 Natural Stones in Architecture: Introduction

Rolf Snethlage

Abstract Since prehistoric age men used stone for its unique durability to erect monuments of extraordinary, mostly religious importance. Due to lacking transportation facilities until the 19th century stones from nearby sources had to be chosen to build churches, castles and towns. Only for exceptional cases rare and decorative stones like marble were transported over long distances when stone of the same color and beauty was not available in the near vicinity. The design of building structures and elements must be adapted to the mineralogical, physical and mechanical properties of stone. The high compressive strength and the low tensile strength of stone require special techniques to overarch gateways and to erect vaults. Mediaeval builders succeeded in the erection of high and light structures like Gothic church choirs or spires could only with the help of hidden steel anchors to stabilize the construction. Only with the emergence of steel and reinforced concrete, the limits that stone properties pose to building structures are overcome and a new era of architectural building design began.

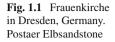
1.1 Introduction

Wood, mud bricks and stone are the oldest building materials of men. While mud bricks and wood have been mostly used for profane buildings like residential houses or stables, stone was used to erect important and impressive buildings like temples which were meant for extremely long service life and should endure for centuries or even thousands of years. Men regarded stone as ever lasting because the phenomenon of enhanced weathering due to environmental pollution did not exist in former times.

R. Snethlage (⊠)

Natural Stone, Building Chemistry and Building Physics for the Conservation of Monuments, Wetzelstraße 24, 96047 Bamberg, Germany e-mail: rolf@snethlage.net

1.2 Stone Provenance and Provinces


Up to the beginning of 20th century the availability of stone resources determined the appearance of whole cities. Transportation was difficult and slow because of the road conditions. Wherever possible heavy stone blocks were transported by ships, preferably downstream. The Egyptians shipped obelisks quarried and manufactured in Aswan down the Nile to Luxor and even Memphis. In Roman times, valuable decorative marble and limestone from Greece and Turkey were transported into Italy to embellish Roman villas and temples. Likewise the unique, red Porfido Rosso Antico (Imperial Red) from Mons Claudianus in Egypt was delivered to Italy to the exclusive use for Roman emperor and for his imperial buildings.

Stone blocks were also used as ballast in sailing ships to give them the necessary weight for a save sailing on the sea. Plenty of Gotland sandstone from Sweden came this way into the towns along the Baltic Sea coast in Germany and further east where it was preferred for buildings, gateways and many tombstones. When sea or river transport was not possible, rare decorative stone blocks had to be pulled over long distances on ox or horse carts. This way the Romans even brought Carrara marble over the alpine mountains into their German provinces.

Transportation capabilities and capacities rapidly increased in 19th century through the construction of canal and railroad networks. From then it became easy to transport huge stone blocks and to send them even into remote provincial towns. More and more imported stones from other countries entered formerly uniformly designed towns. In Germany, the impact of new stones in the 19th century is evident in nearly all towns.

For about 20 years, a new dimension of import stone is observed all over Europe and USA. Because of cheaper production huge quantities of stones from China, India and Brazil invade into Europe and America thus forcing out the local stone industry. As an example, the floor of the new airport terminal in Munich is paved with Chinese granite because in spite of the far distance it is still much cheaper than the Bavarian Forest granite quarried just 100 km away.

The uniform appearance of historic town centres is an important part of our cultural heritage that should be preserved and not be altered by strange import stones. There are famous examples of historic town centres of extraordinary value especially because their buildings consist of one stone type. A few are worth to mention. Since Roman times the buildings in the city of Bath, and of course its Roman bath as well, have been erected with a local Cretaceous limestone from the Great Oolite. Parts of Paris are situated over a system of underground cavities where the Tertiary limestone for the Paris buildings has been quarried. Rome on the other hand is famous for the Travertine. In Germany, the center of Dresden is an example for the use of two varieties of Elbsandstone, the Postaer and the Cottaer Elbsandstone (see Fig. 1.1) which come from quarries some kilometres upstream the Elbe river. The castle in Nuremberg sits on a sandstone rock to which consequently the name "Burgsandstone" has been attributed.

1.3 Natural Stone Structures

As already mentioned the physical and mechanical properties of natural stone narrow its use as building material. Stone has high compressive, however, low tensile strength which is about 10–30 time lower than compressive strength. It has therefore to be taken into account that stone should only be loaded with compressive forces because otherwise a failure of the whole construction can't be excluded. Already in prehistoric time builders knew about these limitations.

