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Preface
The goal of this book is to explain the fundamentals of
photoionization (PI) and the associated applications of PI
that are playing an increasingly important role in mass
spectrometry (MS). The target audience of this book
includes practicing scientists, including PhD and MSc
students, whose primary interest is in the application of PI
to elemental or molecular analysis by mass spectrometry.
An overly simplistic analysis provides several motivations
for the use of PI in mass spectrometry:

1. Enhance ion yields for specific important compounds
of substance classes where other ionization strategies
have proven insufficient,
2. Selectively ionize individual molecular structures or
classes of molecules from mixtures,
3. Form ions from neutrals with reduced or controlled
degree of fragmentation, and
4. Induce desorption or ablation of solids for sampling.

Photoionization comes in different versions and
technological realizations, making it somewhat more
complicated and thus less popular than standard ionization
methods in mass spectrometry such as electrospray
ionization and electron ionization. Nevertheless, one goal of
this book is to demonstrate how these and other
motivations drive the use of PI in MS‐based analyses. The
editors and authors hope that the readers will use this work
as a series of building blocks for future advances in this
promising area.



Actually, PI was central to the early development of mass
spectrometry and single photon ionization (SPI) remains
perhaps the best method for introducing a well‐defined
amount of internal energy into a molecular ion. Early work
in SPI used vacuum ultraviolet (VUV) gas discharge lamps.
However, the advent of lasers and the associated nonlinear
optical methods made multiphoton ionization (MPI)
possible, dramatically expanding PI as a fundamental
strategy to probe molecular structure. The continuing
improvement of laser technology has also created ongoing
opportunities for MS‐based applications of PI. For example,
MPI via the excimer laser‐pumped dye laser was deployed
in many early fundamental studies, but was costly, difficult
to use, and relatively unreliable. However, the development
of smaller and rugged, field‐deployable laser sources, such
as compact excimer lasers, solid‐state lasers as Nd:YAG
lasers with integrated harmonic generation, and tunable
solid‐state lasers such as sealed, Nd:YAG‐pumped optical
parametric oscillators (OPOs) or Ti:sapphire cavities
rendered MPI sufficiently robust for more widespread MS
applications.
This interplay between fundamental methods and
instrumental considerations has driven the development of
analytical applications of PI, so attention is paid here to
both considerations. Photodissociation is only discussed
here when it occurs in conjunction with PI, such as via the
formation of fragment ions from neutral precursors during
MPI or SPI. Thus, the burgeoning use of photodissociation
of the precursor or molecular ions to form fragment ions
for structural elucidation of the former is not discussed
here. The fundamentals and mechanisms of low pressure,
gas‐phase molecular PI for mass spectrometry is covered in
Chapters 1, 2, 5, and 7, while molecular atmospheric
pressure PI is a topic in Chapter 8. Applications and
experimental methods of low‐pressure, gas‐phase



photoionization mass spectrometry (PIMS) are presented in
Chapters 3, 4, and 7. Elemental analysis by PI is covered
exclusively in Chapter 5. Processes and applications that
include a laser desorption (LD) or direct laser
desorption/ionization (LDI) of analytes from the condensed
phase are covered in Chapters 9 and 10, while Chapter 11
focuses on the direct analysis of individual aerosol particles
using LDI, LD, and PI.
In the following, the content of the book is briefly
highlighted chapterwise.
The first chapter entitled FUNDAMENTALS and
MECHANISMS of VACUUM PHOTOIONIZATION, is
serving as an introduction to mechanistic issues common to
PI of molecules, atoms, and clusters under vacuum. It
provides a fundamental description of light and the
interaction of light and matter in the form of
photoabsorption on a quantum mechanical level. This
includes an excursion in perturbation theory and the dipole
approximation and leads to an elucidation of the photon
absorption selection rules. Finally, the SPI process, as an
absorption in a continuum, nonbound state, is discussed
and the most important parameters for SPI, the SPI cross
sections and ionization energies, are deducted.
Fundamental aspects of MPI of molecules in the absence of
gas‐phase collisions are covered in the following chapter,
entitled FUNDAMENTALS and MECHANISMS of
RESONANCE‐ENHANCED MULTIPHOTON IONIZATION
(REMPI) in VACUUM and APPLICATION of REMPI for
MOLECULAR SPECTROSCOPY (Chapter 2). Here, the
theoretical consideration of photoionization processes is
extended to MPI processes of molecular species and MPI‐
based spectroscopy, while multiphoton ionization of atoms
is covered in Chapter 6. Different MPI and REMPI
processes are presented and a rate equation approach is



