Beginning CL
Programming

Using Hashicorp Language for
Automation and Configuration

Pierluigi Riti
David Flynn

Apress:

Beginning HCL
Programming

Using Hashicorp Language
for Automation and Configuration

Pierluigi Riti
David Flynn

Apress’

Beginning HCL Programming: Using Hashicorp Language for Automation and

Configuration

Pierluigi Riti David Flynn

Mullingar, Ireland New Orleans, LA, USA

ISBN-13 (pbk): 978-1-4842-6633-5 ISBN-13 (electronic): 978-1-4842-6634-2

https://doi.org/10.1007/978-1-4842-6634-2

Copyright © 2021 by Pierluigi Riti and David Flynn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Bilge Tekin on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484266335. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6634-2

To my family
—Pierluigi Riti

TIwould obviously like to dedicate this book to Pier.
Twould also like to mention all the pioneers around the world who
have, are, and will hopefully continue to develop, research,
and explore these new technologies in order to bring exciting
new avenues for technological advancement.

A further mention to all those at Mastercard
and previous companies who have developed
my knowledge to allow such endeavors as this.

—David Flynn

Table of Contents

About the AUtROrS.......ccucmmimmmsemmmmmmssmsasssssas s ix
INtroductioncccucesmssamnmsssnnmsssnnmsssnnssssnnssssnnssssanssssanssssannsssannsssannssssnnnsssnnsnssnnnsssnnnnss Xi
Chapter 1: Introduction t0 HCOLcccccemmiiriinnnssssmssmmnmmmmsssssssssssssssssssssssssssssssssssssnas 1
HCL, A Brief INTrOAUCTIONceve v nse s e s e s e s se s s s saesaesn s saesaesnsesnesnesannns 1
SYNTAX OVEIVIEBW ..vevveteererieseesessessessessesesessesreses e sse s sae e s s e saesa s e s e s s saese s e saesae st e e ssessesaesesnensessens 2
14 S 3
NUMDET .. ——————— 3
L0 OSSR 4
ODJECT ...t rne 4
BOOIBAN.......coeeeece e e r e e r e r e e e 5

0] 11113 OSSR 5

HIL @NA HCL.....cocetreccisieeses sttt 6
HOW HOL WOTKS....c.citieiuiciesesssssssse e se s se s s st se s ss s 6
SYNtaX COMPONENTS......cieierererertrserse e r s s s se s e s s s ae e s e s s aesa e e e e saesaesa e e nnenaees 7

[0 ToT 4101 £ 9

00 T=T (0] R 10
LT 1T [1 (=) | R 10

(0 =T7 [0 R 10
Function and FUNCHIONCAII ..o 14
FOTEXPT . ——————————————— 15
Index, GETALE, SPIALcoe e ————————— 15

L8] T 11T (0] o 16

TABLE OF CONTENTS

Chapter 2: The HashiCorp ECOSYStem.......cccccuiseeenmnssssnnnsmssssnsnsnsssssssssssssssnssssssnsnsnnss 17
Defining the ECOSYSIEBM ... e 17
Downloading and Installing Vagrant............cccccvrrnnnninnsnsese s sessesseens 19
Vagrant FirSt USAQEccccvevecnine s s s 22
=] U0 S 26
Key Features of TErrafOrm ... s 26
InStalling TErrafOorm ..o e 28

L1 L | S 30
Key Features Of VAUIL............oeoeeecrrcs s 31
INSEAIING VAU ... e 32
{0 1 PSSR 34
0] 14 T TSP 34
L8] T 11T (0] o 35
Chapter 3: Introduction t0 GOcccrrrissmmnmmssssnnnmmssssssssessssnssssssssnsssessssnnsessssnnnnssss 37
First STEPS With GO.....coveceiireircccrc s 37
INSTAIING GO ... e e e p e e nn 39
STArtING WIth GO c..eceeeeececer e 41
GO PACKAGESeeeveeerrreesrese s ssssese e sesss e sse e e s se s se s e nne e sn e ern e e nsnnnns 42
Basic Programming STrUCTUIE.......c.cvevririere s s se s s sa s e s sae e saesnes 46
NamiNgG CONVENTIONS......ccccviiirreriererir s s s e e sb e sae e s ae s 46
Vari@DIS ..o ——————————————— 46
POINTETS ..evieercctesese e e e p e e e R np s 47

