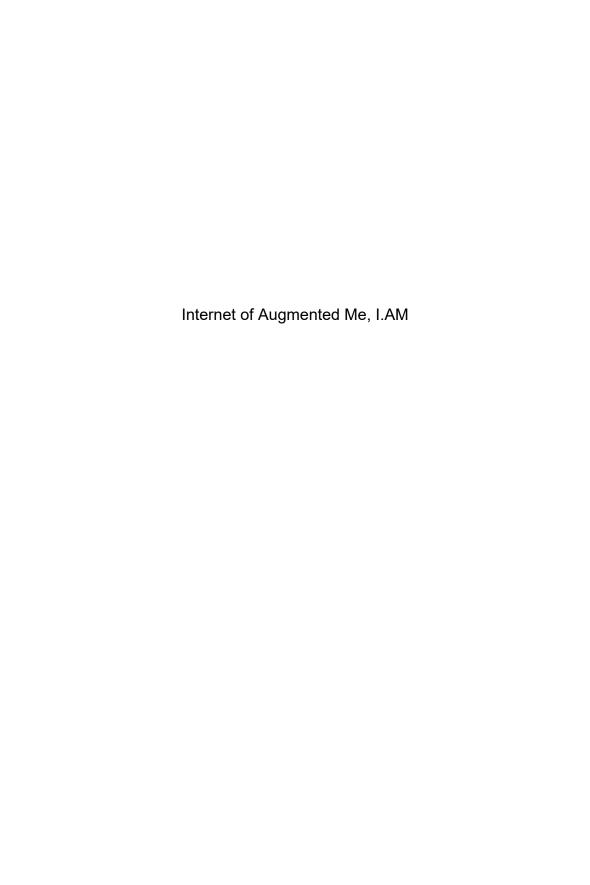
COMPUTER ENGINEERING SERIES


Internet of Augmented Me, I.AM

Empowering Innovation for a New Sustainable Future

Patrick Duvaut, Xavier Dalloz David Menga, François Koehl Vidal Chriqui and Joerg Brill

WILEY

Internet of Augmented Me, I.AM

Empowering Innovation for a New Sustainable Future

Patrick Duvaut Xavier Dalloz David Menga François Koehl Vidal Chriqui Joerg Brill

WILEY

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd 27-37 St George's Road London SW19 4EU UK

111 River Street Hoboken, NJ 07030 USA

John Wiley & Sons, Inc.

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2020

The rights of Patrick Duvaut, Xavier Dalloz, David Menga, François Koehl, Vidal Chriqui and Joerg Brill to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020941142

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-508-4

Contents

Forewords	xi
Introduction	XV
About the Authors	xvii
Acknowledgements	xix
Chapter 1. With the Internet of Augmented Me, a New Wave of Innovation is Coming, Which Will Change Everything	1
1.1. The Internet of Augmented Me: new technologies,	
new jobs, new business	1
1.2. Characteristics of the Internet of Augmented Me	7
1.2.1. Building trust and autonomy	8
1.2.2. The digital twin	11
1.2.3. The interaction with objects, ATAWAD	
(AnyTime, AnyWhere, Any Device)	12
1.2.4. Massive decentralization of everything	13
1.2.5. Unimedia and open marketing	13
1.2.6. The robot coach	15
1.2.7. The unification of communities	18
1.2.8. Anonymous personalization	19
1.3. Towards business platforms and subscriptions	19
1.4. Examples of business sectors that will be impacted by I.AM	20
1.5. Business model of the Internet of Augmented Me	24
1.5.1. Reminder of the definition of a business model	24
1.5.2. Main features of the business model of I.AM	25

