
Mathematics 
is Beautiful

Heinz Klaus Strick

Suggestions for People 
Between 9 and 99 years 

       to Look at 
       and Explore
                          



Mathematics is Beautiful



Heinz Klaus Strick

Mathematics is Beautiful
Suggestions for People Between 9 and 99 
Years to Look at and Explore



Heinz Klaus Strick
Leverkusen, Germany

ISBN 978-3-662-62688-7  ISBN 978-3-662-62689-4 (eBook)
https://doi.org/10.1007/978-3-662-62689-4

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does 
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective 
laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Responsible Editor: Iris Ruhmann
This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer 
Nature. 
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

The translation was done with the help of artificial intelligence (machine translation by 
the service DeepL.com). A subsequent human revision was done primarily in terms of 
content.

https://doi.org/10.1007/978-3-662-62689-4


v

Not everyone thinks of mathematics as something to enjoy when talking about it. But 
mathematics has many exciting and aesthetically pleasing aspects to offer. In this book, I 
have tried to show some of these beautiful things in mathematics.

During my work as a mathematics teacher, I have always endeavored to loosen  up my 
lessons to a certain extent. Unfortunately, even in the most exciting mathematics lessons 
tedious and dry phases cannot be avoided.

For such relaxation and enrichment, there are questions that could be classified as 
mathematical games, or even brain teasers whose solutions lead to amazing insights.

Thus, for example, after the treatment of the inscribed angle theorem in elementary 
geometry, regular star figures can be examined (Chap. 1) or regular polygons can be laid 
out using diamonds (Chap. 10). Searching the greatest common divisor of two numbers is 
more entertaining if one interprets this as the dissection of a rectangle (Chap. 3). Mental 
arithmetic is not to everyoneʼs taste, but surprisingly, you can discover interesting struc-
tures in the world of numbers with just a few arithmetical tricks (Chap. 7). Solving quad-
ratic equations and linear systems of equations is usually not very exciting – unless you 
use these methods to explore wonderful figures with touching circles (Kissing circles, 
Chap. 15) or to deal with the question of the tessellation of rectangles by squares of dif-
ferent sizes (Squaring the square, Chap. 14). In addition to the Kissing circles problems 
from Japanese temple geometry (Sangaku) are examined.

Several of the topics addressed in the book are aimed at younger students. Experience 
has shown that thread pictures (Curve stitching, Chap. 6) are extremely fascinating – 
even if the theoretical background can only be conveyed at the end of secondary school  
or even afterwards. Playing with pentominoes (Chap. 5) encourages a strategic and log-
ical approach. And smart 10-year-olds can understand that weighing with a fixed, very 
limited set of balance weights (Chap. 9) conceals arithmetic in the ternary numeral 
system.

In the first years of school, children already learn to determine the areas of simple 
geometric figures; it is all the more  astonishing, that a completely different way of 
measuring can be chosen: the area inside a polygon can be calculated when the verti-
ces are points of a square-ruled paper: you only have to count the lattice points of the 
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vi Preface

boundary and those lying inside the figure (Chap. 11). As an introduction to the subject 
this chapter also includes studies of rectangles and other simple figures on grid paper.

However, studying beautiful mathematics can also mean looking at colored patterns 
or designing oneʼs own patterns. Patterns made of colored stones (Chap. 2) were already 
studied 2500 years ago. When coloring circular rings (Chap. 4) and equally large subar-
eas of regular polygons (Area divisions, Chap. 8) you can develop your own imagination 
and perhaps even discover new patterns.

At the end of the book, there are two more extensive chapters on the derivation of 
power sum formulas (Chap. 16) and on the Pythagorean theorem (Chap. 17). They make 
clear how new ideas on a topic have been developed over the centuries.

Unfortunately, there was no room in this book for other topics. I am aware that a 
selection could have been different. (For example, if you miss the “Golden Ratio”: at 
least some aspects can be found in Chaps. 3 and 13, but here will be a lot more in the 
second volume of “Mathematics is beautiful”).

The chapters can be read independently of each other. At least when starting with the 
individual topics, the simplest possible approach was chosen; for this none or only a little 
background knowledge from school lessons is required.

