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Preface

The transformation of energy systems is the central part of Germany’s High-Tech
Strategy 2025. In the near future, a successful transformation guarantees a secure,
economical, and environmentally compatible energy supply. A key aspect in the
transition of energy systems is to enable green technologies and expand the range of
renewable energies at the expense of fossil fuels. New storage concepts and
intelligent energy networks are central hardware components also required in a
transformed energy system. Alongside the expansion of renewable energy sources,
a significant increase in energy efficiency as well as stability and resilience are
further challenges.

Research and innovation are drivers of progress and in particular applied
mathematics has been used in the past as methods-based, cross-sectional science
that may enable novel results for sustainable and climate-friendly solutions also in
the realm of energy systems. Aim of this book is, therefore, to show the relevance
of mathematics in innovation by means of introducing a successful cooperation
with industrial partners of the energy sector in order to show the wide range of
applications. In many of the discussed problems, the use of modern mathematics in
modeling, simulation, and optimization is shown to be a crucial factor for success.
Besides novel approaches, the present book also shows the variety of mathematical
techniques and disciplines involved in these activities. The selected scientific pre-
sentations highlight cooperation projects between mathematics and industry as a
two-way transfer of technology and knowledge, providing the industry with
applicable solutions and providing mathematics with novel research topics and
inspiring new methodologies.

The starting point for this Springer publication was the KoMSO e.V. workshop
on “Mathematical Modeling of Energy Systems” in March 2019 at the University of
Mannheim. Partners from industry, universities, and research institutes discussed
expected challenges and presented their new concepts for reliable energy predic-
tions. We also acknowledged support by the Federal Ministry of Education and
Research (BMBF) within the program “Mathematics for Innovations”
(https://math4innovation.de).
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The diversity of collaborations between mathematics and industry for different
energy-related and economic applications is portrayed in the broad scope of topics
discussed in this book, ranging from multi-energy systems to energy market
models. These facets are presented in three chapters which are called Economic
Aspects, Technical Applications, and Energy Networks. All contributions
address the advancement of novel mathematical models, modern efficient numerical
methods for simulation and optimization arising in energy systems and manage-
ment, as well as the demands for future development of science and technology in
the field of energy research.

Mannheim, Germany Simone Göttlich
Aachen, Germany Michael Herty
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About KoMSO e.V.

KoMSO is the Committee for Mathematical Modeling, Simulation, and
Optimization. It acts as a Germany-wide network of scientists from the field of
mathematical modeling, simulation, and optimization (MSO) and potential users of
this technology (https://www.komso.org).

KoMSO aims to promote scientific research and cooperation in the field of MSO
between science, economy, society, and politics. In addition, the relevance ofMSO for
society and the economy is to be demonstrated through targeted public relations work.

KoMSO was set up in May 2011 as a result of the Mathematics 2020 Strategy
Day initiated by the Federal Ministry of Education and Research (BMBF) as part
of the German government’s High-Tech Strategy 2020. Since March 2018 KoMSO
e.V. is a non-profit registered association.

A central task of KoMSO is to initiate innovative scientific projects in the field
of MSO—by bringing together representatives from science and industry at events
such as the KoMSO Challenge Workshops. Over the years, numerous successful
collaborations have been established, which are described in several KoMSO
Success Stories.

KoMSO has access to a broad national and international network of partners
from universities, research institutions, and industry, and is expanding this network
through ongoing activities. The fields of expertise include aerospace, automotive
industry, health care, pharmaceutical industry, industrial robotics, and many more.

On an international level, KoMSO acts as the German network node in the
European Service Network of Mathematics for Industry and Innovation
(EU-MATHS-IN), which consists of various national or multinational industrial
mathematics networks. The declared goal of EU-MATHS-IN is to “leverage the
impact of mathematics on innovations in key technologies [through] enhanced
communication and information exchanges”.

