

Qi Liu

Xiaodong Liu

Tao Shen

Xuesong Qiu *Editors*

The 10th International Conference on Computer Engineering and Networks

Springer

Advances in Intelligent Systems and Computing

Volume 1274

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

Advisory Editors

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India

Rafael Bello Perez, Faculty of Mathematics, Physics and Computing,
Universidad Central de Las Villas, Santa Clara, Cuba

Emilio S. Corchado, University of Salamanca, Salamanca, Spain

Hani Hagras, School of Computer Science and Electronic Engineering,
University of Essex, Colchester, UK

László T. Kóczy, Department of Automation, Széchenyi István University,
Gyor, Hungary

Vladik Kreinovich, Department of Computer Science, University of Texas
at El Paso, El Paso, TX, USA

Chin-Teng Lin, Department of Electrical Engineering, National Chiao
Tung University, Hsinchu, Taiwan

Jie Lu, Faculty of Engineering and Information Technology,
University of Technology Sydney, Sydney, NSW, Australia

Patricia Melin, Graduate Program of Computer Science, Tijuana Institute
of Technology, Tijuana, Mexico

Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro,
Rio de Janeiro, Brazil

Ngoc Thanh Nguyen, Faculty of Computer Science and Management,
Wrocław University of Technology, Wrocław, Poland

Jun Wang, Department of Mechanical and Automation Engineering,
The Chinese University of Hong Kong, Shatin, Hong Kong

The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.

The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

**** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink ****

More information about this series at <http://www.springer.com/series/11156>

Qi Liu · Xiaodong Liu ·
Tao Shen · Xuesong Qiu
Editors

The 10th International Conference on Computer Engineering and Networks

Springer

Editors

Qi Liu
Science and Technology
Nanjing University of Information
Nanjing, Jiangsu, China

Tao Shen
School of Electrical Engineering
University of Jinan
Jinan, Shandong, China

Xiaodong Liu
School of Computing
Edinburgh Napier University
Edinburgh, UK

Xuesong Qiu
Institute of Network Technology
Beijing University of Posts
and Telecommunications
Beijing, Beijing, China

ISSN 2194-5357

ISSN 2194-5365 (electronic)

Advances in Intelligent Systems and Computing

ISBN 978-981-15-8461-9

ISBN 978-981-15-8462-6 (eBook)

<https://doi.org/10.1007/978-981-15-8462-6>

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Preface

This conference proceedings is a collection of the papers accepted by the CENet 2020—the 10th International Conference on Computer Engineering and Networks held on October 16–18 2020, in Xi'an, China.

This proceedings contains the five parts: Part I Artificial Intelligence and Applications (51 papers); Part II Communication System Detection, Analysis and Application (32 papers); Part III Information Security and Cybersecurity (25 papers), Part IV Intelligent System and Engineering (17 papers), Part V Internet of Things and Smart Systems (61 papers) and Part VI Medical Engineering And Information Systems (13 papers).

Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state of practice in the topics covered by this conference proceedings. This will enable them to produce, maintain and manage systems with high levels of trustworthiness and complexity.

Thanks to the authors for their hard work and dedication as well as the reviewers for ensuring the selection of only the highest-quality papers; their efforts made the proceedings possible.

Contents

Artificial Intelligence and Applications

A Unified Framework for Micro-video BackGround Music Automatic Matching	3
Zongzhi Chai, Haichao Zhang, Yuehua Li, Qianxi Yang, Tianyi Li, Fan Zhang, and Jinpeng Chen	
YOLO_v3-Based Pulmonary Nodules Recognition System	11
Wenhao Deng, Zhiqiang Wang, Xiaorui Ren, Xusheng Zhang, Bing Wang, and Tao Yang	
An Optimized Hybrid Clustering Algorithm for Mixed Data: Application to Customer Segmentation of Table Grapes in China	20
Yue Li, Xiaoquan Chu, Xin Mou, Dong Tian, Jianying Feng, and Weisong Mu	
Prediction of Shanghai and Shenzhen 300 Index Based on BP Neural Network	33
Hong Liu, Nan Ge, Bingbing Zhao, Yi-han Wang, and Fang Xia	
Application of Time-Frequency Features and PSO-SVM in Fault Diagnosis of Planetary Gearbox	42
Qing Zhang, Heng Li, and Shuaihang Li	
Wind Power Variable-Pitch DC Servo System Based on Fuzzy Adaptive Control	52
Weicai Xie, Shibo Liu, Yaofeng Wang, Hongzhi Liao, and Li He	
Artificial Topographic Structure of CycleGAN for Stroke Patients' Motor Imagery Recognition	60
Fenqi Rong, Tao Sun, Fangzhou Xu, Yang Zhang, Fei Lin, Xiaofang Wang, and Lei Wang	

Rail Defect Detection Method Based on BP Neural Network	68
Qinhu Xu, Qinjun Zhao, Ligu Wang, and Tao Shen	
Apple Grading Method Based on GA-SVM	79
Zheng Xu, Qinjun Zhao, Yang Zhang, Yuhua Zhang, and Tao Shen	
Deep Spatio-Temporal Dense Network for Regional Pollution Prediction	90
Qifan Wu, Qingshan She, Peng Jiang, Xuhua Yang, Xiang Wu, and Guang Lin	
Research on the Relationship Among Electronic Word-of-Mouth, Trust and Purchase Intention-Take JingDong Shopping E-commerce Platform as an Example	100
Chiu-Mei Chen, Kun-Shan Zhang, and Hsuan Li	
An Effective Face Color Comparison Method	105
Yuanyong Feng, Jinrong Zhang, Zhidong Xie, Fufang Li, and Weihao Lu	
Transfer Learning Based Motor Imagery of Stroke Patients for Brain-Computer Interface	113
Yunjing Miao, Fangzhou Xu, Jinglu Hu, Dongri Shan, Yanna Zhao, Jian Lian, and Yuanjie Zheng	
Intelligent Virtual Lipstick Trial Makeup Based on OpenCV and Dlib	121
Yuanyong Feng, Zhidong Xie, and Fufang Li	
A Hybrid Chemical Reaction Optimization Algorithm for N-Queens Problem	128
Guangyong Zheng and Yuming Xu	
Apple Soluble Solids Content Prediction Based on Genetic Algorithm and Extreme Learning Machine	138
Xingwei Yan, Tao Shen, Shuhui Bi, and Qinhu Xu	
Structural Damage Semantic Segmentation Using Dual-Network Fusion	146
Lingrui Mei, Jiaqi Yin, Donghao Zhou, Kai Kang, and Qiang Zhang	
Improved UAV Scene Matching Algorithm Based on CenSurE Features and FREAK Descriptor	158
Chenglong Wang, Tangle Peng, Longzhi Hu, and Guanjun Liu	
Analysis of Image Quality Assessment Methods for Aerial Images	168
Yuliang Zhao, Yuye Zhang, Jikai Han, and Yingying Wang	
The Applications of AI: The “Shandong Model” of E-commerce Poverty Alleviation Under Technology Enabling Direction	176
Xinmei Wu, Zhiping Zhang, and Guozhen Song	