It is an important concern of the book that – by reading this book – many young peo-
ple find their way to mathematics and at the same time those readers, whose school days 
are some time ago, remember again and discover something new. The numerous refer-
ences to further sources for information on the Internet as well as to further literature 
should help  here. The “solutions” to the problems described in the individual sections 
Suggestions for reflection and for investigations are published on the author’s website: 
https://www.mathematik-ist-schoen.de/mathematics-is-beautiful/.

This book was written for everyone who enjoys mathematics or wants to understand 
why the book bears this title. It is also aimed at teachers who want to give their students 
additional or new motivation to learn.

Even though each chapter contains – graphically emphasized – theorems, rules, and 
formulas, that is, the typical elements of a mathematics book, this is not a textbook of 
mathematics. Proofs of theorems are only based on examples – it was always more 
important to me to convey the underlying ideas than pointing out the formal conclusions.

The abundance of graphics in this book should encourage you to develop your own 
ideas about the objects presented:

Viewing, thinking, trying out, varying, researching, wondering.
The fact that most of the graphics were created using the LOGO programming lan-

guage may  be criticized, as the graphic resolution that can be achieved with this soft-
ware is certainly not optimal. Besides the licensing issue, the decisive factor for my 
decision was my own positive teaching experiences with the concept of the programming 
language, which  the inventor Seymour Papert (Mindstorms) himself considered suitable 
for primary school.

In recent years, I have had the pleasure of dealing with a new mathematician every 
month (https://www.spektrum.de/mathematik/monatskalender/index/). A lot of those 

https://www.mathematik-ist-schoen.de/mathematics-is-beautiful/
https://www.spektrum.de/mathematik/monatskalender/index/
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“histories”, which, with the help of John O’Connor, are now also available in English 
and can be downloaded from https://mathshistory.st-andrews.ac.uk/Strick/.

When you deal with the insights and ideas of scholars who have long since passed 
away, you often cannot help but be amazed. I hope that in this book I have also suc-
ceeded in bringing some of these wonderful insights, which have unfortunately often 
been forgotten, back into consciousness. I have made every effort to provide sufficient 
suggestions for further study of the topics by the literature references in each chapter and 
at the end of the book. Fortunately, the quality of the Wikipedia contributions (and the 
bibliographical references they each contain) has increased significantly in recent years. 
Sometimes they are even surpassed by the German or French version; therefore, these 
sources are also mentioned. It is no longer possible for me to state in detail which pub-
lications have given me which  stimulus. Over the past decades I have worked through a 
large number of books, whose titles often begin with the words

Recreations, Challenging Problems, Excursions, Adventures …
Most of the time I looked at them from the point of view of whether they contained 

suggestions for “normal” lessons, for study groups, or as problems for competitions.
At the end of the work on this book, I would like to thank all those who have sup-

ported me in the preparation and implementation of the book project:

• To my wife, who patiently put up with the fact that I kept immersing myself in the 
beautiful world of mathematics,

• To Wilfried Herget (University of Halle), who made numerous suggestions to make 
the wording of my texts more understandable and revealed gaps in arguments,

• To Manfred Stern ✝(University of Halle), Peter Gallin (University of Zurich), and 
Hans Walser (University of Basel) who have given numerous suggestions for this 
book,

• To John O’Connor (University of St Andrews) who liberally helped so that this book 
could be published in an understandable translation,

• And not least to Andreas Rüdinger, Iris Ruhmann, Carola Lerch, Snehal Surwade and 
Jasmeen Kaur from Springer Verlag, who made this book possible.

Leverkusen Germany Heinz Klaus Strick

https://mathshistory.st-andrews.ac.uk/Strick/
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Three things remain with us from paradise:
Stars, flowers and children.

(Dante Alighieri, 1265–1321, Italian poet and philosopher)

 

1.1  Properties of Regular Stars

Regular stars are created by connecting vertices of regular polygons according to a certain 
rule.

Such a rule could be worded as follows:
Connect one vertex of the polygon with the k-next vertex (clockwise).