GO DALA TYPES wevereerrerrrerersereesessersessessssessessesae e s e sse s s ss e e s saesae e e e s aesaese e e s aeeae s R e e e e naeeae s e e e e e naees 48
372 TS (o] 0T R 49
COMPOSITE TYPES..eeeerererrererrere s ses s e s e e se s e s s b e e e s aesb e se e e s e s aesae e e e eaesaene e e naennens 53
Conditional STAtEMENTS........cccoviiicrr e ——— 62
LOOP CONAILIONScoveerricrincrirese s e e e e e et 63
{0 0 e 11 0 o TSR 64

TABLE OF CONTENTS

Chapter 4: Infrastructure as Codecuscmrrrnsssmnnnmsssssnnnmsssnssmmssssssssssssssssesssssssnsenss 65
Introduction to Infrastructure as COUEvvvererererrnesese e 65
Principles and GOoals fOr [aC ..o e e s 66

Every System Must Be ReproduCibIe.........ccccovvrrinnvninncnsn e 67
Every System Must Be DiSposable ... s 67
Every System Must Be COnSiStent..........ccccovcnvninnnnnnnn s 67
Every System Must Be Repeatable..........ccooorvrnnncncncrn s 68
The Design of the System Always Changes.........cccovvrvririnnnsnneniesnssses s sessesees 68
IMPIEMENTING [AC ..o 68
Dynamic Infrastructure and the CloUdccoveiieirnsnnesr s 70
Different Types of Dynamic INfrastruCtUresS.......c.cucoverrisnnsesns e 71
L0038 {0 - L 72
D) 1] T N 73
RElRASING IACceeeeerrcesr et e e e 74
PUSHING VS. PUIING ..ot s s 76
Engineering Practices for 1aC ... s 77
Improving the System QUAIILYcccovvrniinc e ————— 77
{0 0 e 11 0 o SRR 78

Chapter 5: Terraform HCLcooinnmmmmmmmmmmmmmmsssssssssssmsssssssssssssssssssssssssssssssssssssssns 79

The DevOps and Cloud ReVOIULION ... snens 79
T o T - OSSO 80
Terraform for SErver ProviSiONINgGcucvveveresesssesrsesssssessssesssssssssssessssessssssssssssssssssssssnens 85

Starting With TRrraforM.......covvivir s s 87
Deploying YOUF FirSt SEIVENcccvi v srs e s s s se s s 89
Variable HCL Terraform Configurationcccuccvvrirnnnine s sessessesees 94

T o110 TR 1N O O 99

Advanced HCL/Terraform Parsingccccoeveverserserressssersessesssssssessessesssssssessessesssssssessessesssssnsessens 102

{0 0 e 11 o 105

vii

TABLE OF CONTENTS

Chapter 6: Consul HCOLcccccuiinnnmnnmmssssssnmmssssssnssssssssssssssssssssssssnnsssssssnnssssssnnnnss 107
INtrodUCHiON t0 CONSUL.......covrveeieecrerir e 107
CONSUI AFCRITECIUNE ...t 108
(] e TSNl o 0] (0o 110
INSEAIING CONSUL....cueieireerreerrresrr e e ne e 113
Defining the Service in CONSUL........ccvvvvirierennrirrere s s s sae s s e ssesaens 120
HCL for Service Definition............ccovvniennnnssss e es 122
0] T 11T (0] o PP 127

Chapter 7: Vault HCL..........ccccomssmmmsnmmsnnmssanmssnsssasssssssssnsssasssssssssnssssssssassssnsssanssans 129
INtrodUCEiON 10 VAUIL........ce e 129
INSTAIING VAUI.......cceeeeee e 131

Starting the Vault DEV SEIVEN ... s s sesse s 132
Managing YOUr First SECIEt ... 138
Vault’s SECIEtS ENGINEcccveeerreierincsinesesrese s e e e e s e s ssnns 142
TYPES Of SECIELS ENQINES......cccrreerererrrenerrese s s srsse s e e sesse s e srssesenssssssenens 145
Authentication and Authorization in Vault ..., 147
WHEING @N HCOL POICY ..cvuevvertererereriesessere e ssssessessessess s e ssessessssssessessessssessesaesasssssessesaesssssssessees 149
Creating YOur FirSt PONICY........cooviieinnnsscs s s sssssssssns 150
Creating the HOL FilB.......uivcvierererirsere s sesse s sesse s sae s se s ssesss s s saesaessssesaesnessssssnesaees 152
0] T 111 (0] o 155

Chapter 8: Infrastructure as Code with HCLcccscmmsanmssanmssnssssssssassssnsssansssans 157
INfrastructure @s COE 10T ... e 157
DeSigNiNg the 1aC..........coc e 159
Defining the INFrastruCtUure........cooecvic s 160

Creating the Vagrant File ... s s sss s s s 161
Creating the Vault CIUSTEN ..o s e s 175
L0041 11 0 N 178