Emotional Research on Mobile Phone E-Commerce Reviews on LSTM Model	183
Chunmei Zhang, Mingqing Zhao, and Gang Dong	
Research on Intelligent Robot System for Park Inspection	193
Lianqin Jia, Liangliang Wang, Qing Yan, and Qin Liu	
Intelligent Network Operation and Maintenance Based on Deep Learning Technology	200
Xidian Wang, Lei Wang, Zihan Jia, Jing Xu, Yanan Wang, Duo Shi, Yang Xue, and Zhenlin Nie	
Research on Autonomous Driving Perception Test Based on Adversarial Examples	208
Yisi Wang, Wei Sha, Zhongming Pan, and Yigui Luo	
Application Research of Artificial Intelligence Technology in Intelligent Agriculture	219
Lianqin Jia, Jun Wang, Qin Liu, and Qing Yan	
Facial Expression Extraction Based on Wavelet Transform and FLD	226
Lichun Yu and Jinqing Liu	
Research on Content-Based Reciprocal Recommendation Algorithm for Student Resume	233
Jianfeng Tang and Jie Huang	
Research on Personalized Recommendation Based on Big Data Technology	240
Jinhai Li, Shichao Qi, Longfeng Chen, and Hui Yan	
Agricultural Product Quality Traceability System Based on the Hybrid Mode	248
Jun Wang, Lianqin Jia, and Qian Zhou	
The Research of Intelligent Bandwidth Adjustment System	254
Yong Cui, Yili Qin, Qirong Zhou, and Bing Li	
Research on Tibetan Phrase Classification Method for Language Information Processing	261
Zangtai Cai, Nancairang Suo, and Rangjia Cai	
A Garbage Image Classification Framework Based on Deep Learning	268
Chengchuang Lin, Gansen Zhao, Lei Zhao, and Bingchuan Chen	
Ancient Ceramics Classification Method Based on Neural Network Optimized by Improved Ant Colony Algorithm	276
Yanzhe Liu and Bingxiang Liu	

Design of ISAR Image Annotation System Based on Deep Learning	283
Bingning Li, Chi Zhang, Wei Pei, and Liang Shen	
Research on Public Sentiment Data Center Based on Key Technology of Big Data	289
Zhou Qi, Yin Jian, and Liangjun Zhang	
Fire Detection from Images Based on Single Shot MultiBox Detector	302
Zechen Wan, Yi Zhuo, Huihong Jiang, Junfeng Tao, Huimin Qian, Wenbo Xiang, and Ying Qian	
Human Activities Recognition from Videos Based on Compound Deep Neural Network	314
Zhijian Liu, Yi Han, Zhiwei Chen, Yuelong Fang, Huimin Qian, and Jun Zhou	
Deep Q-Learning Based Collaborative Caching in Mobile Edge Network	327
Ruichao Wang, Jizhao Lu, Yongjie Li, Xingyu Chen, and Shaoyong Guo	
VNF Instance Dynamic Scaling Strategy Based on LSTM	335
Hongwu Ge, Yonghua Huo, Zhihao Wang, Ping Xie, and Tongyan Wei	
A Flow Control Method Based on Deep Deterministic Policy Gradient	344
Junli Mao, Donghong Wei, Qicai Wang, Yining Feng, and Tongyan Wei	
Design of Forest Fire Warning System Based on Machine Vision	352
Jiansheng Peng, Hanxiao Zhang, Huojiao Wu, and Qingjin Wei	
Design of an Intelligent Glass-Wiping Robot	364
Jiansheng Peng, Hemin Ye, Xin Lan, Qingjin Wei, and Qiwen He	
Design and Implementation of ROS-Based Rapid Identification Robot System	376
Qingjin Wei, Jiansheng Peng, Hanxiao Zhang, Hongyi Mo, and Yong Qin	
Lane Recognition System for Machine Vision	388
Yong Qin, Jiansheng Peng, Hanxiao Zhang, and Jianhua Nong	
Review on Deep Learning in Intelligent Transportation Systems	399
Yiwei Liu, Yizhuo Zhang, and Chi-Hua Chen	
Glacier Area Monitoring Based on Deep Learning and Multi-sources Data	409
Guang Wang, Yue Liu, Huifang Shen, Shudong Zhou, Jinzhou Liu, Hegao Sun, and Yan Tao	

3D Convolutional Neural Networks with Image Fusion for Hyperspectral Image Classification	419
Cheng Shi, Jie Zhang, Zhenzhen You, and Zhiyong Lv	
Traffic Flow Prediction Model and Performance Analysis Based on Recurrent Neural Network	429
Haozheng Wu, Yu Tang, Rong Fei, Chong Wang, and Yufan Guo	
Review on Deep Learning in Feature Selection	439
Yizhuo Zhang, Yiwei Liu, and Chi-Hua Chen	
Design and Implementation of Handwritten Digit Recognition Based on K-Nearest Neighbor Algorithm	448
Ying Wang, Qingyun Liu, Yaqi Sun, Feng Zhang, and Yining Zhu	
Gender Identification for Coloring Black and White Portrait with cGan	456
Qingyun Liu, Mugang Lin, Yaqi Sun, and Feng Zhang	
Communication System Detection, Analysis and Application	
Considerations on the Telemetry System in Fight Test	467
Tenghuan Ding, Tielin Li, and Wenyu Yan	
Design and Implementation of Remote Visitor System Based on NFC Technology	474
Zhiqiang Wang, Shichun Gao, Meng Xue, Xinyu Ju, Xinhao Wang, Xin Lv, Yang Li, and Tao Yang	
Bit Slotted ALOHA Algorithm Based on a Polling Mechanism	483
Hongwei Deng, Wenli Fu, Ming Yao, Yuxiang Zhou, and Songling Xia	
A Mobile E-Commerce Recommendation Algorithm Based on Data Analysis	493
Jianxi Zhang and Changfeng Zhang	
Heat Dissipation Optimization for the Electronic Device in Enclosure Condition	502
Bibek Regmi and Bishwa Raj Poudel	
Transformer Fault Diagnosis Based on Stacked Contractive Auto-Encoder Net	514
Yang Zhong, Chuye Hu, Yiqi Lu, and Shaorong Wang	
Control Strategy for Vehicle-Based Hybrid Energy Storage System Based on PI Control	523
Chongzhuo Tan, Zhangyu Lu, Zeyu Wang, and Xizheng Zhang	
Research on Task Scheduling in Distributed Vulnerability Scanning System	530
Jie Jiang and Sixin Tang	

