Exploring
Windows
Presentation
Foundation

With Practical Applications in .NET 5

Taurius Litvinavicius

ApPress’

Exploring Windows
Presentation
Foundation

Taurius Litvinavicius

Apress’

Exploring Windows Presentation Foundation: With Practical Applications
in .NET5

Taurius Litvinavicius
Jonava, Lithuania

ISBN-13 (pbk): 978-1-4842-6636-6 ISBN-13 (electronic): 978-1-4842-6637-3
https://doi.org/10.1007/978-1-4842-6637-3

Copyright © 2021 by Taurius Litvinavicius

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6636-6.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6637-3

Table of Contents

About the AUthOrcccuvsrismmmissmmes s ————— vii
About the Technical ReVIEWErcuccesssessmsssmssssmssssssssssssssssssssssssassnsnss ix
Introduction.......cccmimmimmmmeme s —————_— xi
Chapter 1: Getting Started.........cccurcmmmininennmnnssennmnnsssnmnssssn———————" 1
Button and Click EVENL..........cci s 1
WiIndow and Page ..o s s 6
TEXE BOX.rueereeerreerenenessee s ses e se s ne s 12
MESSAGE BOX.....cceirreerreerrse s e 14
QUICK EXAMPIEcevrrrrreieerereris e e se s se s se s s sasss s 18
QUICK EXEICISE ..ovvirririrrirsssrsss s 22
Chapter 2: EVentscuuusseessmmmmmmmmmmsssssssssssmssssssssssssssssssssssssssssssssssnnas 33
APPlICAtION EVENTS ..ot sn e s s 33
MOUSE EVENTS......cooeeeeereecr s e 34
Keyboard EVENISccceoereeccrrcsereer s s 38
WINAOW EVENTS.......oceeeeeierree s ses e se s sessssssssnnns 39
QUICK EXAMPIE ...ecuerrrreiceeseris e ss e se s ss e se s sass s 41
QUICK EXEICISE ..ocvvrririrririssssssse s 44

ii

TABLE OF CONTENTS

Chapter 3: Ul EIeMEeNtSccuvceemrrmsssnnnnmssssssnssssssssssssssssssssssssssnssssssnnnnes 51
Progress Bar ... s 51
TADS. ... e e e e R 55
Radio BULLON ..o 56
CRECK BOX ...ueveeerrrcerresesisse e ess e sesse e s s se s s sn s sesssss s sssssnenns 59
SHART....vtcc e ————————— 62
T2 T - S 64
Media EIBMENL ... s 65
1< T S 70
(I YT R 71
WED BIOWSETceieieerreeriaeseseses e srssesesse e e ss e sessssnsse e sesssssssssssssnsssnssssnssnnes 74
CANVAS ...uvveerieerrssese s e e e e p e 75
Generate EIements in CH.........ccovrinnnnssss s 78
BacKground TASKSceververnenrerieriessee e sesses e s ssssse s s s e sssesaessessessaesaesaenns 81

Chapter 4: FileS.....ccorummmmmmmmssssnnnmsssssssnsssssssnssssssssssssssssssssssssnnsssssssnnnnss 85
LT 1 1o T2 11 85
(01T g e Ty o [89
QUICK EXEICTISE .vcuererrrrsrereererssssssssesessssssssesssnssssssssssnsaes 95

Chapter 5: MVVM.........cccccmmmmmmmmmmmmsssnnmmmsssssnnmsssssnsnssssssnssssssssnsnssssnnns 101
Element to Element Binding.......c.cccevevrvrieniennnnsene s sesessesessessessees 103
Introducing VIeWMOdEl ... 104
Implementing MOdElS ... ———— 109
(01T g e T o [O 116
QUICK EXEICISE ...vvveeeereressssesesesesssssseesesessssssssssesessssssssssssessssssssssssssasssssssssnsans 136

IS o] 11 0] 141

iv

TABLE OF CONTENTS

Chapter 6: SYIEeSccuurmrrrmsssnnnmmssssnnnsmssssssssesssssnssssssssnnsessssnnnnssssnnns 151
Window Size and Other Sizes ... 151
£33 1T 160
(01T Qe T o [177
QUICK EXEITISE ...ucueuerercescrsssssssssssssss e e e ssssssssssssesees 208