Example: 5-Pointed Star (Pentagram)
For n = 5 and k = 2, this means: connect each vertex of a regular 5-sided figure (pen-
tagon) to the second-next vertex (clockwise). Thus a regular 5-pointed star is created.

Regular Polygons and Stars 1
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2 1 Regular Polygons and Stars

No further 5-pointed stars exist, because for n = 5 and k = 3 you get the same 
star. Instead of connecting each vertex to the third-next vertex clockwise, you can 
connect the vertex to the second-next vertex counterclockwise.

Example: 6-Pointed Star (Hexagram)
Also for n = 6 only one type exists. It consists of two 3-sided figures (equilateral 
triangles), because 2 · 3 = 6.

If you number the vertices of the n-sided figure clockwise with 
P0, P1, P2, P3, P4, P5, then you get two closed polygonal lines: P0 − P2 − P4 − P0 
and P1 − P3 − P5 − P1, with either even or odd indices.

Example: 7-Pointed Stars (Heptagrams)
For n = 7 there are two different stars, namely for k = 2 and for k = 3. If you look 
closely, you can see that the 7-pointed star for k = 2 is also created inside the star 
for k = 3 (also a regular 7-sided figure).
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Example: 8-Pointed Stars (Octagrams)
Also for n = 8 there are two different stars, that is for k = 2 and for k = 3.

The 8-pointed star for k = 2 also appears inside the star for k = 3. It consists of 
two regular 4-sided figures (squares), because 2 · 4 = 8.

Example: 9-Pointed Stars (Enneagrams)
For n = 9 there are even three different stars.

• n = 9, k = 2: The star can be drawn as a closed polygonal line:

• n = 9, k = 3: The star consists of three regular 3-sided figures (equilateral trian-
gles), because 3 · 3 = 9.

• n = 9, k = 4: The star can be drawn as a closed polygonal line:

Inside, the stars for both, k = 2 and k = 3, appear.

P0 − P2 − P4 − P6 − P8 − P1 − P3 − P5 − P7 − P0

P0 − P4 − P8 − P3 − P7 − P2 − P6 − P1 − P5 − P0

1.1 Properties of Regular Stars
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Example: 10-Pointed Stars (Decagrams)
There are also three different stars for n = 10.

• n = 10, k = 2: This star consists of two regular 5-sided figures, because 
2 · 5 = 10.

• n = 10, k = 3: The star can be drawn as a closed polygonal line.
• n = 10, k = 4: This star consists of two stars of type n = 5, k = 2. These 

include the two closed polygonal lines P0 − P4 − P8 − P2 − P6 − P0 and 
P1 − P5 − P9 − P3 − P7 − P1.

Example: 11-Pointed Stars (Hendecagrams)
For n = 11 there are four different stars, namely for k = 2, k = 3, k = 4, and k = 5.

All of these stars can be drawn as closed polygonal lines.
On the inside the stars with smaller k appear respectively.
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Example: 12-Pointed Stars (Dodecagrams)
For n = 12 there are four different stars:

• k = 2: 2 regular 6-sided figures, because 2 · 6 = 12.
• k = 3: 3 regular 4-sided figures (squares), because 3 · 4 = 12.
• k = 4: 4 regular 3-sided figures (equilateral triangles), because 4 · 3 = 12.

Only the star for k = 5 can be drawn as a closed polygonal line.
On the inside the stars with smaller k appear respectively.

The following properties can be identified from the examples:

• n-pointed stars exist for every n, which is greater than 4.
• For k you can use any number. You can get different star figures, if you use the fol-

lowing values in the drawing rule: k is at least 2, for even-numbered n use at most 
n
2
− 1, for odd-numbered n use at most n−1

2
.

– In detail, the following applies for odd-numbered n: for n = 5 there is one star for 
k = 2; for n = 7 there are two stars, namely for k = 2 and for k = 3; for n = 9 
there are three stars, namely for k = 2 for k = 3 and for k = 4; and so on.

– In detail, the following applies for even-numbered n: for n = 6 there is one star for 
k = 2; for n = 8 there are two stars, namely for k = 2 and for k = 3; for n = 10 
there are three stars, namely for k = 2, for k = 3 and for k = 4; and so on.