Heidelberg, Germany Anja Milde
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Chapter 1
Modeling the Intraday Electricity
Demand in Germany

Sema Coskun and Ralf Korn

Abstract Future electricity markets face new challenges such as increasing varia-
tion in supply due to the dominance of renewable energy providers or variation in
demand due to the presence of price sensitive customers. In this contribution, we sur-
vey the first step to modeling the current demand process for electricity in Germany.
Besides standard affine-linear diffusion processes, we aim to model the intraday
electricity demand via a Jacobi process that has attractive properties for our appli-
cations. Further, we demonstrate the usefulness of the new models by conducting a
comprehensive data analysis.

Keywords Electricity demand · Intraday market · Jacobi process · Stochastic
differential equations

1.1 The ENets-Project—Modeling the Microstochastics of
Intraday Electricity Demand and Intraday Electricity
Prices

The BMBF-funded project ENets1 has the aim to model the energy markets of the
future and the corresponding supply networks. The main aspect of our part in this
project is the task to model the micro-stochastics of the intraday demand and the
electricity prices at the intraday market. Due to many diverse reasons such as e.g.
the increased uncertainty about the production when renewable energy providers
dominate the market, the occurrence of price sensitive demand caused by smart

1See https://math4innovation.de/index.php?id=15.

S. Coskun · R. Korn (B)
Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
e-mail: korn@mathematik.uni-kl.de

S. Coskun
e-mail: coskun@mathematik.uni-kl.de

© Springer Nature Switzerland AG 2021
S. Göttlich et al. (eds.), Mathematical Modeling, Simulation and Optimization
for Power Engineering and Management, Mathematics in Industry 34,
https://doi.org/10.1007/978-3-030-62732-4_1
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4 S. Coskun and R. Korn

grids, or the mainly non-storable character of electricity, there is still uncertainty
about production and demand. This requires new stochastic models for electricity
prices and the demand forecast.

This study lays the foundations of the main aims and introduces stochastic models
for the current situation. Beneath standard Ornstein-Uhlenbeck (OU) type models
we also consider the suitability of Cox-Ingersoll-Ross (CIR) type approaches (see
Sect. 1.5) for the detailed introduction of these two process classes) and—as a new
feature—Jacobi processes as stochastic models for the electricity demand.

1.2 Introduction—Demand and Electricity Prices

In economic markets commodity prices are often determined by the equilibrium of
supply and demand. To a certain degree, this also holds for electricity markets. The
following properties of electricity markets, particularly the German one, hint at the
challenges of modeling electricity prices:

(1) The largest share of electricity is traded in auction-type markets. As a result of
an auction, the price per unit of electricity (say, 1GW) is then set to the price of
the highest bid that is still needed to satisfy the total electricity demand.

(2) As the renewable energy law in Germany requires that all renewable energy
produced has to enter the market first, the price is determined by the residual
demand, i.e. the prices offered by non-renewable energy providers.

(3) Due to the uncertainty that comes with the production of wind or solar energy,
we have an intrinsically stochastic component on the supply side.

As a consequence of the German energy transition to renewable resources
(Energiewende2) the share of renewable energy production has already increased
from 31.6 percent in 2016 to 36.2 percent in 2017 [25]. However, the renewable
energy production results in a more volatile market environment due to forecast
errors of the timing and amount of production. Together with the non-storable nature
of electricity, this stochastic component on the supply side has already led to the
introduction of the German intraday market.

Intradaymarkets allow the participants to react to the latest events such as weather
changes or surprising demands. Typically, owners of renewable energy resources tend
to trade in the intraday market [2]. In particular, in the German intraday market the
trading continues up to 30min before the delivery. So the market participants have
the opportunity of reacting to the forecasted offer of renewable electricity production
even closer to real-time, a very attractive feature.As a consequence, the tradedvolume

2The term Energiewende refers to the reforms caused by the German Renewable Energy Sources
Actwhich are designed to gradually transform the energy productionmethods from the conventional
fossil fuel methods to sustainable and renewable energy resources as e.g. wind and solar power.
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in the German/Austrian3 spot electricity market has increased from 41 TWh in 2016
to 47 TWh in 2017 [22].