SOIULION ..ot ———————— 210

INA@X...ciiiisnmnnmssssnnnnsssssnnnnnssssnnnssssssnnnssssssnnnnnssssnnnssssssnnnnnssssnnnnnnsssnnnnss 223

About the Author

Taurius Litvinavicius is a businessman and
technology expert based in Lithuania who

has worked with various organizations in
building and implementing projects in
software development, sales, and other fields
of business. He is responsible for technological
improvements, development of new features,

and general management. Taurius is also the

director at the Conficiens solutio consulting
agency where he supervises the development
and maintenance of various projects and

activities.

vii

About the Technical Reviewer

Carsten Thomsen is a back-end developer
primarily but working with smaller front-
end bits as well. He has authored and
reviewed a number of books, and created
numerous Microsoft Learning courses, all to
do with software development. He works as
a freelancer/contractor in various countries
in Europe, using Azure, Visual Studio, Azure
DevOps, and GitHub as some of his tools.

Being an exceptional troubleshooter, asking
the right questions, including the less logical
ones, in a most logical to least logical fashion, he also enjoys working with
architecture, research, analysis, development, testing, and bug fixing.
Carsten is a very good communicator with great mentoring and team lead
skills and great skills researching and presenting new material.

ix

Introduction

In this book, you will find lots of information about Windows Presentation
Foundation (WPF) which will help you get started with it. Alongside the
explanations of features, you will find use case examples and exercise
assignments for you to practice what you have learned.

The first chapter will provide you with a basic introduction to the
WPE That will include handling button click event, window handling,
accessing text box inputs, and a few more things. In the next chapter, you
will see some generic events; some of them are related to the window,
some to the mouse, and some to other things. The third chapter will
cover various Ul elements in WPF; it will also be useful to you for future
reference. It is important to read and understand the first chapter, but in
case you are in a hurry, you may skip the second and third chapters and
only use them as reference later.

The fourth chapter will show you how to handle files in the WPF
interface, and with that, it will provide some use cases to study. At this
point, the examples will incorporate quite a few items from the previous
chapters. Then in the fifth, you will see how the MVVM structure can be
implemented - the explanation will be a practical one; this should help
you understand MVVM quicker. The final chapter will cover the styling
aspects of WPE but with that, it will also show examples that incorporate
most things that you can find in the previous chapters. Once again, if
you are rushing to get started with WPF and do not have too much time,
you may skip the MVVM chapter. But it would be a good idea to take a
look at it later, as it is useful to understand what MVVM is and how it is

implemented.

CHAPTER 1

Getting Started

Windows Presentation Foundation (WPF) has many features and many
arrangements you can choose from, but there are a few crucial things that
you have to know before going anywhere else. For any user interaction

to be viable in WPF, you need to understand how to use the methods,

and with that, you also need to understand how to set properties on the
elements. In this chapter, we will begin with only a handful of them, and in
Chapter 3, you will see many more to choose from, and they function in a
very similar way. Before going further, you should also understand how to
establish and then display or close windows and how to display quick and
simple alert messages.

Button and Click Event

Probably the most important element in WPF is the button, and probably
the most important event is the click event. Now, the main three things in
WPF are elements (e.g., button), events, and names of the elements. The
first thing you will learn about is a button, but for it to make sense, you will
also need to look at something called text block and label.

© Taurius Litvinavicius 2021 1
T. Litvinavicius, Exploring Windows Presentation Foundation,
https://doi.org/10.1007/978-1-4842-6637-3_1

https://doi.org/10.1007/978-1-4842-6637-3_1#DOI

CHAPTER 1 GETTING STARTED

Figure 1-1.

{c#| WpfApp3
b M Properties
P =W References

¢ App.config

b) Appxaml
4 [MainWindow.xaml
P) MainWindow.xaml.cs

File layout in the project

To begin with, we will work with the MainWindow.xaml source

file, which is where the XAML code for the window and its elements go

(Figure 1-1). MainWindow.xaml.cs is what is called a code-behind file;

that is where the C# code for that window goes. In the next section, you

will learn how to add more windows and navigate between them.

Figure 1-2.