• If any vertex is determined as the beginning of a closed polygonal line with the number 
0, then the line passes through the vertices with the numbers 0− k − 2k − 3k − · · · , 
and similar as to a clock, the numbers are each reduced by n, when the multiple of k 
reaches or exceeds the number n.

• In every n-pointed star, there are further n-pointed stars inside for every possible 
k > 2.

• Some star figures can be drawn without lifting the pen; others consist of two or more 
polygons or star figures. In detail:
– If k is a divisor of n, then the star consists of k polygons with e vertices, where 

e = n
k
.

1.1 Properties of Regular Stars
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– If k and n have the common divisor g, then the n-pointed star is composed of g 
stars with n

g
 vertices.

– If k and n are coprime, that is, if they only have the number 1 as a common divisor, 
the star can be drawn as a (single) closed polygonal line. Conversely, if a star can 
be drawn as a (single) closed polygonal line, then k and n are coprime.

Rule
Stars that can be Drawn as a Closed Polygonal Line
Regular n-pointed stars exist for all natural numbers n, k with n > 4 and 
2 ≤ k ≤ n

2
− 1, if n is an even number, or 2 ≤ k ≤ n−1

2
, if n is an odd number.

Then, and only then, the stars can be drawn as a closed polygonal line, if n and k 
are coprime. ◄

Since in regular n-pointed stars both the number of vertices n and the parameter k play 
an important role, they are often notated with the symbolic notation {n/k}, the so-called 
Schläfli symbol (named after the Swiss mathematician Ludwig Schläfli [1814–1895], 
who was particularly interested in regular polygons, polyhedrons and their generalization 
in higher dimensions).

Suggestions for Reflection and for Investigations
A 1.1: Answer the following questions for n = 13, n = 15, and for n = 18 (that 
is, for an odd or even number of vertices): for which k (minimum and maximum 
value) do you get an n-pointed star? How many different star figures are possi-
ble? Which of the possible star figures can be drawn as a closed polygonal line, 
which consist of several stars, which of several polygons? Which numbers of ver-
tices appear in the possible closed polygonal lines (start of lines at the vertex with 
number 0)?

A 1.2: In the following figures, areas of equal size are colored in the same way. 
How does the number of colors depend on the type of star, i.e. on the values for n 
and k?
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1.2  Drawing Stars

To draw a regular star with n vertices, you need to know how to draw a regular n-sided 
polygon.

Especially simple is the construction of a regular 4-sided figure (square) and a regular 
6-sided figure (hexagon) as well as the regular polygons, each obtained by doubling the 
number of vertices from given regular n-sided figures:

• A regular 4-sided figure is obtained by drawing a circle of any radius r, selecting any 
point on the circle and drawing a straight line through the center of the circle until 
the circular line is intersected again. Then draw a perpendicular to this line through 
the center of the circle to get two more points of the 4-sided figure. These four points 
determine a square.

• A regular 6-sided figure is created by drawing a circle with an arbitrarily chosen 
radius r, then selecting any point on the circular line and from this point successively 
drawing lines of the length r on the circle. This construction is possible because the 
regular 6-sided figure consists of six equilateral triangles, i.e., the sides of the 6-sided 
figure are as long as the line segments which connect the vertices with the center of 
the circle (= radius of the circle).

If you draw a straight line from the center of the circle through each of the centers of 
the sides of the regular n-sided polygon, then the intersection points of these straight 
lines with the circular line are the additional vertices for the regular 2n-sided polygon. 
In this way you will get out of the square a the regular 8-sided polygon, from the regular 
6-sided polygon you will get the regular 12-sided polygon, and so on (see the following 
figures).

1.2 Drawing Stars
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In general, that is, for any n, there are two possibilities:

• You start with a circle with radius r, which is drawn around a center point, and then 
draw the radius n-times from the center, changing the direction 360°/n each time.

 Figure 1.1 shows (for n = 7) not only the vertices but also the sides of the regular 
n-sided polygon and the altitudes of the resulting isosceles triangles. The n-pointed 
star is created when a starting point is connected with the k-next point according to 
the rules, and this procedure is then repeated n times.