Delta Omnidirectional Wheeled Table Tennis Automatic Pickup Robot Based on Vision Servo	537
Ming Lu, Cheng Wang, Jinyu Wang, Hao Duan, Yongteng Sun, and Zuguo Chen	
RTP-GRU: Radiosonde Trajectory Prediction Model Based on GRU	543
Yinfeng Liu, Yaoyao Zhou, Jianping Du, Dong Liu, Jie Ren, Yuhan Chen, Fan Zhang, and Jinpeng Chen	
Life Prediction Method of Hydrogen Energy Battery Based on MLP and LOESS	551
Zhanwen Dai, Yumei Wang, and Yafei Wu	
Application of DS Evidence Theory in Apple's Internal Quality Classification	563
Xingwei Yan, Liyao Ma, Shuhui Bi, and Tao Shen	
Scheduling Algorithm for Online Car-Hailing Considering Both Benefit and Fairness	572
Rongyuan Chen, Yuanxing Shi, Lizhi Shen, Xiancheng Zhou, and Geng Qian	
The Shortest Time Assignment Problem and Its Improved Algorithm	583
Yuncheng Wang, Chunhua Zhou, and Zhenyu Zhou	
Injection Simulation Equipment Interface Transforming from PCIe to SFP Based on FPGA	589
Jing-ying Hu and Dong-cheng Chen	
Design and Implementation of IP LAN Network Performance Monitoring and Comprehensive Analysis System	596
Yili Qin, Qing Xie, and Yong Cui	
Research on RP Point Configuration Optimizing of the Communication Private Network	604
Yili Qin, Yong Cui, and Qing Xie	
Cross Polarization Jamming and ECM Performance of Polarimetric Fusion Monopulse Radars	612
Huanyao Dai, Jianghui Yin, Zhihao Liu, Haijun Wang, Jianlu Wang, and Leigang Wang	
The Customization and Implementation of Computer Teaching Website Based on Moodle	623
Zhiping Zhang and Mei Sun	

Contents	xiii
Recommendation of Community Correction Measures Based on FFM-FTRL	628
Fangyi Wang, Xiaoxia Jia, and Xin Shi	
The Current Situation and Improvement Suggestions of Information Management and Service in Colleges and Universities—Investigation of Xianyang City, Western China	635
Yang Sun	
Research on Location Method of Network Key Nodes Based on Position Weight Matrix	643
Shihong Chen	
Design and Implementation of E-Note Software Based on Android	655
Zhenhua Li	
Research and Design of Context UX Data Analysis System	661
Xiaoyan Fu and Zhengjie Liu	
Trust Evaluation of User Behavior Based on Entropy Weight Method	670
Yonghua Gong and Lei Chen	
Byzantine Fault-Tolerant Consensus Algorithm Based on the Scoring Mechanism	676
Cheng Zhong, Zhengwen Zhang, Peng Lin, and Shujuan Sun	
Network Topology-Aware Link Fault Recovery Algorithm for Power Communication Network	685
Huaxu Zhou, Meng Ye, Yaodong Ju, Guanjin Huang, Shangquan Chen, Xuhui Zhang, and Linna Ruan	
An Orchestration Algorithm for 5G Network Slicing Based on GA-PSO Optimization	694
Wenge Wang, Jing Shen, Yujing Zhao, Qi Wang, Shaoyong Guo, and Lei Feng	
A Path Allocation Method for Opportunistic Networks with Limited Delay	701
Zhiyuan An, Yan Liu, Lei Wang, Ningning Zhang, Kaili Dong, Xin Liu, and Kun Xiao	
The Fault Prediction Method Based on Weighted Causal Dependence Graph	707
Yonghua Huo, Jing Dong, Zhihao Wang, Yu Yan, Ping Xie, and Yang Yang	

Network Traffic Anomaly Detection Based on Optimized Transfer Learning	715
Yonghua Huo, Libin Jiao, Ping Xie, Zhiming Fu, Zhuo Tao, and Yang Yang	
Constant-Weight Group Coded Bloom Filter for Multiple-Set Membership Queries	723
Xiaomei Tian and Huihuang Zhao	
Information Security and Cybersecurity	
A Image Adaptive Steganography Algorithm Combining Chaotic Encryption and Minimum Distortion Function	733
Ge Jiao, Jiahao Liu, Sheng Zhou, and Ning Luo	
Research on Quantitative Evaluation Method of Network Security in Substation Power Monitoring System	741
Liqiang Yang, Huixun Li, Yingfu Wangyang, Ye Liang, Wei Xu, Lisong Shao, and Hongbin Qian	
Research on FTP Vulnerability Mining Based on Fuzzing Technology	749
Zhiqiang Wang, Haoran Zhang, Wenqi Fan, Yajie Zhou, Caiming Tang, and Duanyun Zhang	
Research on Integrated Detection of SQL Injection Behavior Based on Text Features and Traffic Features	755
Ming Li, Bo Liu, Guangsheng Xing, Xiaodong Wang, and Zhihui Wang	
Android Secure Cloud Storage System Based on SM Algorithms	772
Zhiqiang Wang, Kunpeng Yu, Wenbin Wang, Xinyue Yu, Haoyue Kang, Xin Lv, Yang Li, and Tao Yang	
Identification System Based on Fingerprint and Finger Vein	780
Zhiqiang Wang, Zeyang Hou, Zhiwei Wang, Xinyu Li, Bingyan Wei, Xin Lv, and Tao Yang	
Analysis and Design of Image Encryption Algorithms Based on Interlaced Chaos	789
Kangman Li and Qiuping Li	
Verifiable Multi-use Multi-secret Sharing Scheme on Monotone Span Program	796
Ningning Wang and Yun Song	
Design and Implementation of a Modular Multiplier for Public-Key Cryptosystems Based on Barrett Reduction	803
Yun Zhao, Chao Cui, Yong Xiao, Weibin Lin, and Ziwen Cai	