P [4 |

viii

About the Authors

Pierluigi Riti is a Lead Security Information Engineer and DevOps fanatic he actually
work in MasterCard. He has worked for company like, Coupa Software, and Synchronoss
Technologies. Prior to that, he was a senior software engineer at Ericsson and Tata. His
experience includes implementing DevOps in the cloud using Google Cloud Platform,
AWS, and Azure. Also, he has over 20 years of extensive experience in more general
design and development of different scale applications particularly in the telco and
financial industries. He has quality development skills using the latest technologies
including Java, J2EE, C#, F#, .NET, Spring .NET, EF, WPE, WE, WinForm, WebAP],

MVC, Nunit, Scala, Spring, JSP, EJB, Struts, Struts2, SOAP, REST, C, C++, Hibernate,
NHibernate, WebLogic, XML, XSLT, Unix script, Ruby, and Python.

David Flynn is an Associate Analyst in Employee Access Business Operations at
MasterCard. He is an electronic engineer with experience in telecommunications,
networks, software, security, and financial systems. David started out as a
telecommunications engineer working on voice, data, and wireless systems for Energis
and later Nortel Networks, supporting systems such as Lucent G3r, Alcatel E10, and
Nortel Passport. He then did some time in transport and private security abroad before
retraining in computing, cyber security, and cloud systems plus doing cyber security
and telecomm research for the Civil Service. He has completed separate diplomas in
computing and cloud focusing on Windows, C#, Google, AWS, and PowerShell among
other technologies. David has also worked as a C# engineer. More recently, David has
worked for various fintech companies including Bank of America and Merrill Lynch,
focusing on technical and application support encompassing such technologies as Rsa
Igl, Rsa SecurID, IBM Tam/Isam, Postgres/Oracle databases, mainframes, Tandem,
CyberArk, MaxPro, and Active Directory.

ix

Introduction

HashiCorp offers a full range of products to improve the life of every DevOps engineer.
Our goal with this book is to introduce various software applications and show how to
use the HCL language to configure them. This book is not meant to be an exhaustive
guide to all possible scenarios, but to introduce the software options and how to use
them together to create a complete Infrastructure as Code. To get the most out of this
book, you should have a basic knowledge of Bash PowerShell scripting and a basic
knowledge of programming in general.

xi

CHAPTER 1

Introduction to HCL

HashiCorp is a significant player in the cloud revolution. The company produces most of
the essential tools for any DevOps engineer or cloud engineer.

The HashiCorp ecosystem is quite huge; the aim of this book is to introduce the
configuration language and the different HashiCorp software components.

HCL, A Brief Introduction

HCL is a configuration language designed to be both human- and machine-readable.
HCL is an automation language that is used to manage, create, and release Infrastructure
as Code. Based on a study conducted on the GitHub repository, HCL was the third
highest in terms of language growth popularity in 2019, which indicates how important
the HCL platform has become, which in turn was probably aided by HashiCorp
applications like Terraform, Consul, and Vault.

HCL is designed to ease the maintenance of cloud and multi-cloud hybrid solutions.
The language is structural, with the goal of being easily understood by humans and
machines.

HCL is fully JSON-compatible and the language is intended to be used to build
DevOps tools and servers, manage PKI passwords, and release Docker images. HCL gets
its inspiration from libucl, the Nginx configuration, and other configuration languages.

libucl, the Universal Configuration Library Parser, is the main inspiration for the HCL
language. As you will see, HCL uses a similar structure, and UCL is heavy inspired
by Nginx configuration.

When HCL was designed, the choice was made to mix together the power of a
general-purpose language like Ruby, Python, or Java with the simplicity and human
readability of JSON. HashiCorp designed its own DSL language.

© Pierluigi Riti and David Flynn 2021
P. Riti and D. Flynn, Beginning HCL Programming, https://doi.org/10.1007/978-1-4842-6634-2_1

https://doi.org/10.1007/978-1-4842-6634-2_1#DOI

CHAPTER 1 INTRODUCTION TO HCL

The major usage for HCL is with Terraform. Terraform is HashiCorp's Infrastructure
as Code (IaC) or cloud infrastructure automation tool. Both HCL and Terraform enable
any DevOps engineer to develop their own tools.

The term general-purpose language (GPL) covers the family of programming
languages used to develop and design any type of application. This includes Ruby;,
Python, Go, and Java. On the opposite side are DSLs (domain-specific languages).
This family of languages is used in a specific domain, for example, the HTML
language. The big difference between a GPL and a DSL language is essentially the
use. With a GPL language, we can create and solve any type of problem. A DSL
language is designed to solve one specific problem; for example, HTML is used to
define how a webpage must be visualized on the screen.