• Alternatively, you can also start with one side of the n-sided polygon, that is, draw a 
line of length s, then change the direction in which you moved while drawing by the 
nth part of 360°, so that after repeating the process n times, you have made a total 
rotation of 360° and have arrived back at the starting point of the “walking tour.”

There is a simple relationship between the circle radius r and the side length s of the 
regular n-sided polygon: two adjacent radii and one side of the n-sided polygon form an 
isosceles triangle, which is divided by the altitude h into two right-angled triangles.

Therefore, the following applies to the half angle at the center:

sin

(

180◦

n

)

=
s

2r
and tan

(

180◦

n

)

=
s

2h
and cos

(

180◦

n

)

=
h

r

Fig. 1.1  Two of the ways to draw a regular 7-sided polygon
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1.3  Diagonals in a Regular n-Sided Figure

In exploring the question which n-pointed stars are possible at all, it makes sense to draw 
a regular n-sided figure with all diagonals first and then, according to the instructions, 
mark the desired closed polygonal line for which the diagonals are used.

From each vertex of an n-sided figure you can draw line segments to the other verti-
ces: 2 sides (to the two adjacent vertices) and n− 3 diagonals (to the remaining vertices).

The total number of diagonals in an n-sided polygon does not result directly from the 
product n · (n− 3) because with this method of counting each of the connecting lines is 
counted twice. Rather the following applies:

Rule
Number of Diagonals of an n-Sided Polygon
The number of diagonals in an n-sided polygon is equal to 1

2
· n · (n− 3). ◄

Examples for the Calculation of the Number of Diagonals
A regular 5-sided figure has 1

2
· 5 · 2 = 5 diagonals that form the regular 5-pointed 

star.
A regular 6-sided figure has 1

2
· 6 · 3 = 9 diagonals, but 3 of them only lead to 

the opposite point, so they are not suitable to draw a star. The remaining 6 diago-
nals form the 3 sides of the two equilateral triangles.

A regular 7-sided figure has 1
2
· 7 · 4 = 14 diagonals, of which 7 diagonals each 

form a polygonal line for the 7-pointed star with k = 2 or k = 3.
A regular 8-sided figure has 1

2
· 8 · 5 = 20 diagonals, of which 4 only lead to the 

opposite point, so they are not suitable to draw a star. In addition, two times four 
diagonals each form the two squares of which star {8/2} consists, so that 8 diago-
nals remain, which form the regular 8-pointed star {8/3}.

1.3 Diagonals in a Regular n-Sided Figure
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Suggestions for Reflection and for Investigations
A 1.3: Determine the number of diagonals for n = 9 to n = 12 in the regular 
n-sided polygon. Which of these diagonals are needed for drawing n-pointed stars? 
Generalize these statements about diagonals and stars for an even and odd number 
of vertices.

In the regular 5-sided figure (pentagon), all diagonals have the same length. If you con-
nect the end points of a diagonal to the center of the circle, an isosceles triangle with 
base d and two legs of the length r is formed. Since the diagonals connect one vertex of 
the regular 5-sided figure with the second next vertex, the size of the angle δ at the center 
of the circle is equal to 2 · 360◦

5
 that is, the size of half the angle is equal to 2 · 180◦

5
= 72◦.

Therefore applies to the diagonals in the regular 5-sided figure:

In general, for the diagonals in any regular n-sided polygon, which connect one vertex 
with the second next vertex, the length of the diagonal d2 is given as:

In the case of diagonals connecting one vertex with the third next vertex, the angle δ at 
the center of an isosceles triangle changes accordingly to 3 · 360

◦

n
, that is, half the angle to 

3 · 180
◦

n
. Therefore, the following applies:

Formula
Length of the Diagonals of a Regular n-Sided Polygon
In general, for the length dk of a diagonal, that connects a vertex with the k-next ver-
tex of a regular n-sided polygon and that lies opposite to the angle δ = k · 360◦

n
, the 

following applies:

By means of formula (1.1), the total length of the closed polygonal line which forms 
the regular n-pointed star can then be calculated, see also Table 1.1 below. ◄

sin

(

2 · 180◦

5

)