1.5.3. Customer segmentation	29
	29
1.5.5. Distribution channels of supply, products and services	29
1.5.6. Customer adherence to company values and brand	30
	30
r r	31
r Jr	31
1.5.10. Business cost structure	32
	32
1 3	34
1.0. Glossary	J -
Chapter 2. The Patterns of the Internet of Augmented Me	37
2.1. Why patterns?	37
J r	38
	38
· · · · · · · · · · · · · · · · · · ·	39
	43
ϵ	43
	43
· · · · · · · · · · · · · · · · · · ·	44
=10 =1 = 222 00 200 202 1 1 1 1 1 1 1 1 1 1 1 1	45
	46
5 · · · · · · · · · · · · · · · · · · ·	46
· · · · · · · · · · · · · · · · · · ·	47
	., 47
	48
	48
r	48
	50
2.6. Virtualization of everything, the era of digital twins.	50
	50
1	51
	52
\mathcal{C}	52
65 11	52
1	53
	54
	54
T	54
· · · · · · · · · · · · · · · · · · ·	55
	61

2.9. BOTization of Everything, "Build to Order for M	e"
2.9.1. The problem	
2.9.2. The solution	(
2.9.3. Customer advantages	
2.10. Decentralization of everything	(
2.10.1. The problem	
2.10.2. The solution	
2.10.3. Consumer advantages	
2.11. Automation of everything	
2.11.1. The problem	(
2.11.2. The solution	
2.11.3. Consumer advantages	
2.12. Patterns are linked together, they are design con	
the Internet of Augmented Me	
Chapter 3. Edge Computing for Processing and	Connectivity in the
World of Internet of Augmented Me	
3.1. Edge computing	
3.1.1. Summary	
3.1.2. Edge computing is a fundamental	
non-visible part of online services	,
3.1.3. From the past to now, edge computing is a	• • • • • • • • • • • • •
natural evolution	, , , , , , , , , , , , , , , , , , , ,
3.1.4. Do you need a killer service to demonstrate e	
computing's reality and benefits?	
3.1.5. Purpose of this chapter	
3.2.1. Edge of what?	· · · · · · · · · · · · · · · · · · ·
3.2.2. Is it a set of isolated local devices connected	
3.3. Why is edge computing so important?	to the cloud?
What are the main benefits?	
3.3.1. Seamless in mobility situations	
3.3.2. Best reaction as quickly as possible, in real times	
3.3.3. Crucial component in privacy protection	
3.3.4. Scalability to address volume and usage conti	inuity
3.4. Edge computing, a question of architecture and	,
implementation models	
3.4.1. Implementation models introduction	
3.4.2. Fog computing model	
3.4.3. Cloudlet model	
3.4.4. Mobile edge computing model	

3.5. Edge computing, major technical concerns	89
3.5.1. Networks	89
3.5.2. Security	90
3.5.3. Energy management	91
3.5.4. Combining technologies to react at the right speed	92
3.5.5. Artificial intelligence integration	93
3.5.6. Software development practices	94
3.6. What about usages?	95
3.6.1. Smartphones	96
3.6.2. Internet of Things (IoT)	97
3.6.3. Mobility: autonomous cars and vehicles	98
3.6.4. Smart building, Smart city, Smart home means	
Smart everything	100
3.6.5. Industry	102
3.7. Takeaways	103
3.7.1. Main definitions	103
3.7.2. Edge computing key performance indicators (KPIs)	107
3.7.3. Edge computing – main figures	109
3.8. Glossary	110
Chapter 4. Blockchain for New Flows of Value and	
the Empowerment of Me	113
4.1. Introduction	113
4.1.1. Bitcoin, the mother of blockchains	113
4.1.2. The consequences of Bitcoin or the Internet of Value	114
4.1.3. From Bitcoin to blockchain(s)	115
4.2. The six characteristics of blockchains	116
4.2.1. Identification	117
4.2.2. Money	117
4.2.3. Proof	117
4.2.4. Autonomy	117
4.2.5. Contract	118
4.2.6. Traceability	118
4.3. The empowerments of ME	118
4.3.1. The Decentralized Finance (DeFi)	
movement – financial empowerment	118
4.3.2. Decentralized computing	127
4.3.3. Energy	128
4.3.4. Booking services	130
4.4. Glossary	133