Near and Far Collision Attack on Masked AES	810
Xiaoya Yang, Yongchuan Niu, Qingping Tang, Jiawei Zhang, Yaoling Ding, and An Wang	
A Novel Image Encryption Scheme Based on Poker Cross-Shuffling and Fractional Order Hyperchaotic System	818
Zhong Chen, Huihuang Zhao, and Junyao Chen	
Research on High Speed and Low Power FPGA Implementation of LILLIPUT Cryptographic Algorithm	826
Juanli Kuang, Rongjie Long, and Lang Li	
Adversarial Domain Adaptation for Network-Based Visible Light Positioning Algorithm	835
Luchi Hua, Yuan Zhuang, Longning Qi, and Jun Yang	
Robustness Detection Method of Chinese Spam Based on the Features of Joint Characters-Words	845
Xin Tong, Jingya Wang, Kainan Jiao, Runzheng Wang, and Xiaoqin Pan	
Domain Resolution in LAN by DNS Hijacking	852
Zongping Yin	
Study on Distributed Intrusion Detection Systems of Power Information Network	859
Shu Yu, Taojun, and Zhang Lulu	
Credible Identity Authentication Mechanism of Electric Internet of Things Based on Blockchain	866
Liming Wang, Xiuli Huang, Lei Chen, Jie Fan, and Ming Zhang	
Trusted Identity Cross-Domain Dynamic Authorization Mechanism Based on Master-Slave Chain	876
Xiuli Huang, Qian Guo, Qigui Yao, and Xuesong Huo	
Trusted Identity Authentication Mechanism for Power Maintenance Personnel Based on Blockchain	883
Zhengwen Zhang, Sujie Shao, Cheng Zhong, Shujuan Sun, and Peng Lin	
Power Data Communication Network Fault Recovery Algorithm Based on Nodes Reliability	890
Meng Ye, Huaxu Zhou, Guanjin Huang, Yaodong Ju, Zhicheng Shao, Qing Gong, and Meiling Dai	
Congestion Link Inference Algorithm of Power Data Network Based on Bayes Theory	899
Meng Ye, Huaxu Zhou, Yaodong Ju, Guanjin Huang, Miaogeng Wang, Xuhui Zhang, and Meiling Dai	

Multimodal Continuous Authentication Based on Match Level Fusion	908
Wenwei Chen, Pengpeng Lv, Zhuozhi Yu, Qinghai Ou, Yukun Zhu, Huifeng Yang, Lifang Gao, Yangyang Lian, Qimeng Li, Kai Lin, and Xin Liu	
NAS Honeypot Technology Based on Attack Chain	915
Bing Liu, Hui Shu, and Fei Kang	
Key Technology and Application of Customer Data Security Prevention and Control in Public Service Enterprises	927
Xiuli Huang, Congcong Shi, Qian Guo, Xianzhou Gao, and Pengfei Yu	
Efficient Fault Diagnosis Algorithm Based on Active Detection Under 5G Network Slice	934
Zhe Huang, Guoyi Zhang, Guoying Liu, and Lingfeng Zeng	
Intelligent System and Engineering	
Research on Blue Force Simulation System of Naval Surface Ships	945
Rui Guo and Nan Wang	
Research on Evaluation of Distributed Enterprise Research and Development (R & D) Design Resources Sharing Based on Improved Simulated Annealing AHP: A Case Study of Server Resources	951
Yongqing Hu, Weixing Su, Yelin Xia, Han Lin, and Hanning Chen	
A Simplified Simulation Method for Measurement of Dielectric Constant of Complex Dielectric with Sandwich Structure and Foam Structure	960
Yang Zhang, Qinjun Zhao, and Zheng Xu	
Research on PSO-MP DC Dual Power Conversion Control Technology	968
Yulong Huang and Jing Li	
Design of Lithium Battery Management System for Underwater Robot	989
Baoping Wang, Qin Sun, Dong Zhang, and Yuzhen Gong	
Research and Application of Gas Wavelet Packet Transform Algorithm Based on Fast Fourier Infrared Spectrometer	996
Wanjie Ren, Xia Li, Guoxing Hu, and Rui Tuo	
Segment Wear Characteristics of the Frame Saw for Hard Stone in Reciprocating Sawing Mode	1002
Qin Sun, Baoping Wang, Zuoli Li, and Zhiguang Guan	

Dongba Hieroglyphs Visual Parts Extraction Algorithm Based on MSD	1008
Yuting Yang and Houliang Kang	
Key Structural Points Extracting Algorithm for Dongba Hieroglyphs	1014
Houliang Kang and Yuting Yang	
Research on a High Step-Up Boost Converter	1020
Jingmei Wu, Ping Ji, Xusheng Hu, and Ling Chen	
CAUX-Based Mobile Personas Creation	1033
Mo Li and Zhengjie Liu	
Exploration and Research on CAUX in High-Level Context-Aware	1040
Ke Li, Zhengjie Liu, and Vittorio Bucchieri	
Research on Photovoltaic Subsidy System Based on Alliance Chain	1048
Cheng Zhong, Zhengwen Zhang, Peng Lin, and Yajie Zhang	
Design of Multi-UAV System Based on ROS	1056
Qingjin Wei, Jiansheng Peng, Hemin Ye, Jian Qin, and Qiwen He	
Design of Quadrotor Aircraft System Based on msOS Platform	1068
Yong Qin, Jiansheng Peng, Hemin Ye, Liyou Luo, and Qingjin Wei	
Design and Implementation of Traversing Machine System Based on msOS Platform	1080
Qiwen He, Jiansheng Peng, Hanxiao Zhang, and Yicheng Zhan	
Single Image Super-Resolution Based on Sparse Coding and Joint Mapping Learning Framework	1091
Shudong Zhou, Li Fang, Huifang Shen, Hegao Sun, and Yue Liu	
Internet of Things and Smart Systems	
A Study on the Satisfaction of Consumers Using Ecommerce Tourism Platform	1105
Kun-Shan Zhang, Chiu-Mei Chen, and Hsuan Li	
Research on Construction of Smart Training Room Based on Mobile Cloud Video Surveillance Technologies	1113
Lihua Xiong and Jingming Xie	
Design of a Real-Time and Reliable Multi-machine System	1120
Jian Zhang, Lang Li, Qiuping Li, Junxia Zhao, and Xiaoman Liang	
A Detection Method of Safety Helmet Wearing Based on Centernet	1128
Bo Wang, Qinjun Zhao, Yong Zhang, and Jin Cheng	

