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Introduction

In this book, you will find lots of information about Windows Presentation
Foundation (WPF) which will help you get started with it. Alongside the
explanations of features, you will find use case examples and exercise
assignments for you to practice what you have learned.

The first chapter will provide you with a basic introduction to the
WPE That will include handling button click event, window handling,
accessing text box inputs, and a few more things. In the next chapter, you
will see some generic events; some of them are related to the window,
some to the mouse, and some to other things. The third chapter will
cover various Ul elements in WPF; it will also be useful to you for future
reference. It is important to read and understand the first chapter, but in
case you are in a hurry, you may skip the second and third chapters and
only use them as reference later.

The fourth chapter will show you how to handle files in the WPF
interface, and with that, it will provide some use cases to study. At this
point, the examples will incorporate quite a few items from the previous
chapters. Then in the fifth, you will see how the MVVM structure can be
implemented - the explanation will be a practical one; this should help
you understand MVVM quicker. The final chapter will cover the styling
aspects of WPE but with that, it will also show examples that incorporate
most things that you can find in the previous chapters. Once again, if
you are rushing to get started with WPF and do not have too much time,
you may skip the MVVM chapter. But it would be a good idea to take a
look at it later, as it is useful to understand what MVVM is and how it is

implemented.



CHAPTER 1

Getting Started

Windows Presentation Foundation (WPF) has many features and many
arrangements you can choose from, but there are a few crucial things that
you have to know before going anywhere else. For any user interaction

to be viable in WPF, you need to understand how to use the methods,

and with that, you also need to understand how to set properties on the
elements. In this chapter, we will begin with only a handful of them, and in
Chapter 3, you will see many more to choose from, and they function in a
very similar way. Before going further, you should also understand how to
establish and then display or close windows and how to display quick and
simple alert messages.

Button and Click Event

Probably the most important element in WPF is the button, and probably
the most important event is the click event. Now, the main three things in
WPF are elements (e.g., button), events, and names of the elements. The
first thing you will learn about is a button, but for it to make sense, you will
also need to look at something called text block and label.
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Figure 1-1.
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File layout in the project

To begin with, we will work with the MainWindow.xaml source

file, which is where the XAML code for the window and its elements go

(Figure 1-1). MainWindow.xaml.cs is what is called a code-behind file;

that is where the C# code for that window goes. In the next section, you

will learn how to add more windows and navigate between them.

Figure 1-2.
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Once you get into the MainWindow.xaml code, you will see a designer
view. Although you can set various properties in XAML, it is best to drag
and drop from the toolbox (Figure 1-2) and then move things around, expand
them, and do other things in the designer. Once you drag and drop something
onto the designer view, the XAML code for that element will be generated.

[ first option

button works 1

second option

button works 2

Figure 1-3. Window view for the example

This is what our example (see Figure 1-3) will look like (after the
buttons are clicked).

Listing 1-1. XAML code for the MainWindow.xaml

<Window x:Class="WpfApp3.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
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xmlns:local="clr-namespace:WpftApp3"
mc:Ignorable="d"
Title="MainWindow" Height="450" Width="800">
<Grid>
<Button x:Name="bt1" Content="first option"
HorizontalAlignment="Left" Margin="350,163,0,0"
VerticalAlignment="Top" Width="101"/>
<TextBlock x:Name="textblock1"
HorizontalAlignment="Left" Margin="350,198,0,0"
TextWrapping="Wrap" VerticalAlignment="Top"
Width="101"/>

<Button Click="Button Click" Content="second option"
HorizontalAlignment="Left" Margin="350,229,0,0"
VerticalAlignment="Top" Width="101"/>
<Label x:Name="label1" Content=""
HorizontalAlignment="Left" Margin="350,254,0,0"
VerticalAlignment="Top" Width="101"/>
</Grid»>
</Window>

This is the XAML code (Listing 1-1) for MainWindow.xaml; all the
elements go into the Grid element. The first element in the grid is a Button.
In it, we have a name property (you will see why we need it in the C# code);
after that, we have Content, which is the text displayed in the button.

After that, two very important properties are HorizontalAlignment and
VerticalAlignment, which are important because they determine the
alignment, and with that, you can use margins accordingly.

The next element is the TextBlock which is used to display text - the
crucial part here is the name, as that will be the reference point in C#. With
that, you can also see TextWrapping - if set, it will wrap the text onto a new
line; if not set, the default value will be used (NoWrap) and the text will be
displayed in a single line.
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Another Button, similar to the first one, but with no name specified.
Instead, we have the Click property which has a value of Button_Click -
this will correspond with the event method name in C#. So, you will
basically see two ways of declaring an event.

Finally, we have a label, which is an element very similar to a
TextBlock. But the label has fewer options in terms of customization.