Stonehenge is a good example to elucidate the expertise of Stone Age men. It has bee found that the stone blocks come from a granite complex in Wales from where glaciers must have transported the blocks into the area of Stonehenge. Nevertheless great efforts were necessary to manage the transport over the remaining miles to the building site whereby the transportation method is yet still under debate. Anyway, the Stone Age builders must have known about the low bending strength of natural stone because the stone cross-beams bridging the gap between the vertical columns have sufficient thickness to exclude the risk of cracking (see Fig. 1.2).

Fig. 1.2 View of Stonehenge. Thick cross-beams were used to prevent crack formation

The reputedly biggest coherent stone block ever made by men is the beautiful marble relief on the north side of Baohedian in the Emperors Palace in Beijing (Hall of Preservation of Harmony). The relief made from Fangshan marble has a length of 16.5 m, a width of 2 m and a thickness of 1.7 m. The Fangshan area is some 50 km away from Beijing. Chinese archives report that transport has been done in winter time on an ice track onto which the stone block could be pulled with relatively little power because it was sliding on a film of thawed water between the stone and the ice track.

The Cheops Pyramid is the biggest accumulation of stone made by men. It consists of about 2,300,000 stone blocks each of them weighing about 2.5 tons. The pyramid has a height of 146 m. Assuming an average rough density of the limestone as 2,500 kg/m³, a compressive force of 3.65 MPa results in the centre of the pyramid ground plane. This pressure is more than 10 times less than the compressive strength of the limestone. In spite of the enormous height of the Cheops Pyramid there is no risk that the stone in the undermost layer could break (see Fig. 1.3).

A look at the forest of columns in the Karnak Temple in Luxor in Egypt demonstrates that the builders had a precise knowledge about the limitations the natural stone properties pose to the construction of the temple hall. As shown in Fig. 1.4 the columns stand extremely narrow to each other because the low bending strength of the sandstone beams connecting the capitals of the columns. As a general rule, the thickness of a freely hanging stone block resting on both ends should be one third of its length. In Karnak Temple the distance of the columns amounts around 4–5 m so that the thickness of the cross-beams should be around 1.30–1.50 m which corresponds quite well to the real situation (see Fig. 1.4). **Fig. 1.3** View of the Cheops Pyramid. In spite of the height of 146 m the pressure at the base is much less than the compressive strength of the limestone

Bending strength of a stone beam depends also on its moisture content. Because moisture strongly reduces bending strength it has to be taken care that the beams are not wetted by rain or snow. The technical bending strength measured in laboratory under standardized testing conditions is higher than the value of bending strength in practice. In a building a stone element is exposed to permanent stress causing cracks to grow under much less force than measured in laboratory. Moreover, the thickness of stone beds in the quarry limits the height of available stone beams and thus may indirectly determine the distance of columns in a building.

It should also be taken into account that Egypt had a lack of appropriate wood for construction purposes. Consequently, there was a need to take recourse to stone as main building material because the mechanical properties of palm wood the only tree available in great quantities are insufficient for constructing. This situation is completely different from classical Greece. The architraves resting above the columns of Greek temples have normally a thickness of around 1 m. Their thickness varies with the distance of the columns, however, the rule that the thickness should to be around one third of the length is always obeyed. The cella of the temple, however, is too wide to be covered with stone beams. Instead it was roofed with a wooden construction able to span over the whole distance between the cella walls.

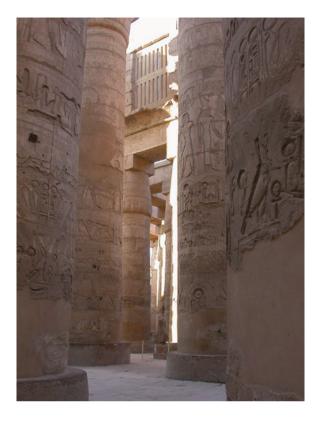


Fig. 1.4 Columns in Karnak Temple in Luxor, Egypt. The thickness of the cross-beams on top of the columns takes into account the low bending strength of the sandstone

This roof construction is only made possible because in contrast to stone wood can bear high tensile forces, and of course due to the availability of high quality wood.