1 Toolbox

4 Common WPF Controls
k Pointer
Border
Button
CheckBox
ComboBox
DataGrid
Gnd
Image
Label
ListBox
RadioButton

o
o
M
c
=
=
m
-
o
=
=
=
m

0 © > F

Rectangle

5321N0¢ eje(

Toolbox in design view editor

CHAPTER 1 GETTING STARTED

Once you get into the MainWindow.xaml code, you will see a designer
view. Although you can set various properties in XAML, it is best to drag
and drop from the toolbox (Figure 1-2) and then move things around, expand
them, and do other things in the designer. Once you drag and drop something
onto the designer view, the XAML code for that element will be generated.

[first option

button works 1

second option

button works 2

Figure 1-3. Window view for the example

This is what our example (see Figure 1-3) will look like (after the
buttons are clicked).

Listing 1-1. XAML code for the MainWindow.xaml

<Window x:Class="WpfApp3.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"

CHAPTER 1 GETTING STARTED

xmlns:local="clr-namespace:WpftApp3"
mc:Ignorable="d"
Title="MainWindow" Height="450" Width="800">
<Grid>
<Button x:Name="bt1" Content="first option"
HorizontalAlignment="Left" Margin="350,163,0,0"
VerticalAlignment="Top" Width="101"/>
<TextBlock x:Name="textblock1"
HorizontalAlignment="Left" Margin="350,198,0,0"
TextWrapping="Wrap" VerticalAlignment="Top"
Width="101"/>

<Button Click="Button Click" Content="second option"
HorizontalAlignment="Left" Margin="350,229,0,0"
VerticalAlignment="Top" Width="101"/>
<Label x:Name="label1" Content=""
HorizontalAlignment="Left" Margin="350,254,0,0"
VerticalAlignment="Top" Width="101"/>
</Grid»>
</Window>

This is the XAML code (Listing 1-1) for MainWindow.xaml; all the
elements go into the Grid element. The first element in the grid is a Button.
In it, we have a name property (you will see why we need it in the C# code);
after that, we have Content, which is the text displayed in the button.

After that, two very important properties are HorizontalAlignment and
VerticalAlignment, which are important because they determine the
alignment, and with that, you can use margins accordingly.

The next element is the TextBlock which is used to display text - the
crucial part here is the name, as that will be the reference point in C#. With
that, you can also see TextWrapping - if set, it will wrap the text onto a new
line; if not set, the default value will be used (NoWrap) and the text will be
displayed in a single line.

CHAPTER 1 GETTING STARTED

Another Button, similar to the first one, but with no name specified.
Instead, we have the Click property which has a value of Button_Click -
this will correspond with the event method name in C#. So, you will
basically see two ways of declaring an event.

Finally, we have a label, which is an element very similar to a
TextBlock. But the label has fewer options in terms of customization.

Listing 1-2. C# code for MainWindow.xaml.cs

public partial class MainWindow : Window

{
public MainWindow()
{
InitializeComponent();
bt1.Click += Bt1 Click;
}
private void Bt1 Click(object sender, RoutedEventArgs e)
{
textblock1.Text = "button works 1";
}
private void Button Click(object sender,
RoutedEventArgs e)
{
label1l.Content = "button works 2";
}
}

In the C# code (code-behind) (see Listing 1-2), you can first see the
constructor method for the window class. In it, we declare the button click
event for the first button. In the code, the first event is for the first button and
the second for the second button. To set a display value for the TextBlock, you
need to set the Text property, but for the label, you set the Content property.

CHAPTER 1 GETTING STARTED

Window and Page

In WPF there are two main view options - one is window, and the other is

page. Another option may be tabs, or you may simply change visibility of

grids and other containers, but that will be covered in the next chapters

(Chapters 3 and 6).

Both window and page will have XAML part and C# part (code-behind).
The main difference is how they are displayed and how the user navigates

between them.

New Item... Ctrl+Shift+ A

Shift+Alt=A

From Cookiecutter...
REST API Client...

Reference...

Service Reference...
Connected Service

] Window (WPF)...
Page ()

User Contro

Resource Dictionary (WPF)...

New EditorConfig

Spell Checker Configuration File

Build

Rebuild

Clean

Analyze and Code Cleanup
Publish...