A Hybrid Sentiment Analysis Method	1138
Hongyu Han, Yongshi Zhang, Jianpei Zhang, Jing Yang, and Yong Wang	
Optimizing Layout of Video Surveillance for Substation Monitoring	1147
Yiqi Lu, Yang Zhong, Chuye Hu, and Shaorong Wang	
Multi-objective Load Dispatch of Microgrid Based on Electric Vehicle	1158
Zeyu Wang, Zhangyu Lu, Chongzhuo Tan, and Xizheng Zhang	
Local Path Planning Based on an Improved Dynamic Window Approach in ROS	1164
Desheng Feng, Lixia Deng, Tao Sun, Haiying Liu, Hui Zhang, and Yang Zhao	
An Effective Mobile Charging Approach for Wireless Sensor and Actuator Networks with Mobile Actuators	1172
Xiaoyuan Zhang, Yanglong Guo, Hongrui Yu, and Tao Chen	
An Overview of Outliers and Detection Methods in General for Time Series from IoT Devices	1180
Bin Sun and Liyao Ma	
A Path Planning Algorithm for Mobile Robot with Restricted Access Area	1187
Youpan Zhang, Tao Sun, Hui Zhang, Haiying Liu, Lixia Deng, and Yongguo Zhao	
Weighted Slopeone-IBCF Algorithm Based on User Interest Attenuation and Item Clustering	1197
Peng Shi and Wenming Yao	
Simulation Analysis of Output Characteristics of Power Electronic Transformers	1209
Zhiwei Xu, Zhimeng Xu, and Weicai Xie	
Virtual Synchronous Control Strategy for Frequency Control of DFIG Under Power-Limited Operation	1219
Yunkun Mao, Guorong Liu, Lei Ma, and Shengxiang Tang	
Design on Underwater Fishing Robot in Shallow Water	1229
Zhiguang Guan, Dong Zhang, and Mingxing Lin	
Structure Design of a Cleaning Robot for Underwater Hull Surface	1236
Qin Sun, Zhiguang Guan, and Dong Zhang	
Design of Control System for Tubeless Wheel Automatic Transportation Line	1243
Qiuuhua Miao, Zhiguang Guan, Dong Zhang, and Tongjun Yang	

Research on Positioning Algorithm of Indoor Mobile Robot Based on Vision/INS	1250
Tongqian Liu, Yong Zhang, Yuan Xu, Wanfeng Ma, and Jidong Feng	
Design of Smart Electricity Meter with Load Identification Function	1256
Jia Qiao, Yong Zhang, and Lei Wu	
Entropy Enhanced AHP Algorithm for Heterogeneous Communication Access Decision in Power IoT Networks	1263
Yao Wang, Yun Liang, Hui Huang, and Chunlong Li	
An Off-line Handwritten Numeral Recognition Method	1271
Yuye Zhang, Xingxiang Guo, Yuxin Li, and Shujuan Wang	
3D Point Cloud Multi-target Detection Method Based on PointNet++	1279
Jianheng Li, Bin Pan, Evgeny Cherkashin, Linke Liu, Zhenyu Sun, Manlin Zhang, and Qinqin Li	
Distance Learning System Design in Edge Network	1291
Wei Pei, Junqiang Li, Bingning Li, and Rong Zhao	
Marine Intelligent Distributed Temperature and Humidity Collection System Based on Narrow-Band IoT Architecture	1298
Congliang Hu, Huaqing Wan, and Wei Ding	
Design of Intelligent Clothes Hanger System Based on Rainfall Data Analysis	1308
Binbin Tao, Jing Zhang, Xusheng Hu, and Jingmei Wu	
Smart Shoes for Obstacle Detection	1319
Wenzhu Wu, Ning Lei, and Junquan Tang	
Research on Differential Power Analysis of Lightweight Block Cipher LED	1327
Yi Zou, Lang Li, Hui-huang Zhao, and Ge Jiao	
Research on Network Optimization and Network Security in Power Wireless Private Network	1335
Yu Chen, Kun Liu, and Ziqian Zhang	
Review and Enlightenment of the Development of British Modern Flood Risk Management System	1345
Zhi Cong Ye, Yi Chen, Jun Zhou Ma, and Hui Liu	
Research on 5G in Electric Power System	1356
Long Liu, Wei-wei Kong, Shan-yu Bi, and Guang-yu Hu	

Research on Interference of LTE Wireless Network in Electric Power System	1364
Shanyu Bi, Junyao Zhang, Weiwei Kong, Long Liu, and Pengpeng Lv	
Research on Time-Sensitive Technology in Electric Power Communication Network	1374
Yu-qing Yang	
Research on High Reliability Planning Method in Electric Wireless Network	1382
Zewei Tang and Chengzhi Jiang	
Task Allocation Method for Power Internet of Things Based on Two-Point Cooperation	1393
Jun Zhou, Yajun Shi, Qianjun Wang, Zitong Ma, and Can Zhang	
Heterogeneous Sharing Resource Allocation Algorithm in Power Grid Internet of Things Based on Cloud-Edge Collaboration	1403
Bingbing Chen, Guanru Wu, Qinghang Zhang, and Xin Tao	
A Load Balancing Container Migration Mechanism in the Edge Network	1414
Chen Xin, Dongyu Yang, Zitong Ma, Qianjun Wang, and Yang Wang	
Research on Key Agreement Security Technology Based on Power Grid Internet of Things	1423
Weidong Xia, Ping He, Yi Li, Qinghang Zhang, and Han Xu	
Design and Implementation of a Relay Transceiver with Deep Coverage in Power Wireless Network	1431
Jinshuai Wang, Xunwei Zhao, LiYu Xiang, Lingzhi Zhang, and Gaoquan Ding	
A Multi-domain Virtual Network Embedding Approach	1439
Yonghua Huo, Chunxiao Song, Yi Cao, Juntao Zheng, and Jie Min	
An Intent-Based Network Slice Orchestration Method	1447
Jie Min, Ying Wang, and Peng Yu	
Service Offloading Algorithm Based on Depth Deterministic Policy Gradient in Fog Computing Environment	1456
Biao Zou, Jian Shen, Zhenkun Huang, Sijia Zheng, Jialin Zhang, and Wei Li	
Server Deployment Algorithm for Maximizing Utilization of Network Resources Under Fog Computing	1466
Wei Du, Hongbo Sun, Heping Wang, Xiaobing Guo, and Biao Zou	