The first solution builders found to overarch bigger rooms is the so-called "false vault". In contrast to a real vault in this case stone blocks are put upon each other, the upper one always protruding a little over the former. In order to avoid the toppling of the layers heavy stone blocks or earth filling must be put on the opposite side as counter weight. Examples for false vault constructions are the trulli in Apulia in Italy or the Tomb of Atreus in Mykene in Greece (see Fig. 1.5).

In addition to the counter weight the construction is stabilized by the fact that each stone layer forms a closed ring whose stones touch each other and therefore can not fall out. Thus within the ring the stones are loaded only by compressive forces so that the whole construction is very stable.

A progress in architectural design is the capability to build real arches and vaults allowing lighter and material saving constructions. In case of a real arch the stones support each other and rest on strong corner points. Figure 1.6 shows a limestone arch over the tunnel between the sacred area and the stadium in Olympia Greece. Different from constructing false vault scaffolding is needed for erecting a real vault or an arch. The stones of the arch are laid out upon the scaffolding and only when

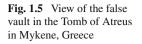


Fig. 1.6 View of a Roman arch in the district of Olympia Greece

the arch is closed the scaffolding can be demounted. In this construction the stones are mainly loaded with compressive forces. The Romans were perfectly capable of building arches, as for example long aqueducts like Pont du Grad and bridges in all Europe demonstrate.

Romanesque architecture resumes the building principles of the Romans. Romanesque churches are characterized by thick walls and narrow window openings. Portals and window frames are terminated with round arches. Romanesque architecture takes into account the mechanical properties of natural stone. The stone is not loaded up to its strength limits. Romanesque buildings make an impression of solidity and compactness (Fig. 1.7).

Gothic style marks a complete change in architectural history. The formerly solid walls become light and open. Through wide windows decorated with delicate traceries light floods into the interior of the building. Slim spires reach enormous heights. Quatrefoils between their ribs let wind and rain pass through. Flying buttresses span from the walls of the main nave to the supporting pillars. The elongated structures of Gothic cathedrals go to the limits of the mechanical properties of stone. Therefore, the safety of choirs and spires had to be secured by iron ring anchors invisibly imbedded in the stone in order to hold the structural elements together. Without anchors the whole structure would be endangered to collapse. In some cases serious damage has been caused because iron bars running through the window openings had not been recognised as parts of ring anchors but have been cut for enabling an easy demounting of the stained glass windows. The choir of St. Lorenz church in Nuremberg demonstrates the light and rising construction principles of Gothic architecture (Fig 1.8).

Fig. 1.7 View of Romanesque stonework of Worms Cathedral, Germany

Fig. 1.8 View of the choir of St. Lorenz Church in Nuremberg, Germany

With Gothic architecture the final point of building with natural stone is reached which can not be surpassed. The low bending strength of stone does not allow more extreme building constructions. Only in the 19th century new materials and production techniques open the way to new design concepts. With the emergence of steel and concrete a new era begins. What are the reasons for this change? Industrial

Fig. 1.9 Big hall of German Federal Mail in Munich built 1965–1969. Length 124 m, height 31 m, width of the arch 146 m

revolution in 19th century brought forth new methods of generating energy and production techniques. Modern blast furnaces and converters produced steel of up to then unknown high and standardized quality. Subsequently technically innovative steel constructions could be erected like the impressive halls overarching railway stations in Europe or USA or the unique steel framework of the Eiffel Tower in Paris.

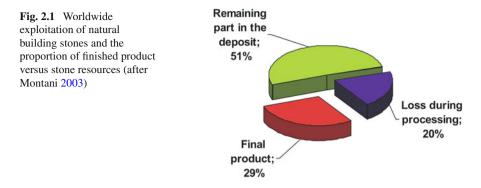
In the field of inorganic binding materials, modern furnaces produce temperatures sufficiently high for the production of cement. In 1843, W. Aspdin achieves a patent for the production of Portland Cement a mixture of limestone and clay burnt at a temperature of 1,400°C. Soon reinforced concrete becomes the dominating building material with the means of which engineers build huge bridges and wide halls with any inside supports (see Fig. 1.9). In the era of concrete natural stone is restricted to a subordinate use as façade tile. Every year innumerable stone blocks are cut to thousands of square meters of uniform façade claddings. Traditional stone mason techniques are no longer required. A several thousand years old craftsmanship is under risk to vanish.

