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5.14 After Step 1: train speed update.
5.15 After Step 2: equivalent bridge stiffness update.
5.16 Bridge under a moving train.
5.17 Power spectral density (PSD) of measured

displacement histories: (a) train speed = 7.93  km/h;
(b) train speed = 36.80  km/h; (c) train speed = 70.22 
km/h.

5.18 Computed displacement and acceleration time
histories and their PSDs with train speed 7.93  km/h.

5.19 Computed displacement and acceleration time
histories and their PSDs with train speed 36.80  km/h.

5.20 Computed displacement and acceleration time
histories and their PSD with train speed 70.22  km/h.

5.21 Mid‐span maximum displacements and accelerations
w.r.t. different train speeds.

6.1 Schematics of the output‐only simultaneous
identification problem.

6.2 Output‐only time‐domain identification procedure.
6.3 Numerical example.
6.4 Effect of the number of sensors and noise level on the

evolution of bridge stiffness identification: (a) two
sensors; (b) three sensors; (c) seven sensors.

6.5 Identification errors for bridge stiffness.
6.6 Comparison of identified and reference impact forces