Power Data Network Resource Allocation Algorithm Based on TOPSIS Algorithm	1475
Huaxu Zhou, Meng Ye, Guanjin Huang, Yaodong Ju, Zhicheng Shao, Qing Gong, and Linna Ruan	
Application of Dynamic Management of 5G Network Slice Resource Based on Reinforcement Learning in Smart Grid	1485
Guanghuai Zhao, Mingshi Wen, Jiakai Hao, and Tianxiang Hai	
Improved Genetic Algorithm for Computation Offloading in Cloud-Edge-Terminal Collaboration Networks	1493
Dequan Wang, Ao Xiong, Boxian Liao, Chao Yang, Li Shang, Lei Jin, and Xiaolei Tian	
A Computation Offloading Scheme Based on FFA and GA for Time and Energy Consumption	1500
Jia Chen, Qiang Gao, Qian Wu, Zhiwei Huang, Long Wang, Dequan Wang, and Yifei Xing	
IoT Terminal Security Monitoring and Assessment Model Relying on Grey Relational Cluster Analysis	1507
Jiaxuan Fei, Xiangqun Wang, Xiaojian Zhang, Qigui Yao, and Jie Fan	
Research on Congestion Control Over Wireless Network with Delay Jitter and High Ber	1514
Zulong Liu, Yang Yang, Weicheng Zhao, Meng Zhang, and Ying Wang	
Reinforcement Learning Based QoS Guarantee Traffic Scheduling Algorithm for Wireless Networks	1522
Qingchuan Liu, Ao Xiong, Yimin Li, Siya Xu, Zhiyuan An, Xinjian Shu, Yan Liu, and Wencui Li	
Network Traffic Prediction Method Based on Time Series Characteristics	1533
Yonghua Huo, Chunxiao Song, Sheng Gao, Haodong Yang, Yu Yan, and Yang Yang	
E-Chain: Blockchain-Based Energy Market for Smart Cities	1542
Siwei Miao, Xiao Zhang, Kwame Omono Asamoah, Jianbin Gao, and Xia Qi	
Deep Reinforcement Learning Cloud-Edge-Terminal Computation Resource Allocation Mechanism for IoT	1550
Xinjian Shu, Lijie Wu, Xiaoyang Qin, Runhua Yang, Yangyang Wu, Dequan Wang, and Boxian Liao	
Low-Energy Edge Computing Resource Deployment Algorithm Based on Particle Swarm	1557
Jianliang Zhang, Wanli Ma, Yang Li, Honglin Xue, Min Zhao, Chao Han, and Sheng Bi	

Efficient Fog Node Resource Allocation Algorithm Based on Taboo Genetic Algorithm	1565
Yang Li, Wanli Ma, Jianliang Zhang, Jian Wu, Junwei Ma, and Xiaoyan Dang	
Network Reliability Optimization Algorithm Based on Service Priority and Load Balancing in Wireless Sensor Network.....	1574
Pengcheng Ni, Zhihao Li, Yunzhi Yang, Jiaxuan Fei, Can Cao, and Zhiyuan Ye	
5G Network Resource Migration Algorithm Based on Resource Reservation	1581
Guoliang Qiu, Guoyi Zhang, Yinian Gao, and Yujing Wen	
Virtual Network Resource Allocation Algorithm Based on Reliability in Large-Scale 5G Network Slicing Environment	1590
Xiaoqi Huang, Guoyi Zhang, Ruya Huang, and Wanshu Huang	
Resource Allocation Algorithm of Power Communication Network Based on Reliability and Historical Data Under 5G Network Slicing ..	1599
Yang Yang, Guoyi Zhang, Junhong Weng, and Xi Wang	
5G Slice Allocation Algorithm Based on Mapping Relation	1608
Qiwen Zheng, Guoyi Zhang, Minghui Ou, and Jian Bao	
High-Reliability Virtual Network Resource Allocation Algorithm Based on Service Priority in 5G Network Slicing	1617
Huicong Fan, Jianhua Zhao, Hua Shao, Shijia Zhu, and Wenxiao Li	
Design of Real-Time Vehicle Tracking System for Drones Based on ROS	1626
Yong Xu, Jiansheng Peng, Hemin Ye, Wenjian Zhong, and Qingjin Wei	
Medical Engineering and Information Systems	
Study of Cold-Resistant Anomalous Viruses Based on Dispersion Analysis	1641
Hongwei Shi, Jun Huang, Ming Sun, Yuxing Li, Wei Zhang, Rongrong Zhang, Lishen Wang, Tong Xu, and Xiumei Xue	
A Pilot Study on the Music Regulation System of Autistic Children Based on EEG	1649
Xiujin Zhu, Sixin Luo, Xianping Niu, Tao Shen, Xiangchao Meng, Mingxu Sun, and Xuqun Pei	
EEG Characteristics Extraction and Classification Based on R-CSP and PSO-SVM	1658
Xue Li, Yuliang Ma, Qizhong Zhang, and Yunyuan Gao	