Chapter 2 Building Stones

Siegfried Siegesmund and Ákos Török

Abstract Most historic structures and many of our recent buildings have been constructed from natural stone. This chapter gives an overview of available natural stone resources and trends in building stone extraction. It documents the various uses of stone from an architectural point of view showing historic and recent examples on more than a hundred color photos depicting construction periods from prehistoric to recent times. Besides describing the uses of stone, the chapter also provides information on the main rock-forming minerals, their properties and classification, which enables an easier identification of the various stones. Wealthy illustrated sections outline the main rock groups from igneous, metamorphic to sedimentary rocks, allowing the reader to understand their origin; to recognize various rock types and compare their potential use. Fabric differences, colors, shades and tints of stones and their appearance on facades are also illustrated helping the reader to distinguish between various types of commercially sold "granites" and "marbles". By providing detailed descriptions on most stone types with an explanation on their origin, mineralogy, fabric and their potential application, the chapter clarifies the misuse of commercial names and the improper use of stone in engineering and architectural practice. This is often derived from the misidentification of available stones, and limited knowledge of stone properties.

2.1 Building Stones as a Natural Resource


Since time immemorial natural building stones have been considered a valuable and essential part of the building industry. The constructions and monuments that have been created bear witness to extraordinary technical and artistic achievements.

In the last several decades new technologies have led to considerable advances in the excavation and further processing of natural building stones. The possibilities offered by modern design in creating aesthetic interiors and exterior façades have

S. Siegesmund (⊠)

Geoscience Centre, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany

e-mail: ssieges@gwdg.de

lead to a greater demand in recent years. The forecast for net production arises from a continuous production increase, whereby the production volume doubled every 10 years (Montani 2003) until 2008, when economic crises lead to a drop in stone production by approximately 40%. These changes in economic growth bring into question the sustainability of economical stone quarrying and processing. In the future, new deposits have to be developed while older deposits have to be expanded with regard to existing inventories.

The profitability of a deposit is defined by the relationship between the exploitable rock resources (dimension stone) to the non-exploitable rock material (overburden). According to Montani (2003), only a third of the exploited raw material reaches the global market as a finished product, considering the worldwide average in the excavation of natural building stone (Fig. 2.1). From the quarried materials 51% occurs as overburden in the deposit as well as 20% resulting from the loss due to cutting, which is used in the stone industry for further processing. In the future there will be a great demand for natural building stones. To realize this, more geologic exploration is essential. Detailed surveys and assessments of geological conditions are a necessity, in order to utilise a deposit in an optimal way and to ensure sustainable resource protection. In many cases, adequate geological evaluations are missing or non-existent. Indispensable for the development of a deposit is information on the specific rock formation, its spatial orientation and extent, the depth of the deposit as well as characteristics of the overlying rock strata. In addition to large-scale reconnaissance surveys, more precise knowledge is required on factors that can control the deposit. Knowing these factors has an effect on the respective sizes of the dimension stone and the type of excavation, which in the final analysis can determine the quality and quantity of good, defectfree excavated raw blocks (Mosch 2009). The joint system here plays an important role. The system describes all planar elements that dissect the rock body into individual blocks known as in-situ blocks (Lu and Latham 1999). Disregarding these factors often results in a considerable and avoidable loss during the excavation of dimension stones.

Natural building stones are defined according to EN 12670 (2001) as a natural resource rock with use in construction and for the restoration and reconstruction of monuments, where they have a wide range of applications on the international

market. They can be used as load bearing elements or for ornamental and decorative elements, e.g. cladding panels or sculptures. The multifaceted possible uses generate a high demand for this resource, so that in the last 30 years a clear positive balance has been maintained in the production of natural building stones. According to Mosch (2009), three basic quality grades can be differentiated in general for natural building stones: (1) individual blocks; (2) gravestone sector; and (3) building industry.

The highest requirements are placed on the individual blocks, which are used for example in sculptures. A complete homogeneity in color and decor or even special individual needs of the ultimate buyer has to be guaranteed, whereby a very high price is reached in general. In the gravestone sector, a flawless petrography and structural formation of the stone is generally expected. The third grade encompasses all the qualities that are applied in the building industry. A further classification corresponding to the physical and technical construction properties of the materials is possible, which ultimately can be used to determine potential areas of application for the stone (Mosch 2009).