As this developmentwill continue in the future, it is necessary to introduce amodel
for both the spot price and the intraday electricity demand which closely captures
the real dynamics of the German intraday market. To gain the necessary insights,
we perform a time series analysis of the actual consumption data. By considering
publicly available data we want to extract the stylized features of the electricity
demand. A possible model framework for the intraday electricity demand Vt is

Vt = �t + Xt (1.1)

where�t is a seasonality component and Xt a mean-reverting stochastic process that
models the fluctuations around the seasonality part.

In the next sections, we introduce these components rigorously and judge their
suitability on the basis of a detailed data analysis.

1.3 Basics on the Electricity Markets and Models

In this section we give a brief description of the German spot electricity markets and
on our suggested stochastic process models for the electricity demand.

1.3.1 German Spot Electricity Markets

Let us briefly introduce to the spot electricity markets and their mechanism. In Ger-
many, there are two main spot markets for trading electricity, namely the day-ahead
and the intraday markets. Electricity trading in the German day-ahead markets is
completely held by auctions. On the other hand, trading in the intraday market is
mainly continuous. Recently, to enhance the flexibility in the German electricity
market which is highly driven by renewables, the intraday auctions for 15-min peri-
ods are introduced. The particular reason behind this improvement is to provide a
better balancing opportunity for the market participants against the solar ramps [21],
i.e. the short-term influence of clouds on the solar energy production. The timing
mechanism of electricity spot markets is summarized in Fig. 1.1 which is a modifi-
cation of the figure given in [17].

As our main concern is the intraday electricity demand, we give further details
about the German intraday market (see also [23]). In principle, electricity is traded

3The German and the Austrian electricity markets are considered as one bidding zone by the EPEX
SPOT. Thus, the total traded volume is given as the sum of traded volumes in both countries.
However, in autumn 2018, EPEX SPOT implemented the so-called split of the German-Austrian
bidding zone, following a request of the regulators of these two countries [24].
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Fig. 1.1 Timing of spot
electricity markets

depending on the delivery timewhich in spot markets usually is the next day (e.g. day
d in Fig. 1.1). The delivery time (e.g. time t in Fig. 1.1) can be a full hour, a 15-min
period or a block of hours. In the German intraday market, the market participants
can trade all of these delivery time alternatives. Moreover, in the German intraday
market each hour, 15-min periods or block of hours can be continuously traded until
30min before the delivery begins. This leads to the possibility of face-to-face-trades
comparable to the situation on stock exchanges. This possibility will be used in the
final part of the ENets project when we include price sensitive traders and demand
sensitive pricing. Trading of full hours of the following day (e.g. day d in Fig. 1.1)
starts at 3pm on the current day (e.g. day d − 1 in Fig. 1.1). Furthermore, starting
at 4pm on the current day all 15-min periods of the following day can be traded in
the German intraday market. Moreover, as opposed to the stock markets the trading
continues for 7 days a week and 24 hours a day, i.e. electricity is traded also on the
weekends.

1.3.2 Structural Models for Electricity Prices

In nearly all markets, prices and the relation between supply and demand are closely
connected. Electricity price models which are based on the equilibrium between
supply and demand are known as structural or supply/demand models. Barlow [4]
models the electricity demand by an Ornstein-Uhlenbeck (OU) process. In combi-
nation with a deterministic supply function it is considered as the only driver of
the electricity prices. However, considering the demand as the only driver of elec-
tricity prices might be insufficient. To overcome this, many researchers considered
additional underlying factors. For instance, in [6] electricity demand and capacity
have been presented as the drivers of the spot electricity prices. Also, in [1] demand
is combined with the prices of different fuels to introduce a structural spot price
model. Coulon and Howison [8] adopt a parametric approach to the bid stack func-
tion, i.e. the marginal cost of electricity supply, by allowing multiple fuel prices as
underlying driving factors. They further consider the capacity or margin issues such
as outages in the electricity supply. Especially, in the German market with its high
part of renewable energy providers, a sophisticated modeling and prediction of the
electricity demand is indispensable. For that reason,Wagner [27] proposes a compre-
hensive model for residual demand which is obtained by subtracting the renewable
infeed generated by solar and wind power plants from the total demand.
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1.3.3 The Jacobi Process as a New Modeling Ingredient

While popular processes for demand modeling such as the OU process are analyt-
ically very tractable, they do not consider practical bounds on demand such as its
non-negativity or the installed capacity of electricity production. A stochastic pro-
cess that is tailored to the situation of a bounded state space is the Jacobi process.