Syntax Overview

HCL comprises a family of DSLs. In this book, we will focus on HCL2, which emphasizes
simplicity. HCL has a similar structure to JSON, which allows for a high probability of
equivalence between JSON and HCL.

HCL was designed to be JSON-compatible, and every HashiCorp product has
a specific call for the relevant API and/or configuration. The entire product suite
encompasses this basic syntax. Similar to other languages there are some primitive data
types and structures:

o String

e Boolean
e Number
e Tuple

e Object

These are the basic structures and data types that can be used to write HCL code. To
create a variable, we can use this syntax: key = value (the space doesn’t matter). The
key is the name of the value, and the value can be any of the primitive types such as
string, number, or boolean:

CHAPTER 1 INTRODUCTION TO HCL

description = "This is a String"
number = 1

String

The string is defined using the double-quoted syntax and is based (only) on the UTF-8
character set:

hello = "Hello Woxld"

It is not possible to create a multi-line string. To create multi-line strings, we need to
use another syntax.

To create a multi-line string, HCL uses a here document syntax, which is a multi-line
string starting with << followed by the delimiter identifier (normally a three-letter word
like EOF) and succeeded by the same delimiter identifier.

A here document is a file literal or input stream used in particular in the Unix
system for adding a multi-line string in a piece of code. Typically this type of syntax
starts with << EOF and ends with an EOF.

To create a multi-line string in this way, we can use any text as the delimiter
identifier. In this case, it is EOF:

<< EOF
Hello
HCL
EOF

Number

In HCL, all number data types have a default base of 10, which can be either of the
following:

o Integer

e Float

CHAPTER 1 INTRODUCTION TO HCL
For example,

first=10

second=10.56

The variable first is an integer number while the variable second is a float number.
A number can be expressed in hexadecimal by adding the prefix 0x, octal using the prefix
number 0, or scientific format using 1e10. For example, we can define the number data
types as follows:

hexadecimal=0x1E
octal=07

scientific=2e15

Tuple
HCL supports tuple creation using the square brace syntax, for example:
array test=["first",2,"third"]

The value written in an array can be of different types. In the previous example, you
can see two string data types and one number data type. In HCL, it is possible to create
an array with any type of object:

test array=[true,
<< ERRDOC
Hello
Array
ERRDOC,
"Test"]

Object

In HCL, objects and nested objects can be created using this syntax:

<type> <variable/object name> {...}:

CHAPTER 1 INTRODUCTION TO HCL

provider "aws" {
description = "AWS server"

We can use the same structure for the object to define an input variable:

variable "provider" {
name = "AWS"

Boolean

A Boolean variable in HCL follows the same rules of the other languages. The only value
it can have is either true or false:

variable "active"{
value = True

Comment

A single line of comment can be created using the # or the //:

provider "aws" {
This is a single line comment
// This 1is another single line comment

To create a multi-line comment, the /*....*/ format can be used:

provider "aws" {
/*
This is a multi-line comment example
*/

CHAPTER 1 INTRODUCTION TO HCL

HIL and HCL

HCL is used for the majority of the use-case scenarios with the Terraform tool. This
symbiosis has become a significant factor in the growth of the popularity of HCL.

The HCL that is used to create a template can be translated into JSON by the parser,
an important step for creating a valid and usable template for HIL.

HIL, or HashiCorp Interpolating Language, is the language used for interpolating any
string. It is primarily used in combination with HCL to use a variable defined in other
parts of the configuration. HIL uses the syntax ${. . } for interpolating the variable, as

shown:
test = "Hello ${var.world}"

The HIL is used to have something similar to a template. This language is mostly
used in Terraform. The goal is to have a rich language definition of the infrastructure.
The idea behind the creation of HIL was to extract the definition language used in
Terraform and then clean it up to create a better and more powerful language.

HIL has its own syntax, which it shares with HCL, such as comments, multi-line
comments, Boolean, etc. With HIL, it is possible to create a function for the call, which
can be used in the interpolation syntax of the function. This is, in turn, is called with the
syntax func(argl, arg2,).For example, we can create a function with the HIL in
this way:

test = "${ func("Hello", ${hello.var})}"

HIL is utilized in more depth when we use Terraform and other software like Nomad.

How HCL Works

You just got a concise introduction to HCL and HIL. But in order to progress beyond this
point, you need to create a basic template to illustrate how both components work.