Over the ages, exploitation methods of natural building stones have changed significantly. First, wood edges were watered and the expansion of wood allowed the splitting of larger blocks. This technique is well known from ancient Egypt (Fig. 2.2a). Stone tools were also used but these were later replaced by metal tools such as chisels and hammers in the exploitation (Shadmon 1989). Handwork and traditional exploitation techniques are still common in the Third Word due to low labor costs (Fig. 2.2b). With industrialization the quarrying techniques have developed significantly and drilling and cutting equipments are in everyday use (Fig. 2.2c, d). Gang-saw and other techniques allow the exploitation of very large blocks and reducing block size at quarry level (Fig. 2.2e, f).

The identification of natural stone reserves and the occurrence of stone in nature can be very different in terms of scenery and size (Fig. 2.3a–d). Deposits stretching in small mountains such as the Carrara Marble (Fig. 2.3a), are the most common, but smaller reserves such as boulders are also exploitable (Fig. 2.3b). In contrast, the decorative aspects of stones already become visible at outcrop scale (Fig. 2.3c); however these are most evident after processing.

2.2 The Natural Building Stone Market

The building stone industry is part of an important branch in the field of natural resource exploitation in more than 50 countries. Asia and Europe are leaders in the worldwide production of natural building stones (Fig. 2.4).

The European part of dimension stone production amounts to about 38% and lies behind the Asian states, which manufactured around 50% of the world production of building stones in 2004 (Montani 2005). The remaining 22% of world production is distributed across North and South America, Africa and Oceania. About 75% of the worldwide excavated dimension stones are sustained by 12 countries, which generate a yearly production of >1 Mt of natural building stones. Six of these top

Fig. 2.2 Methods of stone exploitation from the past to present: (a) prehistoric traces of the use of wood edges to cut the stone (Egypt, Giza), (b) manual splitting of granite in Uruguay, (c) drill hole aided extraction, (d) the use of a saw for the extraction of soft porous limestone (Sóskút, Hungary) (e) in-situ gang-saw cutting for stone extraction in the dolerites in Uruguay and (f) reducing the block size at the quarry level (Thailand)

producers are European states, with five of them belonging to the European Union (Fig. 2.5). Four producers are in Asia, two in America and one is native to Africa. In descending order of export figures China, Italy, India, Spain, Brazil and Portugal were able to sell more than 1 Mt of material on the international market. China is the main stone exporter with 11.8 million tons of export in 2008. The leading position of importing countries includes among others Germany, Italy, China and even Spain. The fact that the three latter countries are also situated as leading exporters, clearly

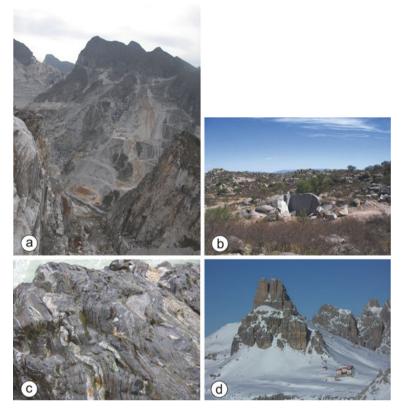


Fig. 2.3 Occurrence of stones in the field: (a) marble quarries in the Carrara district, (b) boulder fields of migmatites due to surface weathering in the Cordoba region (Argentina), (c) outcrop of migmatites with intense folding in the Ivrea-Zone (Italy). (d) steep well bedded and fractured dolomite cliffs (Dolomites, Italy)

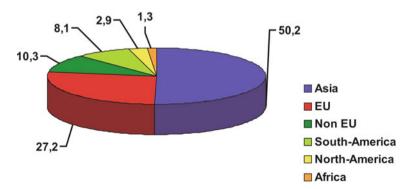


Fig. 2.4 The percentage of stone production with respect to continents in a more general overview (after Montani 2005)

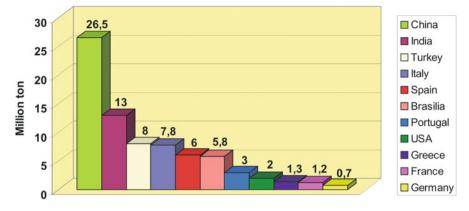


Fig. 2.5 Leading nations in the production of dimension stones and the amount of stone produced in million tons (after Montani 2008)

demonstrates the dominance they have on the international building stone market. Besides the high production rates, these countries also import large amounts of raw materials and semi-finished products, which is the reason why they can cover the various demands of the market through individual and flexible finished products.