Motor Imagery EEG Feature Extraction Based on Fuzzy Entropy with Wavelet Transform	1668
Tao Yang, Yuliang Ma, Ming Meng, and Qingshan She	
An Automatic White Balance Algorithm via White Eyes	1679
Yuanyong Feng, Weihao Lu, Jinrong Zhang, and Fufang Li	
Experimental Study on Mechanical Characteristics of Lower Limb Joints During Human Running	1687
Lingyan Zhao, Shi Zhang, Lingtao Yu, Kai Zhong, and Zhiguang Guan	
Study on the Gait Motion Model of Human Lower Limb Joint	1694
Lingyan Zhao, Shi Zhang, Lingtao Yu, Kai Zhong, and Guan Zhiguang	
CWAM: Analysis and Research on Operation State of Medical Gas System Based on Convolution	1702
Lida Liu, Song Liu, and Yanfeng Xu	
Yi Zhuotong Intelligent Security Management Platform for Hospital Logistics	1710
Lida Liu, Song Liu, and Fengjuan Li	
Research on Tibetan Medicine Entity Recognition and Knowledge Graph Construction	1718
Luosanggadeng, Nima Zhaxi, Renzeng Duojie, and Suonan Jiancuo	
Spatial Distribution Characteristics and Optimization Strategies of Medical Facilities in Kunming Based on POI Data	1725
Xin Shan, Jian Xu, Yunfei Du, Ruli Wang, and Haoyang Deng	
Study on the Abnormal Expression MicroRNA Network of Pancreatic Cancer	1734
Bo Zhang, Lina Pan, and HuiPing Shi	
Modeling RNA Secondary Structures Based on Stochastic Tree Adjoining Grammars	1741
Sixin Tang, Huihuang Zhao, and Jie Jiang	
Author Index	1751

Artificial Intelligence and Applications

A Unified Framework for Micro-video BackGround Music Automatic Matching

Zongzhi Chai¹, Haichao Zhang¹, Yuehua Li¹, Qianxi Yang¹,
Tianyi Li², Fan Zhang¹, and Jinpeng Chen¹✉

¹ School of Software Engineering, Beijing University of Posts
and Telecommunications, Beijing 100786, China

jpchen@bupt.edu.cn

² University of Pittsburgh, Pittsburgh, USA

til50@pitt.edu

Abstract. The current widely spread of micro-form video is undeniable. However, neither the music-orienting nor the video-orienting way to make a video can totally express the idea of the video maker because of the fixed music types and the cost of time to find a proper music. Based on the deep learning method, this paper studies the automatic matching algorithm of background music for micro-videos which analyzes the background information and the emotions of characters in micro-videos and establishes the model to select the proper background music according to the video contents. Experiments are carried out on the database obtained from TikTok and the result shows that the current Micro-Video Background Music Automatic Matching model in this paper is effective.

Keywords: Micro-video · Deep learning · Video feature extraction · Chorus intercepting · Background music matching

1 Introduction

In recent years, with the popularity of the global mobile Internet and the development of network technology, micro videos have become a part of daily life for many people. More and more people are trying to make micro videos. But the traditional way of making micro videos with fixed music, limits this trend. In the current market, innovations in short video production and video filtering processing are imminent. Therefore, we have studied a method based on video content to add suitable background music to fill the gap in the current market demand. In this article, we propose a MVBGMAMA method to solve the above problems, and automatically select and match the appropriate background music based on the scene settings and character emotions in the short video. When analyzing the characteristics of the video, we can analyze the key frames of the video, and then use the scene recognition technology of pictures and facial expression recognition technology to label the scenes and emotional

Z. Chai and H. Zhang—These authors contributed to the work equally and should be regarded as co-first authors.

tags of the video. Specifically, we first learn a mapping function (V2T) from video to text labels to fully extract the features of the video. By jointly minimizing the reconstruction error and the classification loss, these two features are merged in a supervised manner to arrive at a final label. The obtained tags are then matched with the music tags to select one or more pieces of music that match the video content. When adding background music, we automatically analyze the matching background music and intercept the chorus part of the music.

2 Related Work

2.1 Neural Network Model

In recent years, the development of CNN significantly facilitates the procedure and the implementation of image scene recognition [1, 2]. Currently, the design-related thoughts of CNN model basically develop towards the direction of deep network and more convolution calculation [3]. Residual Network Model (Resnet) has also achieved high accuracy in face recognition and scene recognition problem [3]. There is no obvious improvement in the accuracy of FER in the process of completely removing the full connection layer of the Xception model [4] and the process of depth wise separable solutions based on it. As for scene recognition, Bolei Zhou et al. have created great progress and effects on places data set [5]. AlexNet [1], GoogLeNet [6], VGG [7] and other models are used to verify, and the average accuracy of top-5 is 85.07% [5].

2.2 Music Chorus Interception

The duration of microform videos is generally limited within 15–20 s, but a song is normally about 3 min, and therefore music intercepting is required. There are two available methods to solve it: the first one relies on manual annotation; the second one uses big data of user’s preference.

The advantage of the manual annotation is accurate and simple, yet it fails to label a large number of songs in a mass amount. So, there is limited music available for download at present in any music platforms which depends on this method. Another method is based on the big data of the user’s playing preferences. According to statistics, a large number of users will choose to repeatedly play in the chorus part, or even directly switch to the chorus part. Through the observation of user behaviors, this method can analyze where the chorus begins, but this method requires adequate user data, and it is not possible to identify the less popular song chorus part.

3 Proposed Framework

As shown in Fig. 1, emotions and background information of the characters from the micro-videos are generated, all of which constitute the basic information of the video.

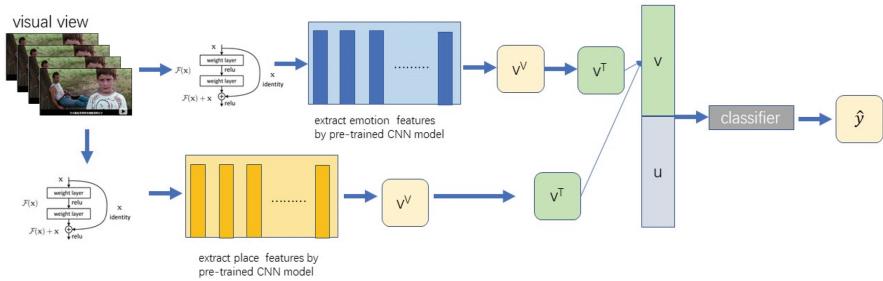


Fig. 1. An example of micro-video on TikTok.

3.1 Facial Expression Recognition

Among the seven facial expression features [8], happy, sad and angry are the three most distinguishable emotional features. In MVBGMAMA, the recognition accuracy of the above three facial expressions should be comparatively high. Our model transforms the input image layer by layer into a smaller but deeper feature map. With the increasing network depth, what this model identifies can be more complex.

According to the facial expression recognition model, the algorithm selects the keyframe expression features and processes the keyframe expression information to get the final video facial expression features.

3.2 Scene Identification

For this research topic, the scene information of the video is an important factor that affects the background music, so the training pictures that need to be selected for the public data set must contain the scene information. So we chose MIT's Places365-Standard data set [5] as the scene training data set, a total of 365 labeled diversified concept scenes. The analysis based on the above data, combined with diversified means to extract corresponding features, can achieve the purpose of training a linear support vector machine (SVM) classifier.