=
d
2

r
, that is d = 2r · sin

(

2 · 180◦

5

)

.

d2 = 2r · sin
(

2 · 180◦

n

)

d3 = 2r · sin
(

3 · 180◦

n

)

(1.1)dk = 2r · sin
(

k · 180◦

n

)
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1.4  Vertex Angle in a Regular n-Pointed Star

At the vertices of the regular n-pointed stars, there are angles that depend on the val-
ues for n and k. These are easy to determine by applying the so-called inscribed angle 
theorem. The theorem deals with  the central angle above a chord and the associated 
inscribed angle (peripheral angle) above it. The theorem states that all peripheral angles 
above a chord are equal. The central angle is twice as large as the periphal angles.

Figure 1.2 shows the symmetric case of the theorem; for a general proof of the theo-
rem look at the references.

If two adjacent vertices of a regular n-sided figure are connected to each other, then 
the central angle belonging to the side of the n-sided figure is equal to 360

◦

n
; the corre-

sponding peripheral angles are equal to 180
◦

n
.

Table 1.1  Angular sizes and line lengths for regular n-pointed stars

Star type {n/k} Number of polyg-
onal lines

Center angle δk 
(opposite to the 
diagonal dk)
δk = k · 360◦

n
 (°)

Angle ε at the 
“tip” (°)

Total length of all 
lines of the star 
n · 2r · sin

(

k·180◦
n

)

{5/2} 1 144 36 9.51 ∙ r

{6/2} 2 120 60 10.39 ∙ r

{7/2} 1 102.86 77.14 10.95 ∙ r

{7/3} 1 154.29 25.71 13.65 ∙ r

{8/2} 2 90 90 11.31 ∙ r

{8/3} 1 135 45 14.78 ∙ r

{9/2} 1 80 100 11.57 ∙ r

{9/3} 3 120 60 15.59 ∙ r

{9/4} 1 160 20 17.73 ∙ r

{10/2} 2 72 108 11.76 ∙ r

{10/3} 1 108 72 16.18 ∙ r

{10/4} 2 144 36 19.02 ∙ r

{11/2} 1 65.45 114.55 11.89 ∙ r

{11/3} 1 98.18 81.82 16.63 ∙ r

{11/4} 1 130.91 49.91 20.01 ∙ r

{11/5} 1 163.64 16.36 21.78 ∙ r

{12/2} 2 60 120 12 ∙ r

{12/3} 3 90 90 16.97 ∙ r

{12/4} 4 120 60 20.78 ∙ r

{12/5} 1 150 30 23.18 ∙ r

1.4 Vertex Angle in a Regular n-Pointed Star
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If you connect a vertex of a regular n-sided figure with the second next vertex, then 
the central angle belonging to this diagonal d2 is twice as large as 360

◦

n
 thus equal to 720

◦

n
 

and the corresponding peripheral angles are equal to 360
◦

n
.

In general:

Rule
Central Angles and Peripheral Angles Over a Chord in Regular n-Sided 
Polygons
If you connect a vertex of a regular n-sided polygon with the k-next vertex, then the 
angle at the center of this diagonal dk is k-times as big as 360

◦

n
; the corresponding 

peripheral angles are equal to k · 180◦

n
. ◄

Examples of the Angles in the Vertices of Regular n-Pointed Stars
• With the regular 5-pointed star the vertex is “above” one side of the 5-sided 

figure. Therefore, the angle ε at the vertex is half the angle at the center of 
the regular 5-sided figure. Since the angle at the center has an angular size of 
360◦

5
= 72◦, the angle at the vertex of the regular 5-pointed star is ε = 180◦

5
= 36◦ - 

see the first of the following figures.
• In the regular 6-pointed star, the vertex is also “above” a diagonal of the 6-sided 

figure, which connects one vertex with the second-next. Therefore the angle ε is 
half as large as the corresponding central angle, that is, half as large as 2 · 360◦

6
, 

that is ε= 60
◦, see the second of the following figures.

