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Over the past few decades, a significant number of studies have been conducted 
in the area of structural health monitoring (SHM), with the objective of detecting 
anomalies and quantitatively assessing structural integrity based on measure-
ments using various types of sensors. Although these studies have produced SHM 
methods, frameworks, and algorithms that have been validated through numeri-
cal, laboratory, and field applications, their wide deployment in real-world engi-
neering structures is limited by the prohibitive requirement of installing dense 
on-structure sensor networks and associated data-acquisition systems. To address 
these practical limitations, the research and industrial communities have been 
actively exploring new sensing technologies that can advance the current state-of-
the-art in SHM.

Rapid advances in digital cameras and computer vision algorithms have made 
vision-based sensing a promising next-generation monitoring technology to com-
plement conventional sensors. Significant advantages of the vision-based sensor 
include its low cost, ease of setup and operation, and flexibility to extract displace-
ments at multiple points on the structure from a single video measurement. In the 
past 10 years, the authors have been fortunate to lead, participate in, and witness 
the development of computer vision-based sensing and its application to struc-
tural dynamics and SHM. In our activities, however, we have seen a gap between 
the significant potential offered by this emerging sensing technology and its prac-
tical applications. Many undergraduate and graduate students, researchers, and 
practicing engineers are interested in learning how this sensing technology works 
and what unique benefits it can offer.

This book is intended to provide a comprehensive introduction to vision-based 
sensing technology, based primarily on the authors’ research. Fundamental 
knowledge, important issues, and practical techniques critical to the successful 
development of the vision-based sensor are presented and discussed in detail. A 
wide range of tests have been carried out in both laboratory and field environ-
ments to demonstrate its measurement accuracy and unique merits. The potential 
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of the vision sensor as a fast and cost-effective tool for solving SHM problems is 
explored. In addition to SHM, novel and practical solutions to other engineering 
problems are presented, such as estimating cable tension forces using vision-
based sensing. Finally, the book outlines the achievements and challenges of cur-
rent vision-based sensing technologies, as well as open research challenges, to 
assist both the structural engineering and computer science research communi-
ties in setting an agenda for future research.

The goal of this book is to help encourage the application of the emerging 
vision-based sensing technology not only in scientific research but also in engi-
neering practice, such as assessing the field condition of civil engineering struc-
tures and infrastructure systems. Although the book is conceived as an entity, its 
chapters are mostly self-contained and can serve as tutorials and reference works 
on their respective topics. The book may also serve as a textbook for graduate stu-
dents, researchers, and practicing engineers; thus, much emphasis has been 
placed on making the computer vision algorithms, structural dynamics, and SHM 
applications easily accessible and understandable. To achieve this goal, we pro-
vide MATLAB code for most of the problems discussed in the book. In addition, 
readers working in structural dynamics and health monitoring will find this book 
hands-on and useful.

The authors would like to express their gratitude to the following individuals: 
Professors Shun’ichi Kaneko and Takayuki Tanaka at Hokkaido University, for 
inspiring the authors’ work on computer vision more than a decade ago and for 
kindly providing the orientation code matching (OCM) MATLAB code included 
in Chapter 2; Dr. Yoshio Fukuda, former associate research scientist at Columbia 
University, for developing the OCM software package with the C++ language; 
Casey Megan Eckersley, PhD student of Columbia University, for her valuable 
assistance in editing the book; and last but not least, the authors’ families for their 
strong support.
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1.1  Structural Health Monitoring: A Quick Review

Structures and civil infrastructure systems, including bridges, buildings, dams, 
and pipelines, are exposed to various external loads throughout their lifetimes. As 
they age and deteriorate, effective inspection, monitoring, and maintenance of 
these systems becomes increasingly important. However, conventional practice 
based on periodic human visual inspection is time-consuming, labor-intensive, 
subjective, and prone to human error. Nondestructive testing techniques have 
shown potential for detecting hidden damages, but the large size of the structural 
systems presents a significant challenge for conducting such localized tests. Over 
the past few decades, a significant number of studies have been conducted in the 
area of structural health monitoring (SHM), aiming at timely, objective detection 
of damage or anomalies and quantitative assessment of structural integrity and 
safety based on measurements by various on-structure sensors [1–4]. Most of the 
SHM techniques are based on structural dynamics, and the basic principle is that 
any structural damage or degradation would result in changes in structural 
dynamic responses as well as the corresponding modal characteristics. The SHM 
process is implemented in four key steps: data acquisition, system identification, 
condition assessment, and decision-making.

Dynamics-based SHM techniques can be categorized into frequency-domain 
and time-domain system identification methods. Carden and Fanning [5] pre-
sented an extensive literature review of frequency-domain SHM techniques based 
on changes in measured modal properties such as natural frequencies, mode 
shapes and their curvatures, modal flexibility and its derivatives, modal strain 
energy, frequency response functions, etc. Modal properties are obtained using 
various modal analysis techniques, e.g. the natural excitation technique, frequency 
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domain decomposition, stochastic subspace identification, the random decre-
ment technique, blind source separation, and the autoregressive-moving-average 
model-fitting method. All of these methods have achieved satisfactory perfor-
mance in numerical and experimental studies. For example, Kim and Stubbs [6] 
proposed a technique to locate and quantify cracks in beam-type structures based 
on a single damage indicator by using changes in natural frequencies. Lee et al. [7] 
presented a neural network–based method for element-level damage detection 
using mode shape differences between intact and damaged structures. Pandey 
et al. [8] proposed for the first time that mode shape curvature, which is the sec-
ond derivative of the mode shape, is a sensitive indicator of damage. Feng et al. [9] 
developed the first neural network–based system identification framework for 
updating baseline structural models of two sensor-instrumented highway bridges.

Time-domain SHM techniques, rather than working with modal quantities, 
directly utilize measured structural response time histories to identify structural 
parameters. The identification in the time domain is often formulated as an opti-
mization process, wherein the objective function is defined as the discrepancy 
between the measured and predicted responses. In the majority of existing stud-
ies, which are referred to as input–output methods, the known or measured excita-
tion forces are a prerequisite for obtaining the predicted structural responses. 
However, it is highly difficult to measure excitation forces such as vehicle 
loads on bridges. Recently, there have been attempts to simultaneously identify 
both structural parameters and input forces from output-only identification 
formulations. For example, Rahneshin and Chierichetti [10] proposed an iterative 
algorithm – the extended load confluence algorithm – to predict dynamic struc-
tural responses in which limited or no information about the applied loads is 
available. Xu et  al. [11] presented a weighted adaptive iterative least-squares 
estimation method to identify structural parameters and dynamic input loadings 
from incomplete measurements. Sun and Betti [12] demonstrated the effective-
ness of a hybrid heuristic optimization strategy for simultaneous identification of 
structural parameters and input loads via three numerical examples. Feng et al. 
[13] proposed a numerical methodology to simultaneously identify bridge struc-
tural parameters and moving vehicle axle load histories from a limited number of 
acceleration measurements.

On the other hand, various filter-type algorithms for online system identifica-
tion have been extensively studied in the literature, using either input–output or 
output-only time-domain data. Examples include the extended Kalman filter, 
unscented Kalman filter, particle filter, and H  filter. For example, Chen and 
Feng [14] proposed a recursive Bayesian filtering approach to update structural 
parameters and their uncertainties in a probabilistic structural model. Soyoz and 
Feng [15] formulated an extended Kalman filter for instantaneous detection of 
seismic damage of bridges and validated its efficacy through large-scale seismic 