The Jacobi diffusion belongs to the class of Pearson diffusions. In its general form,
a Pearson diffusion is a stationary solution to the following stochastic differential
equation (SDE)

dXt = −κ(Xt − θ)dt +
√
2κ(aX2

t + bXt + c)dWt (1.2)

where κ > 0 and the coefficients a, b, c ensure that the square root is well defined
when Xt is in its state space [12]. The parameters also determine the state space of
the diffusion as well as the shape of the invariant distribution. The Jacobi diffusion
is defined as the stationary solution to the SDE

d Jt = κ(θ − Jt )dt + σ
√
Jt (1 − Jt )dWt (1.3)

where the parameters κ, θ and σ ensure existence of the stationary distribution which
indeed is the Beta distribution. Conditions for existence and uniqueness of the solu-
tion to Eq. (1.3) are given in [12], see section “Appendix: The Jacobi Process”.
Obviously, Jt is only defined for values in (0, 1). If we want to use the process for
modeling electricity demand Dt that is known to be in the interval (Dm, DM), then
the transformation

Dt = Dm + (DM − Dm)Jt (1.4)

that leads to the SDE

dDt = κ(Dμ − Dt )dt + σ
√

(Dt − Dm)(DM − Dt )dWt (1.5)

is the appropriate rescaling. Note that now Dμ has the role of the mean demand
level, Dm of the minimum and DM of the maximal demand level, while κ is the
mean reversion speed of demand. This transformation is motivated by an application
in interest ratemodeling byDelbaen andShirakawa [11]. Formodeling (the logarithm
of) exchange rates that should be kept in a target zone, a similarly transformed Jacobi
diffusion is used by [16, 18]. In a slightly different framework, a recent study by
[3] utilizes a Jacobi-type process in order to introduce a probabilistic day-ahead
forecasting model for the solar irradiation. More technical details on the properties
of the Jacobi process are provided in the appendix.
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Table 1.1 Descriptive statistics of the ex-post consumption data in MWh per 15min on a yearly
basis and for 2015–2018. � and NaN denote the number of observations and the number of missing
values, respectively

Year �(NaN) Mean Std Med Min Max

2015 35032 (8) 13,640.34 2,502.70 13,543.37 7,458.50 19,159.00

2016 35128 (8) 13,693.03 2,453.53 13,582.37 7,824.50 18,952.75

2017 35032 (8) 14,078.24 2,572.08 14,022.00 7,363.25 19,870.25

2018 35023 (17) 14,516.28 2,479.28 14,419.25 8,025.75 19,698.25

140215 (41) 13,981.74 2,526.82 13,906.00 7,363.25 19,870.25

1.4 Data Analysis—Stylized Facts of German Electricity
Demand

In this section, we present the results of our detailed analysis of the electricity con-
sumption per quarter hour (i.e. we have a 15min resolution) for the time span from
01.01.2015 to 31.12.2018. The data set for Germany is provided by Smard.4 As the
data correspond to the actually realized amounts of intraday electricity consumption,
they are called ex-post data.

Missing values in Table 1.1 (and duplicate values) in years 2015, 2016 and 2017
are only due to daylight saving practice in Germany, i.e. the change from winter to
summer time. As the proportion of missing values in the whole data set is fairly low
(<0.03%), we proceed with our analysis by sampling out the missing values.