	135
5.1. Formation of a systematic approach to implement	
digitalization in production	135
5.1.1. Organizational foundation	135
5.1.2. Selection of digital initiatives	136
5.1.3. Implementation of digital initiatives	137
5.1.4. Selected digital initiatives	137
5.2. Digital planning and controlling of production	137
5.2.1. Digital planning preparation	139
5.2.2. Digital production planning execution	141
5.2.3. Digital controlling of production	144
5.3. Robotics	146
5.3.1. Pin milling robot for Jo bolt rivets	147
5.4. Virtual and augmented reality use cases	150
5.4.1. Digital work order	151
5.4.2. Remote assistance	153
5.4.3. Virtual reality for inspection	154
5.4.4. Augmented reality (AR) for harness manufacturing	156
5.4.5. Augmented reality (AR) for assembly	157
5.5. Glossary and acronyms	161
Chapter 6. The "AugmentChain": Sustainable Augmentation Value Chain for Intangible Assets	163
6.1. Are intangible assets the 21st Century's key value drivers?	163
6.2. What are intangible asset value locks?	
0.2. What are intaligible asset value locks!	165
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to	165 166
6.3. Can blockchain unleash the full value of intangible assets?	
6.3. Can blockchain unleash the full value of intangible assets?6.3.1. Blockchain: the "trust machine" to	166 166 167
6.3. Can blockchain unleash the full value of intangible assets?6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility	166 166
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility	166 166 167
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility	166 166 167
 6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human–machine trust protocol 6.3.3. EOS, a path to solve some systemic blockchain issues 6.3.4. In spite of massive R&D worldwide and an explosion in 	166 166 167
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human—machine trust protocol 6.3.3. EOS, a path to solve some systemic blockchain issues. 6.3.4. In spite of massive R&D worldwide and an explosion in use-cases, blockchain is still – after 10 years of existence – Tech4Geeks4Speculation! 6.3.5. Towards GreenTouch4Good and a sustainable digital:	166 166 167 169
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human–machine trust protocol. 6.3.3. EOS, a path to solve some systemic blockchain issues. 6.3.4. In spite of massive R&D worldwide and an explosion in use-cases, blockchain is still – after 10 years of existence – Tech4Geeks4Speculation! 6.3.5. Towards GreenTouch4Good and a sustainable digital: the "Internet of Augmented Me, I.AM"!	166 166 167 169
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human–machine trust protocol. 6.3.3. EOS, a path to solve some systemic blockchain issues. 6.3.4. In spite of massive R&D worldwide and an explosion in use-cases, blockchain is still – after 10 years of existence – Tech4Geeks4Speculation! 6.3.5. Towards GreenTouch4Good and a sustainable digital: the "Internet of Augmented Me, I.AM"!	166 166 167 169
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human–machine trust protocol. 6.3.3. EOS, a path to solve some systemic blockchain issues. 6.3.4. In spite of massive R&D worldwide and an explosion in use-cases, blockchain is still – after 10 years of existence – Tech4Geeks4Speculation! 6.3.5. Towards GreenTouch4Good and a sustainable digital: the "Internet of Augmented Me, I.AM"! 6.3.6. Emergence of "empowerment driven" blockchain protocols and usage	166 167 169 170 170
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human–machine trust protocol. 6.3.3. EOS, a path to solve some systemic blockchain issues. 6.3.4. In spite of massive R&D worldwide and an explosion in use-cases, blockchain is still – after 10 years of existence – Tech4Geeks4Speculation! 6.3.5. Towards GreenTouch4Good and a sustainable digital: the "Internet of Augmented Me, I.AM"!	166 167 169 170 170 171 172
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human—machine trust protocol 6.3.3. EOS, a path to solve some systemic blockchain issues. 6.3.4. In spite of massive R&D worldwide and an explosion in use-cases, blockchain is still – after 10 years of existence – Tech4Geeks4Speculation! 6.3.5. Towards GreenTouch4Good and a sustainable digital: the "Internet of Augmented Me, I.AM"! 6.3.6. Emergence of "empowerment driven" blockchain protocols and usage 6.3.7. Blockchain map. 6.4. What is the intangible asset AugmentChain?	166 167 169 170 170
6.3. Can blockchain unleash the full value of intangible assets? 6.3.1. Blockchain: the "trust machine" to neutralize human corruptibility. 6.3.2. A hybrid human–machine trust protocol 6.3.3. EOS, a path to solve some systemic blockchain issues. 6.3.4. In spite of massive R&D worldwide and an explosion in use-cases, blockchain is still – after 10 years of existence – Tech4Geeks4Speculation! 6.3.5. Towards GreenTouch4Good and a sustainable digital: the "Internet of Augmented Me, I.AM"! 6.3.6. Emergence of "empowerment driven" blockchain protocols and usage 6.3.7. Blockchain map.	166 167 169 170 170 171 172