Significant economic regions of the European natural stone industry are located mainly in southern Europe with its direct connection to the Mediterranean Sea. Countries like Italy, Spain, Portugal or Greece cover around 90% of the EU production (European Commission 1998). This is due to the advantageous conditions of regional geology and the long tradition these countries have in the field of natural stone manufacture. Beside other traditional natural building stone manufacturers, such as the Scandinavian countries, both the Czech Republic and Poland have established themselves in the dimension stone sector (Montani 2003). The European contribution to the worldwide natural building stone production has declined in the last several years. The overriding cause for this decline is the high production amount and the current processing capacities in countries such as China, India, Brazil or South Korea, which are also characterized by distinctly lower labor costs (Terezopoulos 2004). Especially impressive is the growth rate of the Asian natural building stone production, which is being continuously introduced into the international market. During the 1990s, China concentrated on increasing its exploitation capacity of their deposits, and furthermore acquired large amounts of raw material from India, Brazil, South Africa and Norway for processing. Today China is in a unique position in the Asian Region with regards to the large supply of finished products it has to offer from material acquired abroad and from their own deposits. Due to its favorable geographical position near the Pacific Ocean and other sea routes, China has found stable and profitable markets. These include markets in Europe, the West Coast of the USA and the Middle East, which has only played a subordinate role in international trade until a couple of years ago (Bruno and Paspaliaris 2004). The production of ornamental stones was 91.6 million tons in 2007. In terms of various stone types calcareous stones are the most widely used

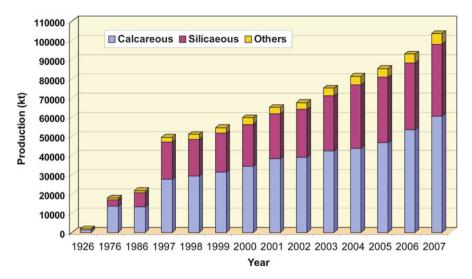


Fig. 2.6 The proportion of major lithotypes in stone production

ones, while other lithologies such as siliceous stones are less common in the stone industry (Fig. 2.6).

Natural building stone products range from unfinished raw blocks to semifinished goods up to polished and refined dimensional stone that can be used for various applications. The building industry processes about 70–75% (Primavori 1999, Founti 2004) of the worldwide exploitable natural resources. These go into the creation of tiles, cladding panels, stairs or other architectural elements, and thereby represent the most extensive field for the application of natural stones (Fig. 2.7). Although the construction industry started to replace natural building stones with steel, concrete, glass, artificial stone or brick over the last three decades,

Fig. 2.7 Different uses of stones and their proportion (modified after Hoffmann 2007)

Fig. 2.8 Various uses of stones: (a) external cladding with Carrara marble (Finlandia Palace, Helsinki), (b) interior flooring (St. Stephan's basilica, Vatican-Rome), (c) Roman stone column (Ravenna, Italy), (d) marble sculpture (Vatican), (e) sarcophagus (Roman period, Ravenna, Italy)

these alternative products could not completely stop the demand for these natural resources. The continuous demand for natural building stones is probably due to the high quality of their appearance, their architectural variability and their prestigious character, which is evident in many public institutions and representative buildings all over the world (Fig. 2.8).

Another consumer of relatively large amounts of natural building stone is the gravestone sector, which processes about 15% of world production. The gravestone industry prefers semi-finished products in the form of small blocks that can be further processed for individual purposes. In the fields of urban development and craftwork, natural building stones essentially fulfill a functional and/or decorative aspect or add to conservation measures within the framework of protection and preservation of the cultural heritage.

The amount of building stones needed cannot be supplied by existing quarries. Therefore, if the current trend of natural stone use continues, it is imperative that the deposits be managed in a more economically efficient way and expanded with regards to existing inventories. In order to meet the current predictions for the demand of natural building stone, it becomes indispensable that new deposits be developed and exploited. For this, sufficient geological assessments and a basis for planning is absolutely necessary. Architects have two choices, either using dimension stones or returning to artificial stones.