There is a slight upward movement in the quarter hourly electricity consumption
as the mean value has increased almost 900 MWh in four years, see also Fig. 1.2.
Next we are going to present the main characteristics of the electricity demand in
Germany, its so-called stylized facts.
Weekend Effect For German day-ahead electricity prices, a weekend effect (i.e.
prices are lower on the weekend) is shown in [15]. Given the mechanism for the
German electricity prices, the natural reason for this is a smaller demand on the
weekend. We have discovered such a weekend effect for the demand (i.e. lower
demand on weekends) and have illustrated it in Fig. 1.3.

The reasons for this are mainly stopped industry and business processes. Outlier
values on weekends (i.e. surprisingly high 15-min demands) may be due to some
nationwide specific events such as football matches, etc. The assertions on the dif-
fering demands for weekends and weekdays are also confirmed in Table 1.2.
Seasonality It is well documented in the literature that electricity price series exhibit
strong seasonality which varies depending on the electricity consumption with dif-
ferent time scales. For a general overview of the seasonality of the electricity prices
and different functions used to model this behavior we refer to [15, 29]. For the
electricity demand, we first focus on the yearly seasonality. Geman and Roncoroni

4This platform is operated by the Federal Network Agency (Bundesnetzagentur) and the data is
obtained directly from the European Transmission System Operators Association (ENTSO-E).



1 Modeling the Intraday Electricity Demand in Germany 9

Fig. 1.2 Electricity consumption data in Germany for 15-min slots (2015–2018)

Fig. 1.3 Summary of the
data set with respect to days
of a week

[13] argue that electricity prices typically follow a periodic path having two maxima
per year of possibly different magnitude, i.e. a 12-month and a 6-month periodicity
which roughly account for winter and summer peaks in demand. Furthermore, they
also integrate a linear trend function into the seasonality component.

Figure 1.4 illustrates the monthly fluctuations in the electricity demand separately
for the years in the data set. Yearly seasonality in electricity consumption occurs

Table 1.2 Comparison of the 15-min electricity demand in Germany on weekdays and weekends

Mean Std Min Med Max Skewness Kurtosis

Weekdays 14,446.53 2,501.21 7,878.75 14,876.75 19,870.25 −0.2598 1.9339

Weekends 12,821.09 2,195.46 7,363.25 12,557.37 19,299.25 0.4437 2.6516
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Fig. 1.4 Monthly deviation of the German 15-min electricity consumption

Table 1.3 Yearly seasonality coefficients determined via the ordinary least square (OLS) regression
fit leading to an adjusted R2 = 0.072 for 2015–2018

a b c1 c2

Coefficients 13,950 0.0116 798.0500 153.7067

Std error 15.325 0.000 10.816 10.816

mainly due to climate and extreme weather conditions. Keeping this in mind, we see
in Fig. 1.4 that although there exists a certain sinusoidal behavior in the data set,
the yearly seasonality has a moderate level. We employ the following function—a
modified version of the function given in [13] and similar to the one given in [20]—to
capture the yearly seasonality in our data set

g(t) = a + bt + c1 cos(2π t) + c2 cos(4π t) . (1.6)

Here, the linear trend is also contained in the function.
The results given in Table 1.3 confirm the observation of [20] regarding the poor

contribution of the yearly seasonality to the overall variability of the electricity prices.
Although we consider the electricity consumption data, this observation is still valid
and in particular confirmed by the very small value of the adjusted R2 that indicates
nearly no (linear) predictability of demand by yearly seasonality.

Figure 1.5 contains the fitted yearly seasonality function with coefficients from
Table 1.3. Besides this yearly periodic behavior, electricity demand also exhibits a
weekly seasonal pattern, see for example Fig. 1.3. As we dropped the weekends in
our analysis, we eliminated the weekly seasonality.