x Internet of Augmented Me, I.AM

6.4.2. The AugmentChain is propelled by	
three "pyramidal" engines	175
6.4.3. The outcome pyramidal engine	176
6.4.4. The AugmentChain enabler's pyramidal engine	179
6.4.5. The AugmentChain catalyst's pyramidal engine	191
6.5. Conclusion and takeaways	199
6.6. List of acronyms	200
References	203
Index	205

Forewords

Gary Shapiro, President and CEO, Consumer Technology Association (CTA), USA

Thanks to the rise of tech-friendly leaders and initiatives such as La French Tech, French innovation is making its mark on the world. Each year at CES® – the world's largest, most influential technology event – I'm blown away by the creativity and sheer style of the innovations that French companies exhibit. And I'm increasingly impressed by the steps France has taken to promote a strong tech ecosystem – whether it's permitting companies to test self-driving vehicles on the nation's roads and highways or creating a work visa designed to attract top tech talent from around the globe.

This book exemplifies the growth of French innovation we've seen in recent years. At the center lies what the authors call "the Internet of Augmented Me" – a phrase that summarizes the complex relationship between human choice, digital solutions and environmental factors that will drive our future. I'm excited to see what will happen in the world of French innovation over the course of this decade.

As sister democracies, committed to personal liberty and self-determination, the United States and France share a long and proud history. We must remember this history as the pace of technological and political change continues to increase. Isolationism is not rational in a world where people can share ideas, information and stories with a few swipes, taps and tweets. By recommitting ourselves to our nations' ideals,

we can create a global tech ecosystem where everyone – regardless of where they come from or how they identify – can grow and thrive.

The authors bring together a remarkable array of ideas and examples – giving you an image of what the future can and should be. This book is a great way to kick off the 2020s – a decade that, as these pages show, is full of possibilities and opportunities to make our world a safer, stronger and more sustainable place.

André Joffre, President, FNBP (National Federation of Banques Populaires) and Michel Roux, General Director, FNBP, FRANCE

It is a great honor that the authors wanted Banques Populaire to preface this book. Banques Populaire is the fruit of a humanist movement that pushed, at the end of the 19th Century, small artisans and traders to pool their savings to come to the aid of those of them who could not have access to credit, then reserved by traditional banks only for large industry.

The French spirit likes to question established orders and Banques Populaire has been nourished by this audacity of transgression, of a form of protest cooperation, which pushes to innovate and to undertake. It also made the choice of cooperative status to exercise its activity because it highlights relational, geographic proximity and long-term vision. Thus, year after year, it reserves more than 85% of its results, thus creating a new form of mutualization through three means of solidarity: intergenerational, intersectoral and inter-territorial.

We find this same spirit in the Internet of Augmented Me (I.AM). It places the human at the heart and it consecrates the advent of the convergence of digital, ecological, environmental, societal, educational, ethical, economic, industrial transitions and health.