used to deduct the influence of molecular physical
properties on ionization efficiency. Special REMPI schemes
are discussed, which can bypass unfavorable photophysical
properties. In the following, MPI‐induced fragmentation
and dissociation processes are discussed. The application
of REMPI for molecular spectroscopy with and without
supersonic jet cooling is demonstrated in an exemplary
manner via a detailed discussion of the REMPI wavelength
spectrum of supersonic jet‐cooled biphenylene and some
other interesting aromatic molecules. REMPI wavelength
spectroscopy, in particular with supersonic jet cooling,
reveals the selectivity of the REMPI process that connects
high‐resolution ultraviolet (UV) spectroscopy to mass
spectrometry. The selective ionization of isomeric and
isobaric compounds, however, can be extended to the
differentiation of isotopomers and – by using a special
REMPI technique with circular polarized laser light – even
of enantiomers. Finally, in this chapter, REMPI‐based
photoelectron spectroscopic (PS) techniques such as zero
kinetic energy photoelectron spectroscopic (ZEKE‐PS) are
introduced. The explanation of the fundamental aspects of
SPI and REMPI leads to the analytical application of these
two PI approaches.
In the beginning of Chapter 3, which is entitled
“ANALYTICAL APPLICATIONS of SINGLE‐PHOTON
IONIZATION MASS SPECTROMETRY,” a brief introduction
into common VUV–light sources, is given. These can be
distinguished as incoherent light sources (“lamp”‐based
technologies) or coherent light sources (lasers). Also, a
brief introduction to the generation of synchrotron light in
the VUV range is elaborated (for applications of
synchrotron‐based SPI, see Chapter 5). The general setup
of SPI mass spectrometry systems with laser‐ and lamp‐
based sources is introduced. Depending on the used VUV
wavelengths, SPI can be a very soft ionization method,



enabling the detection of the molecular mass fingerprint of
complex mixtures. This renders SPI‐MS to an ideal
approach for direct real time monitoring of complex gas
and vapor mixtures. Different applications for online
monitoring of combustion and pyrolysis processes are
introduced, including online monitoring of gas phases from
industrial processes, such as the coffee‐roasting and/or the
biomass pyrolysis process. Hyphenated instrumental
analytical concepts, e.g. gas chromatography (GC) or
thermal analysis (TA) coupled to SPI mass spectrometry,
are presented and typical results are shown.
Chapter 4, “ANALYTICAL APPLICATION of RESONANCE‐
ENHANCED MULTIPHOTON IONIZATION MASS
SPECTROMETRY (REMPI‐MS),” gives, in a similar way as
Chapter 3 for SPI, an overview of analytical applications of
REMPI mass spectrometry. The preferential detection of
aromatic analytes by the REMPI process with common
laser is emphasized in Chapter 3. An overview on typical
fixed‐frequency laser lines (excimer lasers or frequency‐
multiplied, solid‐state lasers) is provided along with typical
wavelength ranges of tunable laser systems. In the
following, several exemplary analytical concepts and
applications using tunable and fixed‐frequency lasers are
presented. The tunable laser sources can be used to focus
on specific analytes, which work particularly well with
supersonic jet expansion inlet systems. For many
applications, however, fixed‐frequency wavelength laser
and effusive, heated gas inlets can be applied for a useful
and often very sensitive “overview” MS‐profiling of many
aromatic compounds. Exemplary process monitoring
applications comprise detection of combustion by‐products
in flue gases of incineration plants or flavor and roast
degree, indicating compounds in coffee‐roasting off‐gas.
Hyphenated instruments connecting gas chromatography
or a thermo‐optical carbon analyzer (for aerosol loaded



filters) to REMPI‐MS devices are discussed. A direct inlet of
liquid samples into REMPI mass spectrometry is possible
via a membrane inlet or a direct liquid introduction into the
ion source. Note that SPI and REMPI processes can be
performed in the same MS system. Finally, REMPI under
atmospheric conditions is discussed (atmospheric pressure
laser ionization – APLI; see also Chapter 8 for SPI‐based
atmospheric pressure‐based ionization).
The application of synchrotron VUV light for SPI‐MS‐based
investigation of combustion and pyrolysis processes is laid
out in Chapter 5, “PROBING CHEMISTRY AT VACUUM
ULTRAVIOLET SYNCHROTRON LIGHT SOURCES.” By
direct molecular beam sampling from flames as well as
from oxidation or pyrolysis reactors, molecules from the
reaction zone can be directly introduced in the mass
spectrometer without wall contact. This enables the
analysis of stable molecules and intermediates from the
reaction zones. The flow reactors and model flame
apparatus is often compact enough to be brought to
synchrotron light source facilities and can be used for
kinetic investigations. Unlike classical VUV sources, the
synchrotron light from appropriate beamlines (i.e.
equipped with VUV monochromators) exhibit a wide
tunability, high energy resolution, and a relatively high
photon flux. The identification of individual compounds
from isobaric mixture components is possible by
photoionization efficiency (PIE) spectroscopy, i.e. the
recording of the ion yield as a function of the VUV
wavelength. Chapter 5 also presents, an overview on
different synchrotron‐based PIMS apparatus and analytical
results for several reactors and applications.
REMPI of atoms is commonly referred to as “resonance
ionization mass spectrometry (RIMS). The RIMS technology
and applications are described in the Chapter 6,
RESONANCE IONIZATION MASS SPECTROMETRY