The most interesting seasonality behavior for our analysis is the intraday cyclic
behavior of electricity consumption. It is usually associated with the working hours
during a day. This pattern is also realized in the German intraday market by distin-
guishing the peak hours which cover the time range from 9 to 20 o’clock and the
remaining off-peak hours. Meanwhile, the base load covers the hours from 1 to 24
o’clock in the German intraday market. To capture the hourly effect, we use dummy
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Fig. 1.5 Yearly seasonality (red line) of the German 15-min electricity consumption in 2015–2018
with coefficients from Table 1.3

Table 1.4 Intraday seasonality coefficients determined viaOLS regression fit leading to an adjusted
R2 = 0.697 for 2015–2018

Coefficients Coefficients Coefficients Coefficients

D0 −2722.19 D6 −633.02 D12 2195.77 D18 1430.58

D1 −3183.48 D7 743.53 D13 1961.50 D19 1282.63

D2 −3356.97 D8 1448.52 D14 1639.27 D20 617.16

D3 −3413.75 D9 1707.18 D15 1407.19 D21 −87.52

D4 −3069.97 D10 2034.13 D16 1217.14 D22 −775.24

D5 −2335.91 D11 2321.63 D17 1372.58 D23 −1800.40

variables that assign an indicator function for each of the different time points as
follows:

h(t) =
23∑
i=0

αi Di (t) (1.7)

Here, Di (t) is the indicator function for each hour and αi , i = 0, . . . , 23 are the
coefficients which have to be estimated. Using OLS regression, we fit the dummy
variables to the data, where we have eliminated the yearly seasonality with the sinu-
soidal function. The results are given in Table 1.4. From Table 1.4, it can be seen that
starting from 7 am the electricity consumption gets higher which refers to the peak
hours classification. Moreover, after 6 pm there seems to be a slight increase in the
electricity consumption.

It can also be seen from Fig. 1.6 that there are usually two peak times in the
intraday electricity demand, one is reached around noon and the second one occurs
mostly after 6 pm. This might be related to the demand of the households after
the working hours on a day. As a result, we conclude that our seasonality function
consists of two parts, g(t), h(t) given by
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Fig. 1.6 Intraday deviation of the electricity consumption on several days in 2018

�t = g(t) + h(t) = a + bt + c1 cos(2π t) + c2 cos(4π t) +
23∑
i=0

αi Di (t) . (1.8)

To analyze the remaining part of the series after removing the trend and seasonality
of time series, the histogram of the residuals is presented in Fig. 1.7. Obviously,
the residuals are not normally distributed. When we empirically fitted several dis-
tributions to the residuals, the best empirical fit is achieved by a beta distribution.
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Fig. 1.7 Histogram and
fitted empirical kernel
density estimation for
residuals

The method of moments 5 resulted in a beta distribution on [−6515, 3592] with
parameters (p, q) = (6.955, 3.592).
Mean Reversion The mean reverting behavior of a stochastic process implies that
it tends to revert to a certain constant or time varying mean level. In [30] a Hurst
analysis shows that the return of electricity prices exhibits a mean-reverting property.
To check the validity of the mean reversion assumption, we tested the stationarity of
the time series in our data set [5]. For this, we used the Augmented Dickey-Fuller
(ADF) test for unit roots.6 The result of theADF test indicates that the deseasonalized
consumption data set exhibits stationary behavior. We can reject the null hypothesis
at the 5% significance levels (Test statistic = −22.5427, p = 0.0, critical value for
5% is −2.8615). We also conducted the ADF test for the non-deseasonalized time
series and can again confidently reject the null hypothesis. Hence, our time series
can be assumed to be stationary which addresses the mean reverting behavior.
Spikes While electricity price spikes (i.e. sudden upward or downward jumps of a
large magnitude) have received a high attention in electricity price modeling (see e.g.
[20]), they play no huge role in the electricity demand. To show this, we checked the
existence of consumption values which are higher/lower than three times the inter
quartile range. Although, there exist values larger than the 1.5 inter quartiles, they
still remain in the range of three times the inter quartiles for the complete data set.
As these values occur specifically on public holidays, we removed the holidays from
our data set.
Distribution and Tail Behavior The descriptive statistics given in Table 1.5 regard-
ing the skewness and kurtosis of the electricity consumption data set imply that the
distribution is not Gaussian. Although the skewness of our data set is fairly close to