2.3 Architects Point of View

The oldest manifestations of human civilization are undoubtedly connected to the history of grandiose constructions and monumental depictions in stone, which has fascinated architects and sculptors in all cultures (see Chap. 1). From a design point of view, natural building stones stand for tradition in contrast to glass and steel that embodies technical progress. The historical examples, and even the present debate on natural building stones verifies, that these structures also stand for a demonstration of power, permanence and representation (Fig. 2.9). Many successful examples

Fig. 2.9 Architectural and historical uses of stones: (a) megalithic temples of Malta (app. 2500–3200 years BP), (b) pyramids of Giza, (c) Acropolis (Athens), and (d) Forum Romanum (Rome)

show that natural stone, one of the oldest construction materials of the world, is still being used in modern architecture and is a popular facing material of the 21st century. There is hardly a bank, insurance company or a headquarter of large corporation that does not utilize this material to decorate their buildings.

Natural building stones, by their different colors and structural variations that change their appearance with varying weather and light, have always fascinated man. Stones always convey a message of eternity. They are unique materials and today enjoy a surprising renaissance. Due to globalization, thousands of different kinds of dimensional stones exist on the market, and their numbers are rising because they are being used in most countries of the world. Even in modern architecture, where steel, glass and pre-cast concrete elements epitomize the dominant materials, it is the decorative stones that will characterize the buildings.

Many architects and building owners are increasingly making the decision to use stone cladding facade elements or stone for interior work. Not to be underestimated is the use of natural building stones in urban planning, for example in garden- and landscape architecture as well as in wellness areas. The choice of the right material represents a major challenge. For the selection of the proper stone from an architectural point of view, aesthetics and fashion are important. These cannot be easily expressed in numerical values or in diagrams. However, certain physical and technical properties of stones need to be assessed or measured to fulfill the requirements of durability and long-term stability of the stone structure. Often the stone is reduced to its interplay of color, which is without a doubt an important sensory perception in human beings. With regard to the choice of material, building owners and architects focus their vision first on the color. It is for this reason that natural building stone dealers use color as the preference for naming their stones (Verde Andeer, Azul Macauba, Verde Ubatuba, Rosso Verona etc.). There is a great variety of stone types that have the same color or similar shade or hue. Red colored stones are found in sedimentary, igneous or metamorphic rocks (Fig. 2.10). The same applies for bluish (Fig. 2.11) and greenish ones (Fig. 2.12). The use of stone of different colors can give a very different appearance to the same facade (Fig. 2.10-2.12). Apart from color, a most important role is also played by structural patterns (i.e. the macroscopic appearance). Color and decor is the result of geologically complex processes. On the basis of the diverse decor properties the natural stone is also given a sensual quality, which is accentuated by different surface treatments and finish.

Color, as used in architecture, is one of the most characteristic and visible aspects of natural stones. An almost infinite choice of colors and décors of natural stones exist, which control the macroscopic appearance of stones. The color may be due to the presence of so-called idiochromatic minerals or natural pigmentation due to organic or inorganic inclusions and particles. Apart from the influence of color, the macroscopic appearance of stones is fundamentally defined by the fabric (i.e., texture), and finally by the rock-forming geological processes. Moreover, the aesthetic value of stones and its décors is highly variable due to an increasing amount of surface treatment.

Fig. 2.10 Collection of red stones compiled exclusively on the basis of the colour. The different rock types originated under different conditions: (a) compact limestone, (b) rhyolite, (c) sandstone and (d) syenite. The rocks are completely different with respect to their technical properties and with respect to their constructional applications (Figures by Natursteinarchiv Wunsiedel)

2.4 Confusion Caused by Commercial Names

In the international stone market a large number of commercial varieties are recognized, whereby a steady increase is observable with progressive globalization. For example, Börner and Hill (2007) collected 13,677 commercial varieties. This large number shows that a great variety of rocks are available on the open market that covers an immense spectrum of colors and decors. The basic problem of this diversity is the arbitrary choice of a commercial or trade name. Therefore, the naming of the stone can result in a complete falsification of the stone's true designation. A good example is the well-known micritic limestone from Belgium, which uses the trade name of Belgian Granite. Sometimes identical stones are sold under different trade names. Börner and Hill (2007) have shown that the Granite G603 from China is listed on the international market with 67 synonymous terms, like