• With the regular 7-pointed star {7/2} the vertex is also “above” a diago-
nal of the 7-sided figure, which connects one vertex with the third next ver-
tex. Therefore, the angle ε is half as large as the corresponding central angle, 
namely half the size of 3 · 360◦

7
, that is ε ≈ 77.14◦.

Fig. 1.2  Relationship between 
the center angle and the 
peripheral angle in a symmetric 
triangle
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On the other hand, with the star {7/3} the point is “above” a diagonal of the 
7-sided figure, which connects one vertex with the next vertex. Therefore, the point 
angle ε is half as large as the corresponding central angle, namely half as large as 
1 · 360◦

7
, that is ε ≈ 25.71◦, see the third and fourth of the following figures.

Suggestions for Reflection and for Investigations
A 1.4: Using the 8-, 9-, 10-, or 12-pointed stars shown in the figure, consider 
which are the angular sizes in the vertices of the n-pointed stars.

A 1.5: One of the regular 9-pointed stars has a central angle greater than 180°. Use 
the following two figures to explain how the angle in the vertex is calculated here.

A 1.6: The following regular stars also have a central angle that is greater than 
180°. In each case, explain how the angles in the vertices are calculated.

1.4 Vertex Angle in a Regular n-Pointed Star
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On the basis of the examples, it can be assumed that there is a simple relationship 
between the angle ε in the vertex and the angle at the center δk above the diagonals, 
namely ε = 180◦−δk, see the following table.

Figure 1.3 shows that this is true: the vertex is determined by two diagonals, of which 
each has the central angle δk. According to Sect. 1.3 this angle can be calculated as 
δk = k · 360◦

n
. For the base angles γ of the associated isosceles triangles, the following 

applies, due to the angle sum in the triangle, 2γ + δk = 180◦.
But since the vertex angle ε consists of twice the angle γ, the proposition applies 

ε + δk = 180◦.

Fig. 1.3  To determine the angle 
ε = 2γ at the vertex of a regular 
n-sided polygon
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Rule
Size of the Vertex Angles in Regular n-Pointed Stars
For the vertex angle ε of a regular n-pointed star of the type {n/k} the following 
applies:

Inside a star of type {n/k} further n-pointed stars {n/m} appear with 1 < m < k. At the 
very center of a regular star there is also a regular n-sided figure, for whose interior 
angles α applies: α = 180◦ − 360◦

n
.

So you can apply the formula for calculating ε also to the case k = 1 and mark reg-
ular n-sided figures with the Schläfli symbol {n/1}.

The results so far are shown in Table 1.1. ◄

1.5  Compounded n-Pointed Stars

In principle, you can also create regular n-pointed stars by first creating a regular n-sided 
polygon, and then drawing isosceles triangles above the sides of the polygon. In the fol-
lowing figures, equilateral and golden triangles, respectively have been placed on the 
sides of a regular 5, 6, and 7-sided figure. (Isosceles triangles with a base angle of 72° 
are called golden triangles).

ε = 180
◦
−

k · 360◦

n

1.5 Compounded n-Pointed Stars
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Suggestions for Reflection and for Investigations
A 1.7: Prove the proposition: all regular n-pointed stars of the type {n/2} can be 
interpreted as compounded n-pointed stars.

1.6  Regular n-Sided Figures in the Complex Plane

Section 1.2 explained how to draw regular n-sided polygons. No coordinate system is 
required for these drawings.

In complex analysis, one often uses representations based on the so-called complex 
plane (also called “Argand diagram” named after the French amateur mathematician 
Jean-Robert Argand, 1768–1822). This is a two-dimensional coordinate system in which 
the real part of a complex number is plotted in horizontal direction and the imaginary 
part in vertical direction.

Complex numbers z = x + i · y are defined in the coordinate system of the complex 
plane as points with the coordinates (x, y) (see Fig. 1.4).

 
The points (x, y) of the unit circle, that is, a circle with the radius 1, satisfy the equation 
x2 + y2 = 1 – according to the Pythagorean theorem. If you name  the angle between the 
ray, leading from the center to a point on the unit circle, and the x-axis with ϕ, then each 
point can also be described by the coordinates (cos (ϕ), sin (ϕ)).