Listing 1-2. C# code for MainWindow.xaml.cs

public partial class MainWindow : Window

{
public MainWindow()
{
InitializeComponent();
bt1.Click += Bt1 Click;
}
private void Bt1 Click(object sender, RoutedEventArgs e)
{
textblock1.Text = "button works 1";
}
private void Button Click(object sender,
RoutedEventArgs e)
{
label1l.Content = "button works 2";
}
}

In the C# code (code-behind) (see Listing 1-2), you can first see the
constructor method for the window class. In it, we declare the button click
event for the first button. In the code, the first event is for the first button and
the second for the second button. To set a display value for the TextBlock, you
need to set the Text property, but for the label, you set the Content property.
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Window and Page

In WPF there are two main view options - one is window, and the other is

page. Another option may be tabs, or you may simply change visibility of

grids and other containers, but that will be covered in the next chapters

(Chapters 3 and 6).

Both window and page will have XAML part and C# part (code-behind).
The main difference is how they are displayed and how the user navigates

between them.

New Item... Ctrl+Shift+ A

Shift+Alt=A

From Cookiecutter...
REST API Client...

Reference...

Service Reference...
Connected Service

] Window (WPF)...
Page ( )

User Contro

Resource Dictionary (WPF)...

New EditorConfig

Spell Checker Configuration File

Build

Rebuild

Clean

Analyze and Code Cleanup
Publish...

Scope to This

New Sclution Explorer View
Add

Manage NuGet Packages...
Set as Startup Project
Debug

Initialize Intera

Cut

Remove

Rename

Unload Project

Load Direct Dependencies of Project
Load Entire Dependency Tree of Project
Copy Full Path

Open Folder in File Explorer

Properties Alt+Enter

Figure 1-4. Adding Window file in WPF project
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To create a new window, you need to right-click your project (or folder
in which you will place the file) and then go to add and choose Window
(WPF) (see Figure 1-4). Alternatively, you can find this option in “New Item”.

Listing 1-3. XAML code in MainWindow.xaml

<Window x:Class="WpfApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:local="clr-namespace:WpftApp"
mc:Ignorable="d"
Title="MainWindow" Height="450" Width="800">

<Grid>

<Button x:Name="bt1" Content="window 1"
HorizontalAlignment="Left" Margin="246,118,0,0"
VerticalAlignment="Top" Width="75"/>

</Grid>
</Window>

The XAML part of a window (See Listing 1-3) will contain all the
markup for your elements and the window itself. By default, a window
will contain a grid and that is where you should place your elements - you
cannot do that in the window itself. In the default window, everything from
x:Class to mc:Ignorable should not be modified; otherwise, it may break.
You may change the title property (which appears at the top-left corner of
a window), and you can change the height and width properties. There are
many more things that you can do with a window, and some of them will
be covered in the last chapter of this book.
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Listing 1-4. MainWindow.xaml.cs contents

public MainWindow()

{
InitializeComponent();
bt1.Click += Bti_Click;
}
private void Bt1 Click(object sender, RoutedEventArgs e)
{
Window wi = new Windowi1();
wl.Show();
}

By default, the application will open your main window
(MainWindow), but later, you can close it and/or open more windows,
and there are two ways of doing this. In this particular example, we have
another window created, and it is named Window1. You can see that on
button click event (see Listing 1-4), we construct and establish a variable
for that new window. To display it, we execute the Show method. This
will display the new window, but it will not close the existing one and will
allow to interact with the existing window. An alternative to that is to open
a window by using the ShowDialog method; this will freeze the existing
window and will only allow the user to interact with the new one. To close
the current window, you will need to use the this.Close() method or you
can control by reference; in this case, it would be w1.Close().

It is also important to understand the constructor method for the
window. By default, you have the InitializeComponent method which
initializes all the elements declared in the window. So, if you want to
set properties (e.g., set text to text block), you need to do all that after
InitializeComponent has occurred.

The Page is not as stand-alone as a Window; instead, you use pages to
establish some navigation inside a Window.
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4 WpfApp1
P ' Dependencies
b I Appxaml
c* Assemblylnfo.cs
4 Y MainWindow.xaml
b c# MainWindow.xaml.cs
4 [ Pagelxaml
b c* Pagelxaml.cs
4 [ Page2xaml
P c* Pagel.xaml.cs

Figure 1-5. File layout in the project

In this example, we have added two new files (see Figure 1-5) - Pages.

==

l To page 1 | To page 2 l

Figure 1-6. First state of the view (nothing clicked)

Initially, you will see an empty window like this (Figure 1-6).
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Page 1

‘ To page 1 | To page 2 ‘

Figure 1-7. Second state of the view (“To page 1” button clicked)

After the button is clicked, a page will be displayed (see Figure 1-7).
If the second button is clicked, the first page will be replaced with the

second one.