I.AM lays the foundation for new industrial, societal and economic models from the Covid-19 era

The authors also outline the ways for a new era for France, which must be fully aware of its very great capacity:

- to foster new creations of values that increase and protect humans;
- to build the elements of trust essential to the creation of transversalities and allowing joint work;

– to reinvent a lot of our daily lives for a better world.

Creativity and innovation are part of the solutions and France is sitting on a heap of gold.

Thanks go to I.AM for reminding us!

Pascal Faure, Director, INPI (National Institute of Intellectual Property), FRANCE

The world has never changed so fast! Across the planet, the 20th Century saw the birth of a very new way of life, in a context of extraordinary and increasingly globalized innovation in every sector.

France, which was ranked second-most innovative European country in 2019 by the European Patent Office and Europe in general, has substantially contributed to the change, driven by two factors. First, a strong industry in many important fields such as transport, space, energy, telecommunications and chemistry. Second, a tremendous display of skill and success in the new technology sector, especially digital and biotech, proudly vindicated by France today with the massive mobilization of people and resources around what has become the so-called "Start-up Nation" and, more generally speaking, "French Tech".

Such rapid progress on an unprecedented scale has raised new issues of unparalleled complexity. We are at the dawn of a century that holds great promise but also carries enormous risks if we are not able to contain the technological race within a humanist perspective.

We are faced with new expectations – technological, environmental, societal and ethical – and new constraints, which cannot be dealt with separately but must be addressed in an overall approach.

In the forthcoming decades, humanity must take up challenges that are immense and perhaps even existential. Only the structured acquisition and convergence of knowledge will enable humanity to control its future.

Our thanks go to the authors who have shared their reflections on these essential topics. They rightly stress the need to trust in new pathways to adopt the decentralization and collaborative approaches required for our increasingly complex economies. Ultimately, they remind us of an obvious

but often hidden truth: intangible assets have become the necessary basis of our evolving world.

Wai Keung Eric Leung, Vice President, Innopark Shenzhen, Founder and COO, Shenzhen XY Interactive Technology, CHINA

The masterpiece I.AM tackles the challenges of redefining growth in the era of innovation and showcasing of the realization of digital value.

The insight gained as a result of the I.AM has underlined the genuine digital value by emphasizing the importance of decentralization, the major role of Blockchain technology, as a whole.

This includes the augmentation of the digital entanglement (the visible inside of the invisible), with I.AM representing the digital "à la carte" guide and the architecture of the future mirror world. Government and industrial leaders, etc. shall act together in an artistic manner with the great predictive intelligence.

Prof. N.K. Goyal, President, CMAI Association of INDIA, Chairman Emeritus, TEMA, INDIA

I am very happy to see this book!

Compliments to the six co-authors, this is a most wonderful, enlightening and updated book on the subject. The digital world has changed the way we live and work. Everything is going towards Digital. Increasingly, it looks like humans will become irrelevant and technology will take over everything in human life. This has brought in related issues of data privacy and security and cyber diplomacy. There is technology greed over human aspirations, relations and respectability.

I am sure that this book will be a revelation for stakeholders and will help in framing appropriate policies for Digital economy in the world.

Introduction

We are at the dawn of a new era, the "Internet of Augmented Me", I.AM.

I.AM catalyzes the "convergence for good" of three worlds – the biological, the physical and the digital, helping us to better tackle the toughest challenges of the 2020s: climate change, resource depletion, an aging population, social inclusion, the empowerment of people and World health crises, such as COVID-19.

People expect to be ethically augmented and cured in a trustworthy manner, while having the final say, giving a genuine sense to their life on a sustainable planet.

As Bill Gates puts it, "Technology is unlocking the innate compassion we have for our fellow human beings."

This is exactly what I.AM deals with. Gary Shapiro, President and CEO of the Consumer Technology Association (CTA) inspired I.AM. The six co-authors are from very diverse backgrounds – industry (Airbus, EDF), start-ups (BTU), consulting (Tasmane), academia (IMT France) and non-profit organizations (Mission CES France) – and they present, in a sharp and comprehensive manner, every angle of I.AM: humans, society, ethics, trust, economics, opportunities, technology, industry and so on.