3.3 Intercepting Chorus of the Music

Chorus Identification. Following the experience, the chorus of a song is often repeated several times in the song. Despite different lyrics, the melody maintains basically the same, and the length of the chorus is also stable. Therefore, this characteristic is the criterion for determining the chorus of the algorithm. The reliability of the algorithm depends to a large extent on the correct determination of non-chorus.

Comparison. The FFT transform is applied to transform the original time-domain waveform to the frequency domain, after which a spectrum is obtained. The conversion method is as follows:

$$X(k) = \sum_n^{N-1} x(n) W_N^{nk} \cdots k = 0, 1, 2 \dots N-1 \quad (1)$$

The spectrum chart is three-dimensional, where X coordinate is time, Y coordinate is frequency, and Z coordinate is energy; then a series of maximum points are obtained from the spectrum chart, before the list of landmarks is obtained, and then the landmarks of the two music segments are compared one by one. The landmark is constructed as follows:

$$L = \text{MAX}(|X(k)|)^T \quad (2)$$

It is because the part of the chorus signal holds high energy, that energy works as also the most important evaluation standard. In the process, the larger the difference, the higher the score. This process is divided into X_1 .

At the same time, the position, duration, and interval between repetitions of chorus are stable. Suppose the chorus appears in the $T_i - T_{i+1}$ time period with the probability of P_i , and appears in the duration of T_i with the probability of P_j , and will appear again after the duration of T_k with the probability of P_k (P_i, P_j, T_i, T_{i+1} , and T_k are counted Method), then if the start and end time of the possible chorus paragraph is between T_i and T_{i+1} , the duration is close to T_j , and the interval is close to the interval with the highest probability, then it is more likely to be the chorus of the song. Therefore, this item can also be used as a measurement scoring standard.

If the process score is x_2 , then

$$x_2 = P_i * P_j * P_k \left(1 - \frac{|t_1 - T_j|}{T_j} \right) \left(1 - \frac{|t_2 - T_k|}{T_k} \right) \quad (3)$$

where t_1 is the duration of the possible chorus, and t_2 is the interval between possible choruses.

Overall score is:

$$\text{Mark} = w_1 * X_1 + w_2 * X_2 \quad (4)$$

w_1 is the score weight of X_1 , w_2 is the score weight of X_2 . This weight is assigned as the weight corresponding to the better test result in the experimental test.

3.4 Matching

The algorithm cuts out several frames of the video and performs facial expression recognition and scene recognition on these frames. After receiving facial expression labels, the algorithm will select the most frequent facial expression labels in all frames as the facial expression information of the video; for these scene information labels; the algorithm will select the scene labels with the highest accuracy as the information of the video according to the recognition accuracy of the scene labels.

The current research applies multiple classification logistic regression to classify facial expression tags and background tags. The classification result is one of the 11

preset video features: work, classic, driving, pub, traveling, morning, walking, afternoon tea, studying, night, work-out.

With the final classification of video, the music with the same label can be identified in the music set according to the classification label, and complete the work of matching background music according to the video features.

4 Experiments

4.1 Dataset

Facial Expression and Scene Recognition: CK+ [9] dataset includes 123 subjects and 593 image sequences. Places365 is a subset of Places2, with 1.8 million images per month from 365 scene categories.

Music Dataset. Using web crawler technology, 1133 songs with top popularity and free downloads are crawled from domestic platforms. There are 1056 complete documents and label attributes.

4.2 Evaluation Scheme

Facial Expression and Scene Recognition. In the experiment, CK+ dataset and Places dataset are randomly divided into the training set, verification set, and test set, and each kind of training set, verification set and test set is distributed in a partition as 8:1:1.

4.3 Baselines

This paper applies a series of classification algorithms to our model to predict the categories of facial expression tags and scene tags extracted from the video, to generate the final video features. Therefore, it forms several different models according to the classification algorithm. As shown below: MVBGMAMA multiple classification logistic regression, MVBGMAMA -Naive Bayesian, MVBGMAMA -SVM, verify the accuracy of our MVBGMAMA model for the classification of facial expression tags and scene tags extracted from video.

4.4 Parameter Settings

Neural Network. This paper takes Resnet as a reference and remains its full connection layer. ResNet50 is selected for its proper depth, to optimize the performance of Resnet50, we use the idea proposed in Aggregated Residual Transformations, which changes some hyper-parameters on the basis of ResNet-50 and gets better performance in image feature extracting.

4.5 Results and Analysis

Face Expression Recognition. For the CK+ [9] expression dataset, 327 sequence pictures with expression labels were selected as the expression dataset.

The accuracy of the training model has reached 66.24%. The recognition accuracy of happiness, anger, and sadness has reached 68.65% on average (the recognition accuracy of happiness has reached 87%), which can be used to obtain the facial expressions of video characters.

Scene Recognition. The results of taking Place365 data set as the training set and test set are shown in Table 1. This paper uses the class score averaged over 10-crops of each testing image to classify. Here it also fine-tunes the ResNet on Places365-standard, for 10 crop average it has 85.08% on the validation set and 85.07% on the test set for top-5 accuracy.

Table 1. Places365 dataset's performance in each model.

	Validation set of Places365		Test set of Places365	
	Top-1 acc.	Top-5 acc.	Top-1 acc.	Top-5 acc.
GoogleNet	53.63%	83.88%	53.59%	84.01%
VGG-16	55.24%	84.91%	55.19%	85.01%
ResNet50	54.74%	85.08%	54.65%	85.07%

Editing of Chorus' Climax. In this paper, 1056 pieces of music were re-identified, including 500 pieces of choruses and 556 pieces of non-choruses. The actual outcome is shown in Table 2.

The comprehensive accuracy rate is 77.65%, and the recall rate of the counter example is 79.6%. Therefore, it is reasonable to say that the method is effective.

Table 2. Identification of chorus parts of several music clips.

		Predicted value		
		Chorus	Non-chorus	Total
Actual value	Chorus	377	123	500
	Non-chorus	113	443	556
	Total	450	566	1056

Matching. The current study divides the video features into 11 categories. Each video can generate facial expression labels and scene labels through the model. It has conducted experiment to three classifiers with the above 80% data set, and detect the classification accuracy with 20% data set.