Listing 1-5. MainWindow.xaml contents

<Grid»
<Frame x:Name="fr" Margin="0,0,0,66" NavigationUI
Visibility="Hidden"/>
<Button Content="To page 1" Click="Button Click"
HorizontalAlignment="Left" Margin="321,406,0,0"
VerticalAlignment="Top" Height="28" Width="79"/>
<Button Content="To page 2" Click="Button Click 1"
HorizontalAlignment="Left" Margin="400,406,0,0"
VerticalAlignment="Top" Height="28" Width="79"/>

</Grid>

10
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In your window (see Listing 1-5) in which you want to display pages,
you will need a Frame element - that is where a page is displayed.
You need to set an appropriate size, establish a name, and then set
NavigationUIVisibility to Hidden. The last one is not important from
a functional perspective, but if not set, it would display a navigation bar,
similar to what a browser might have.

Listing 1-6. Events in MainWindow.xaml.cs

private void Button Click(object sender, RoutedEventArgs e)

{

fr.Content = new Pagei();

}

private void Button Click 1(object sender,
RoutedEventArgs e)

{

fr.Content = new Page2();

}

Navigating to a page is quite simple here (See Listing 1-6); you just
need to set the Content property of the Frame element.

Listing 1-7. Constructor method for Pagel (Pagel.xaml.cs)

public Page1()
{

InitializeComponent();

}

A Page has a constructor (see Listing 1-7) just like a Window,
and inside that, you will find the same arrangement with the
InitializeComponent method.

11
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Text Box

There are two basic interactive elements in WPF - the first one you already
know, which is a button, and the second one is the text box. In this book,
you will see more elements in the third chapter, but this will be your
starting point in understanding the input elements.

test

input:

output:

Figure 1-8. Window view for the example

Listing 1-8. MainWindow.xaml contents

<Grid»
<Label Content="input:" HorizontalAlignment="Left"
Margin="328,100,0,0" VerticalAlignment="Top"
Width="106"/>
<TextBox x:Name="tb1" HorizontalAlignment="Left"
Height="23" Margin="328,131,0,0" TextWrapping="Wrap"
VerticalAlignment="Top" Width="120"/>
<Label Content="output:" HorizontalAlignment="Left"
Margin="328,164,0,0" VerticalAlignment="Top"
Width="106"/>

12
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<TextBox x:Name="output2" HorizontalAlignment="Left"
Height="22" Margin="328,230,0,0" TextWrapping="Wrap"
VerticalAlignment="Top" Width="120"/>
<Label x:Name="output1" Content=""
HorizontalAlignment="Left" Margin="328,199,0,0"
VerticalAlignment="Top" Width="106"/>
<Button Click="Button Click" Content="test"
HorizontalAlignment="Left" Margin="328,75,0,0"
VerticalAlignment="Top" Width="120"/>

</Grid>

In this case, we have six elements (see Figure 1-8 and Listing 1-8) in
the XAML (the grid is in the window). The first label simply has some
static text, the second element is a text box, and a text box needs a name
for referencing in C#. After that, we have another static label and then we
have another text box with a name. There is also another label with a name
(it will be used from C#) and finally a button with an event. Notice, in this
case, the event is declared in XAML; therefore, you will not see it declared
in the C# code. The idea here is to enter something into the input box (tb1)
and output the value in the label (outputl) and text box (output2).

If you want to have multiple lines in your text box input, you need to set
the AcceptsReturn property to True. Also, by default, the text box does not
accept tab input; if you want that, you will need to set AcceptsTab="True".

Listing 1-9. Button click event

private void Button Click(object sender, RoutedEventArgs e)

{

outputi.Content = tb1.Text + " 1";
output2.Text = tb1.Text + " 2";

13
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This is the event on button click in the C# part (see Listing 1-9). Now,
the outputl is a label and a label has the property Content, which is what
you assign to display something. On the other hand, text box has the Text
property, which will hold the input and can also be assigned to display
something. The most important thing in any input element is to know
which property holds the value - in this case, it is quite easy to find, but
later, you will see some elements that are a bit more tricky.

Message Box

Message box is a great way to display basic notifications and alerts

to the user; it is simple to use and can be a great safeguard on some
occasions. Now, we will look at how it is implemented, but before that,
you have to know about the possible arrangements of this feature. There
are four default options in a message in terms of the buttons it may
contain. Each button, when clicked, will close the box and return a result
(MessageBoxResult). Later in this book, you will learn how to make your
own custom message box (refer to Chapter 6).

test box

oK |

Figure 1-9. Simple message box
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