HCL and HIL use the GPL language to create JSON code for the necessary
configurations. JSON itself is quite capable of producing the necessary code or
configurations so why are HCL/HIL needed? JSON lacks the ability in insert comments,
which is essential for reviewing code or configurations, particularly for the massive
infrastructure that HCL/HIL is aimed at.

CHAPTER 1 INTRODUCTION TO HCL

HCL consists of three distinct, integrated sublanguages. All three work together to
permit us to create the configuration file:

o Structural language
o Expression language
o Template language

The structural language is used to define the overall structure, the hierarchical
configuration structure, and its serialization. The three main parts for an HCL snippet
are defined as bodies, the block, and attributes.

The expression language is used to express the value of the attribute, which can be
expressed in either of two ways: a literal or a derivation of another value.

The template language is used to compose the value into a string. The template
language uses one of the several types of expression defined in the expression language.

When code is composed in HCL, all three sublanguages are normally used. The
structural language is used at the top level to define the basis of the configuration file.
The expression language and the template language can also be used in isolation or to
implement a feature like a REPL, a debugger that can be integrated into more limited
HCL syntaxes such as the JSON profile itself.

Syntax Components

A fundamental part of every language is the syntax. Now we’ll introduce the basic
grammar of HCL and the fundamental parts used to build the language. You've seen
which data and type structures are allowed in the HCL language. Now we will delve
deeper into syntax. The basic syntax in HCL has these basic rules:

o Every name starting with an uppercase letter is a global production.
This means it is common to all syntax specified in the document used
to define the program. This is similar to a global variable in other
languages.

» Every name starting with a lowercase letter is a local production. This
means it is valid only in the part of the document where it is defined.
This is similar to a local variable in other languages.

e Double quotes (“) or single quotes (‘) are used to mark a literal
character sequence. This can be a punctuation marker or a keyword.

CHAPTER 1 INTRODUCTION TO HCL

o The default operator for combining items is the concatenation, the
operator +.

o The symbol | is a logical OR, which means one of the two operators,
left or right, must be present.

o The symbol * indicates a “zero or more” repetition of the item on the
left. This means we can have a variable number of elements, with the

minimum value of 0.
o The symbol ? indicates one or more repetitions of the item to the left.

o The parentheses, (), are used to group items in order to apply the
previous operator to them collectively.

These are the basic syntax notations used to define the grammar of the language.
They are used in combination with the structure and data types for creating the
configuration file(s).

When a HCL configuration file is created, a certain set of rules are used to describe
the syntax and grammar involved. There are three distinct sections of the file:

o Attributes, where we assign a value to a specific value

e The block, which is used to create a child body annotated by a name
and an optional label

o The body content, which is essentially a collection of attributes and
the block

This structure defines the model of the configuration file. A configuration file is
nothing more than a sequence of characters used to create the body. If we want to define
a similar BNF grammar, we can define the basic structure for a configuration file as

follows:

ConfigFile = Body;

Body = (Attribute | Block | OnelLineBlock)*;

Attribute = Identifier "=" Expression Newline;

Block = Identifier (StringlLit|Identifier)* "{" Newline Body "}"
Newline;

OnelLineBlock = Identifier (StringlLit|Identifier)* "{" (Identifier "="

Expression)? "}" Newline;

CHAPTER 1 INTRODUCTION TO HCL

A BNF (Backus-Naur Form) grammar is a notation technique used for free-form
grammar. With this technique, we can define a new type of grammar for our own
language. This is normally used when we create a new language, like HCL. The
BNF is largely used when defining the language and is very helpful when we need
to understand the language itself. There is a new version of the BNF called EBFN
(Extend-Backus-Naur Form). The BNF is a simple language used in particular in
the academic world. There is no unique definition and it is mostly used to describe
metacode to be read to a human and is normally written on one line. The EBFN lets
us write a more complex model representation of the code; it is possible to define
a variable and function with a more complex syntax.

Identifiers

Identifiers are used to assign a name to a block, an attribute, or a variable. An identifier
is a string of characters, beginning with a letter or a certain unambiguous punctuation
token, followed by any number or letter of Unicode.

The standard used to define an identifier is the Unicode standard, defined in the
document UAX #31- Section 2. This document also defines the BNF grammar we can use
to write our identifiers. The grammar is as follows:

<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*
To define an identifier, this notation is used:

Identifier = ID Start (ID Continue | '-')*;

where

o ID Start consists of sequence of Unicode letters and certain
unambiguous punctuation.

o ID Continue defines a set of Unicode letters, combining marks and
such, as defined in the Unicode standard.

In addition to the first two characters, ID_Start and ID_Continue, we use the
character '-'; this character can also be used to define identifiers. The usage of the '-'
character allows the identifier to have this character as part of the name.