This book dives into disruptive concepts of I.AM, such as: Trust as a Service, Business as a Game, ATAWAD (AnyTime, AnyWhere, Any Device), Productivity of Collaborative Exchange (PCE), Unimedia, Shazamization of everything, decentralization of everything, BOTization and

Build to Order for Me, Blockchain and Empowerment of Me, edge computing, augmented industry, augmentation value chain and Empowering Innovation, etc.

The fluid, easy-to-read style of this book targets the broadest scope of readers, from purpose-driven and business-oriented individuals, to students, researchers, experts, innovators, consultants, managers and politicians, all eager to empower people to work towards a more sustainable future.

Enjoy reading it!
June 2020

About the Authors

Patrick Duvaut (Book's initiator and coordinator, Chapter 6)

Patrick has more than 20 years of international experience (USA, Japan, India, China, and France) as Head of Innovation for large companies, public organizations and start-ups worldwide with core business in telecommunications and digital. Patrick has written four books and more than 200 papers. He owns 70 USPTO patents and three international standards. He is currently involved in frugal, scalable and sustainable blockchain and AI to tackle 21st Century challenges (world health crises such as Covid-19, aging population, social inclusion, people empowerment, resource depletion and climate change). Patrick graduated from École Normale Supérieure, France (MS in Physics and PhD in Statistics) and MIT-USA (Post-Doc in Statistics). He is currently Head of Innovation at IMT France.

Xavier Dalloz (Chapter 1)

Xavier has headed the consulting firm Xavier Dalloz Consulting (XDC) since 1993. For more than 30 years, Xavier has performed strategic consulting activities on the use of new technologies in businesses for competitive advantages. Xavier works for some of the largest French companies such as Renault, Air France, Louis Vuitton, L'Oréal, Allianz, La Poste, EDF, ENGIE, BNP Paribas, etc. Since April 1995, Xavier has written a report (40 pages) every month on the same analysis grid. In this report, Xavier analyzes the main issues of "digital" innovations.

David Menga (Chapter 2)

David is a research engineer at EDF Lab Paris-Saclay. He is interested in the design of services for smart homes and smart buildings. He is an expert in embedded systems, AI and blockchain. He has been participating in the CES for 16 years and is familiar with the world of high tech. David organizes seminars at the École Polytechnique on the impact of technologies in everyday life. With Professor Nobuo Saito of Keio University, he has co-edited a book entitled *Ecological Design of Smart Home Networks: Technologies, Social Impact and Sustainability*.

François Koehl (Chapter 3)

After several years in IT services, François created and developed a strategy and management consulting firm over 17 years before integrating it into one of the large French audit firms, Mazars. After the end of the integration phase, François joined Tasmane in 2019 to focus on "strategies in a digital world". He gives advice to CEOs and CIOs of middle size companies and large groups on their challenges regarding transformation, digitalization, innovations and change of business models.

Vidal Chriqui (Chapter 4)

Passionate about Bitcoin since 2011, Vidal is the inventor of BTU Protocol, the first peer-to-peer booking and transaction protocol. BTU Protocol empowers businesses to engage directly with consumers, thus allowing them to take back control of their physical and digital distribution. Vidal is sharing his passion for decentralization and tokenomics as a regular speaker but also as an academic teacher and startup advisor.

Joerg Brill (Chapter 5)

Within his role as Head of Plants and AIT Spacecraft at Airbus Defence and Space, Joerg Brill is responsible for the Pre-FALs, aero- and space structures production and MAIT (Manufacturing, Assembly, Integration, and Test) of space systems. In addition, he is in charge of performance and improvement for the overall production for Airbus Defence and Space, spread over 13 sites in five countries. Joerg holds a Master's Degree in Aeronautical Engineering from the Technical University of Munich.