Fig. 1.4  Stamps of the postal 
service of the Federal Republic 
of Germany (“Deutsche 
Bundespost”) on C. F. Gauss 
and the complex plane (in 
Germany named as “Gauss’sche 
Zahlenebene”)
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An equation of the form zn = 1 is called as cyclotomic polynomial equation. According 
to the the fundamental theorem of algebra, such an equation has exactly n solutions in the 
set of complex numbers. In the complex plane, the solutions of the cyclotomic polynomial 
equation form the vertices of a regular n-sided figure (hence the name for the equation).

The French mathematician Abraham de Moivre (1667–1754), who lived in exile in 
England, discovered that for every complex number z = cos (ϕ)+ i · sin (ϕ) and for each 
natural number n the following equation applies:

Formula
Theorem of Moivre

Therefore the following applies for every angle ϕ = k · 360◦

n
 with k = 0, 1, 2, . . . , n− 1:

That means that the n complex numbers zk = cos
(

k · 360◦

n

)

+ i · sin
(

k · 360◦

n

)

 satisfy 
the equation zn = 1. ◄

Formula
Solutions of the Cyclotomic Polynomial Equation
The n solutions of the cyclotomic polynomial equation zn = 1 have the form

where k = 0, 1, 2, . . . , n− 1.
The n solutions can be found by drawing n rays from the origin of the coordinate 

system with an angle ϕ with ϕ = k · 360
◦

n
 and determining their points of intersection 

with the unit circle.
In special cases, the solutions of the cyclotomic polynomial equation can also be 

determined using elementary algebraic methods, that is, without using trigonometric 
functions. This is illustrated by the examples for n = 3, 4, and 5. ◄

Example 1: Solution of the Equation x3 = 1

Using Trigonometric Functions:
The cubic equation z3 = 1 has the three solutions:

(1.2)[cos(ϕ)+ i · sin(ϕ)]n = cos(n · ϕ)+ i · sin(n · ϕ)

[

cos

(

k ·
360◦

n

)

+ i · sin
(

k ·
360◦

n

)]n

= cos(k ·360◦)+ i·sin(k ·360◦) = 1+i·0 = 1

zk = cos

(

k ·
360◦

n

)

+ i · sin
(

k ·
360◦

n

)

,

z0 = cos(0◦)+ i · sin(0◦) = 1

z1 = cos(120◦)+ i · sin(120◦) = − 1

2
+ i ·

√
3

2

z2 = cos(240◦)+ i · sin(240◦) = − 1

2
− i ·

√
3

2

1.6 Regular n-Sided Figures in the Complex Plane
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Using Algebraic Methods:
The cubic equation x3 = 1 has only one real-valued solution, namely x1 = 1. This 
solution is represented in the complex plane by the point (1, 0).

Since x1 = 1 is a solution, the division of terms x
3−1

x−1
 can be performed without 

remainder. This leads to the quadratic equation

which has two complex solutions, namely

In the complex plane, these two solutions are drawn as points with the coordinates 
(

− 1

2
,
√
3

2

)

 and 
(

− 1

2
,−

√
3

2

)

.

Example 2: Solution of the Equation x4=1
Using Trigonometric Functions:
The 4th degree equation z4 = 1 has the four solutions:

Using Algebraic Methods:
The 4th degree equation x4 = 1 has two real-valued solutions, namely x1 = 1 and 
x2 = −1. These solutions are represented in the complex plane by the points (1, 0) 
and (−1, 0).

Since x1 = 1 and x2 = −1 are solutions, the division of terms x
4−1

x2−1
 can be per-

formed without remainder.
This leads to the quadratic equation x2 + 1 = 0, which has two complex solu-

tions: x3 = i and x4 = −i.

x
2 + x + 1 = 0 ⇔

(

x + 1

2

)2
= − 3

4
,

x2 = − 1

2
+ i ·

√
3

2
and x3 = − 1

2
− i ·

√
3

2
.

z0 = cos(0◦)+ i · sin(0◦) = 1

z1 = cos(90◦)+ i · sin(90◦) = i

z2 = cos(180◦)+ i · sin(180◦) = −1

z3 = cos(270◦)+ i · sin(270◦) = −i