Scope to This

New Sclution Explorer View
Add

Manage NuGet Packages...
Set as Startup Project
Debug

Initialize Intera

Cut

Remove

Rename

Unload Project

Load Direct Dependencies of Project
Load Entire Dependency Tree of Project
Copy Full Path

Open Folder in File Explorer

Properties Alt+Enter

Figure 1-4. Adding Window file in WPF project

CHAPTER 1 GETTING STARTED

To create a new window, you need to right-click your project (or folder
in which you will place the file) and then go to add and choose Window
(WPF) (see Figure 1-4). Alternatively, you can find this option in “New Item”.

Listing 1-3. XAML code in MainWindow.xaml

<Window x:Class="WpfApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:local="clr-namespace:WpftApp"
mc:Ignorable="d"
Title="MainWindow" Height="450" Width="800">

<Grid>

<Button x:Name="bt1" Content="window 1"
HorizontalAlignment="Left" Margin="246,118,0,0"
VerticalAlignment="Top" Width="75"/>

</Grid>
</Window>

The XAML part of a window (See Listing 1-3) will contain all the
markup for your elements and the window itself. By default, a window
will contain a grid and that is where you should place your elements - you
cannot do that in the window itself. In the default window, everything from
x:Class to mc:Ignorable should not be modified; otherwise, it may break.
You may change the title property (which appears at the top-left corner of
a window), and you can change the height and width properties. There are
many more things that you can do with a window, and some of them will
be covered in the last chapter of this book.

CHAPTER 1 GETTING STARTED

Listing 1-4. MainWindow.xaml.cs contents

public MainWindow()

{
InitializeComponent();
bt1.Click += Bti_Click;
}
private void Bt1 Click(object sender, RoutedEventArgs e)
{
Window wi = new Windowi1();
wl.Show();
}

By default, the application will open your main window
(MainWindow), but later, you can close it and/or open more windows,
and there are two ways of doing this. In this particular example, we have
another window created, and it is named Window1. You can see that on
button click event (see Listing 1-4), we construct and establish a variable
for that new window. To display it, we execute the Show method. This
will display the new window, but it will not close the existing one and will
allow to interact with the existing window. An alternative to that is to open
a window by using the ShowDialog method; this will freeze the existing
window and will only allow the user to interact with the new one. To close
the current window, you will need to use the this.Close() method or you
can control by reference; in this case, it would be w1.Close().

It is also important to understand the constructor method for the
window. By default, you have the InitializeComponent method which
initializes all the elements declared in the window. So, if you want to
set properties (e.g., set text to text block), you need to do all that after
InitializeComponent has occurred.

The Page is not as stand-alone as a Window; instead, you use pages to
establish some navigation inside a Window.

CHAPTER 1 GETTING STARTED

4 WpfApp1
P ' Dependencies
b I Appxaml
c* Assemblylnfo.cs
4 Y MainWindow.xaml
b c# MainWindow.xaml.cs
4 [Pagelxaml
b c* Pagelxaml.cs
4 [Page2xaml
P c* Pagel.xaml.cs

Figure 1-5. File layout in the project

In this example, we have added two new files (see Figure 1-5) - Pages.

==

l To page 1 | To page 2 l

Figure 1-6. First state of the view (nothing clicked)

Initially, you will see an empty window like this (Figure 1-6).

CHAPTER 1 GETTING STARTED

Page 1

‘ To page 1 | To page 2 ‘

Figure 1-7. Second state of the view (“To page 1” button clicked)

After the button is clicked, a page will be displayed (see Figure 1-7).
If the second button is clicked, the first page will be replaced with the

second one.

Listing 1-5. MainWindow.xaml contents

<Grid»
<Frame x:Name="fr" Margin="0,0,0,66" NavigationUI
Visibility="Hidden"/>
<Button Content="To page 1" Click="Button Click"
HorizontalAlignment="Left" Margin="321,406,0,0"
VerticalAlignment="Top" Height="28" Width="79"/>
<Button Content="To page 2" Click="Button Click 1"
HorizontalAlignment="Left" Margin="400,406,0,0"
VerticalAlignment="Top" Height="28" Width="79"/>

</Grid>

10

CHAPTER 1 GETTING STARTED

In your window (see Listing 1-5) in which you want to display pages,
you will need a Frame element - that is where a page is displayed.
You need to set an appropriate size, establish a name, and then set
NavigationUIVisibility to Hidden. The last one is not important from
a functional perspective, but if not set, it would display a navigation bar,
similar to what a browser might have.

