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Preface

Work function is one of the important physical quantities ofmaterials that is related to
various phenomena. However, systematic discussion on the work function is limited
possibly because of the following two reasons. One is that the work function is
not a quantity that is specific to a bulk material such as dielectric constant, elastic
modulus, density, and magnetic susceptibility. Even one single crystalline material
has different work function values, depending on the crystal plane. This means that
work function values are influenced not only by bulk materials but also by surface
conditions. The other is that the measurement of work function values of an intended
surface of materials is not easy. The difficulty comes from the fact that work function
values are surface sensitive as mentioned above. Surface is very reactive in general,
and it is rather difficult to prepare and maintain a surface as intended states.

Basic experimental researches on the work function had progressed upon the
development of commercially available vacuum instruments in the 1960s–1970s,
which provided tools to maintain surface conditions and observe surface composi-
tions and structures. Most of fundamental issues were established during this time.
Then, theoretical calculations of the work function have complimented experimental
researches thanks to the development of first-principles calculations in the 1990s.
Emergence of electronic devices had required the control of band alignment via
work function control at the interface, and the origins of the deviation from ideal
Schottky relation were rigorously discussed in the 1980s and later.

v



vi Preface

This book presents issues on the work function from fundamental physics to
examples of band alignment via work function control in device applications. The
author hopes the book helpful for all who engage in research and development of
materials whose function has related to the work function.
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Chapter 1
Introduction: Functions
and Performances Governed by the Work
Function

1.1 Why is the Work Function Important?

The work function is an important property for phenomena where electron transfer
between two differentmaterials in contact or from amaterial into vacuum is involved.
Electron transfer into vacuum or a gas phase is usually called electron emission
(Fig. 1.1a). Electron emission is one of the well-known phenomena governed by the
work function. In fact, electron emission has been used tomeasure values of the work
function. Electron emitters with a low work function have been developed for a long
time. Electron transfer between twomaterials (Fig. 1.1b) is anothermajor application
field related to electron emission. In the field of semiconductor device physics, it is
well known that the ideal Schottky barrier height (SBH) at a metal–semiconductor
interface is determined by the work function of the metal and the electron affinity
of the semiconductor (Fig. 1.2). There are major application fields that utilize the
concept of a Schottky contact, whichwill be discussed later in the book. Furthermore,
several types of chemical reaction on a surface have been reported to be related to the
work function. For example, the potential of oxidation in fuel cells has been shown
to be related to the work function of the electrode materials [1]. The dissociation
of molecules on catalytic metals has also been reported to be affected by the work
function of metals [2, 3].

Because the work function is a factor determining electron emission, it affects
most phenomena involving electrons and is important in many application fields. In
Fig. 1.3, some of the application fields that utilize electron emission phenomena are
shown. A scanning electron microscope (SEM) and a transmission electron micro-
scope (TEM), which are familiar in scientific R&D fields, use an electron source
whose performance is determined by the work functions of the electron source mate-
rials. Here, emitted electrons are made into a beam. Other examples of electron
beam applications are electron lithography, accelerators for synchrotron radiation
photon sources, and colliders for nuclear physics research. Examples of the practical
use of electron emission in daily life are fluorescent lamps, neon lighting in neon

© National Institute for Materials Science, Japan 2021
M. Yoshitake, Work Function and Band Alignment of Electrode Materials,
NIMS Monographs, https://doi.org/10.1007/978-4-431-56898-8_1
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Fig. 1.1 Some examples of applications related to a electron emission (electron transfer into
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Fig. 1.3 Applications related to electron emission phenomena. See text for explanation

signs, and car plugs. For these applications, electron emission is mostly utilized to
initiate electric discharge. Electric discharge initiated by electron emission is used
for plasma formation, and plasma is utilized for many industrial applications such as
film deposition. Another important application is based on photoelectron emission.
When light irradiates a metal, electrons are emitted if the energy of the light exceeds
the work function. This phenomenon is utilized for photodetectors and gas sensors
(which detect light emission from gas). Detectors or sensors for a specific photon
energy or gas species can be fabricated by tuning the work function of materials.

Electron emission not to vacuum or a gas phase but to another solid (electron
transfer) has an even wider range of applications. The performances of almost all
devices that involve an electric circuit are related to the work function. Figure 1.4
illustrates some of the application fields that utilize electron transfer phenomena.
Electron transfer is controlled via the electric voltage in electric devices such as
transistors and CMOS. The work function is a key factor determining the operation
voltage. Light-emitting devices including organic devices convert electric energy to
light, where the work function is an important factor determining the conversion
efficiency. The performance of devices involving energy conversion in the opposite
direction, i.e., solar cells, is also influenced by the work function. For other energy
conversion devices with various types of energy, such as fuel cells and batteries
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Fig. 1.4 Applications related to electron transfer phenomena. See text for explanation

(chemical energy), thework function is a key to extracting electricity from the energy.
Another field related to energy conversion is sensors, where the amount of energy to
be converted is small. Again, the energy conversion efficiency is related to the work
function, where the efficiency determines the sensitivity.

1.2 Contents of the Following Chapters

As briefly overviewed in the above section, the work function plays an important role
in a verywide range of scientific, technological, and industrial fields. In the following
chapters, we discuss the physical origin of the work function, how the work function
can be controlled on the basis of physics, and how to design interfaces. In this section,
a guide to the following chapters is given.

In Chap. 2, the definition and the origin of the work function are given, and factors
that determine the value of thework function are explained. Themost important point
is that the work function is defined for the surface of a material as well as for bulk
materials. In Chap. 3, strategies for tuning the work function are demonstrated on the
basis of the discussion in Chap. 2. Examples of work function modifications using
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these strategies are also given for concrete material systems. In Chap. 4, various
methods of measuring work function are given with both their physical principles
and technical issues.

From Chaps. 5–7, band alignment at the interface is discussed on the basis of
the relationship with the work function. In Chap. 5, band alignment is handled as
an ideal case, where the modification of the work function directly controls the
band alignment. The relationship between the band alignment and the work function
in general, and concrete examples of band alignment modification via tuning of
the work function are given. In Chap. 6, cases where the relationship between the
band alignment and the work function is not ideal are discussed. Here, although the
relationship is not ideal, a linear relationship with the work function is obtained in
many cases. A correlation factor for the linear relationship is introduced, which is
determined by the dielectric property of the material in contact. Chapter 7 discusses
band alignment with interface-specific cases. By extending the idea that the work
function is surface-sensitive, either an appropriate interface terminating species or the
insertion of a very thin layer that can be regarded as having only a surface and no bulk
is adopted to modify the band alignment. Some concrete examples are also given.
Practically, the former technique is extensively adopted in the field of compound
semiconductors and the latter technique is used in organic semiconductor fields. The
relationship between the chapters of this book is summarized in Fig. 1.5.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Fig. 1.5 Relationship between the chapters of the book
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