Acknowledgements

The authors are particularly grateful to the following individuals who made very valuable contributions to the book: Vincent Bastien, Ruben Carvajal, Valentin Dillenschneider, François Pistre.

With the Internet of Augmented Me, a New Wave of Innovation is Coming, Which Will Change Everything

"We always overestimate the change that will occur in the next two years and underestimate the change that will occur in the next ten.

Don't let yourself be lulled into inaction."

Bill Gates

1.1. The Internet of Augmented Me: new technologies, new jobs, new business

The IoT (Internet of Things) universe is exploding. Just look around and see the smart gadgets, clothing, cameras and virtual assistants that populate homes and are carried by people on their travels. The number of IoT devices connected to broadband networks is already significant, but it is far from having reached its maximum.

According to the main forecasts, 22 billion devices will be connected to the Internet by 2025, which is three times their number today.

For companies, the goal is to get a competitive advantage using these objects with the network effect: increasing the number of people or participants who are exposed to the objects or service can increase the value of the company, goods or services.

The explosion of this market has a very positive side as it will provide consumers with new services and commodities. However, it will also bring new business models, as well as a new complexity and security risks, which could prove to be devastating for millions of people who will, increasingly, rely on digital services and networks in their daily lives.

In this context, all connected objects must have their own digital representations, i.e. *digital twins*, with the following properties:

- unicity of identification of each object:
- the possibility of identifying each object is a fundamental notion of the IoT. Each object should own and know its identity in order to evolve in the network.
 - each object should be a *legal actor* in its own right,
 - the assignment of identifiers should be programmable;
 - suitability for its environment and its context of use:
- an object must be able to report its status and communicate data collected about its environment: temperature, humidity, vibration level, noise or geolocation;
 - this new infrastructure should be *proactive*, *seamless and "scalable"*:
- objects must be permanently connected to the Internet, if possible, or at least when a connection is available,
- TaaS (*Trust as a Service*) is at the heart of this infrastructure. *The Internet will be a trusted third party*;
- the digital twin of an object must combine its real and virtual aspects (be "phygital"). The aim is to have the best aspects from each space to create a much more complete and satisfying customer experience:
- a twin is constructed so that it can receive input from sensors, gathering data from a real world counterpart. This allows the twin to simulate the physical object in real time, and, in the process, to offer insights into performance and potential problems,
- a twin embodies the possibility for a program to act on behalf of a physical object to which it is attached and of which it is perfectly aware,

- a twin should evolve with each transaction,
- twins will be integrated in a "smart wallet", i.e., a software application that serves as an electronic version of a physical wallet;
 - autonomy based on a decentralization of everything:
 - objects will behave like robots,
- objects are treated individually from an isolated point and are operated independently of a remote control,
- there must be no central intelligence controlling the totality of individual objects in a totalitarian way. On the contrary, each object is in some way autonomous and independent, with the ability to be interrogated and to interact with other network objects when necessary. In short, objects in the IoT should be independent and communicating agents (in the sense of AI and operating systems).

The Internet of Augmented Me (I.AM) is necessary for the business model of the IoT. The characteristics are perfectly described with the following Chinese proverb:

- Tell me and I'll forget. This is at the heart of mass marketing.
- Show me and I'll remember. This is at the heart of segmented marketing.
- Involve me and I'll understand. This is at the heart of the business model of the IoT. Every customer is a market. The dialogue between the companies and their clients becomes real, and ethics are at the heart of the winning business models. The companies cannot lie anymore.

With the Internet of Augmented Me, the complexity of devices plays a secondary role because users work with their own digital assistants for all their daily tasks, which cover both the physical and digital worlds.

So hyper-personalization and citizen/consumer involvement are at the heart of the Internet of Augmented Me business model. The answer to the hidden expectations of the consumer citizen is at the center of value creation (contextual marketing). In this context, there will be a massive decentralization of collaboration between citizens/consumers, the AI environment (enhanced intelligence) and secure transactions with the blockchain to facilitate this involvement and training just in time.