Listing 1-6. Events in MainWindow.xaml.cs

private void Button Click(object sender, RoutedEventArgs e)

{

fr.Content = new Pagei();

}

private void Button Click 1(object sender,
RoutedEventArgs e)

{

fr.Content = new Page2();

}

Navigating to a page is quite simple here (See Listing 1-6); you just
need to set the Content property of the Frame element.

Listing 1-7. Constructor method for Pagel (Pagel.xaml.cs)

public Page1()
{

InitializeComponent();

}

A Page has a constructor (see Listing 1-7) just like a Window,
and inside that, you will find the same arrangement with the
InitializeComponent method.

11

CHAPTER 1 GETTING STARTED

Text Box

There are two basic interactive elements in WPF - the first one you already
know, which is a button, and the second one is the text box. In this book,
you will see more elements in the third chapter, but this will be your
starting point in understanding the input elements.

test

input:

output:

Figure 1-8. Window view for the example

Listing 1-8. MainWindow.xaml contents

<Grid»
<Label Content="input:" HorizontalAlignment="Left"
Margin="328,100,0,0" VerticalAlignment="Top"
Width="106"/>
<TextBox x:Name="tb1" HorizontalAlignment="Left"
Height="23" Margin="328,131,0,0" TextWrapping="Wrap"
VerticalAlignment="Top" Width="120"/>
<Label Content="output:" HorizontalAlignment="Left"
Margin="328,164,0,0" VerticalAlignment="Top"
Width="106"/>

12

CHAPTER 1 GETTING STARTED

<TextBox x:Name="output2" HorizontalAlignment="Left"
Height="22" Margin="328,230,0,0" TextWrapping="Wrap"
VerticalAlignment="Top" Width="120"/>
<Label x:Name="output1" Content=""
HorizontalAlignment="Left" Margin="328,199,0,0"
VerticalAlignment="Top" Width="106"/>
<Button Click="Button Click" Content="test"
HorizontalAlignment="Left" Margin="328,75,0,0"
VerticalAlignment="Top" Width="120"/>

</Grid>

In this case, we have six elements (see Figure 1-8 and Listing 1-8) in
the XAML (the grid is in the window). The first label simply has some
static text, the second element is a text box, and a text box needs a name
for referencing in C#. After that, we have another static label and then we
have another text box with a name. There is also another label with a name
(it will be used from C#) and finally a button with an event. Notice, in this
case, the event is declared in XAML; therefore, you will not see it declared
in the C# code. The idea here is to enter something into the input box (tb1)
and output the value in the label (outputl) and text box (output2).

If you want to have multiple lines in your text box input, you need to set
the AcceptsReturn property to True. Also, by default, the text box does not
accept tab input; if you want that, you will need to set AcceptsTab="True".

Listing 1-9. Button click event

private void Button Click(object sender, RoutedEventArgs e)

{

outputi.Content = tb1.Text + " 1";
output2.Text = tb1.Text + " 2";

13

CHAPTER 1 GETTING STARTED

This is the event on button click in the C# part (see Listing 1-9). Now,
the outputl is a label and a label has the property Content, which is what
you assign to display something. On the other hand, text box has the Text
property, which will hold the input and can also be assigned to display
something. The most important thing in any input element is to know
which property holds the value - in this case, it is quite easy to find, but
later, you will see some elements that are a bit more tricky.

Message Box

Message box is a great way to display basic notifications and alerts

to the user; it is simple to use and can be a great safeguard on some
occasions. Now, we will look at how it is implemented, but before that,
you have to know about the possible arrangements of this feature. There
are four default options in a message in terms of the buttons it may
contain. Each button, when clicked, will close the box and return a result
(MessageBoxResult). Later in this book, you will learn how to make your
own custom message box (refer to Chapter 6).

test box

oK |

Figure 1-9. Simple message box

14