5I.e. we choose the parameters p and q of the beta distribution with support [a, b] = [−6515,
3592] such that E(X) = (b − a)p/(p + q) + a, V (X) = (b − a)2 pq/((p + q + 1)(p + q)2) is
satisfied where the mean and the variance are estimated by their empirical counter parts.
6The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root (i.e. the time series
is non-stationary), with the alternative that there is no unit root (i.e. the time series is stationary).
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Table 1.5 Skewness and Kurtosis of the German 15-min electricity consumption

Year 2015 2016 2017 2018 All

Skewness −0.0298 −0.0271 −0.0273 −0.0596 −0.0314

Kurtosis 1.8453 1.8399 1.9172 1.8454 1.9014

Fig. 1.8 Histogram and
fitted empirical kernel
density estimation for the
15-min electricity
consumption

0, the kurtosis statistics is clearly negative. This implies that our data set might have
a light tailed distribution.

We further checked the histogram and the corresponding kernel density estimation
of the German 15-min electricity consumption. Figure 1.8 shows that its distribution
exhibits two peaks.
Autocorrelation In the analysis of electricity price time series, the exponential decay
coefficient of the autocorrelation function provides an estimation of the mean rever-
sion speed of the stochastic process. Meyer-Brandis and Tankov [20] argue that the
following sum of two exponentials describes quite precisely the observed structure
of electricity price series:

ρ(t) = w1e
−t/λ1 + w2e

−t/λ2 .

In the light of this approach,wefit the following exponential function to our electricity
consumption data

h(t) = w1e
−t/κ (1.9)

with κ being the mean reversion speed of the mean reverting process. The result of
the exponential fit implies that the mean reversion speed κ is approximately 82 and
the multiplier w1 is equal to 0.95. We illustrate the exponential fit by Fig. 1.9.
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Fig. 1.9 Autocorrelation
function of the consumption
data and exponential fit

1.5 Case Study: Modeling the Intraday Electricity Demand

In the preceding section,wehave seen that the residuals of the electricity consumption
became stationary after the introduction of suitable dummy variables. Also, the so
modified data exhibited a mean-reverting behaviour.

Consequently, we now consider several mean-reverting polynomial processes as
suitable stochasticmodels for the intraday electricity demandmodified by the dummy
variables. Subsequently, we calibrate these models to the intraday electricity con-
sumption data as being the indicator of the demand.
Ornstein-Uhlenbeck Process. We start with the simple, but still widely used
Ornstein-Uhlenbeck (OU) process. It is a mean reverting stochastic process driven
by the SDE

dVt = κ(θ − Vt )dt + σdWt (1.10)

where κ, θ and σ are constant parameters that have to be estimated and further, Wt

is a one-dimensional Brownian motion. Here—and also in the processes below—
the parameters κ, θ and σ refer to the mean reversion speed, the long term mean
reversion level and the volatility of the process, respectively. The explicit form of Vt

is given as

Vt = θ
(
1 − e−κ(t−s)

) + Vse
−κ(t−s) + σe−κt

∫ t

s
eκudWu (1.11)

between any two time instants s and t . Its discrete time correspondence is the autore-
gressive AR(1) model which reads as

V (ti ) = c + bV (ti−1) + δε(ti ) (1.12)
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with t = ti − ti−1 an equidistant, constant time step and ε(t) a Gaussian white
noise (i.e. ε ∼ N(0, 1)). By matching the Eqs. (1.11) and (1.12) and further using
the Itô isometry for the volatility parameter, one obtains the following equations

c = θ
(
1 − e−κt

)
, b = e−κt , δ = σ

√(
1 − e−2κt

)
/2κ.

For a time series V (ti ), we calibrate the parameters given above using the ordi-
nary least squares method (OLS). From the parameters c, b and δ, we obtain the
parameters for the OU process κ, θ and σ as:

κ = − ln(b)

t
, θ = c

(1 − b)
, σ = δ√

(b2−1)t
2 ln(b)

. (1.13)

For our data set, the calibration results of the AR(1) estimation yield

κ = 83.37, θ = 14515.29, σ = 3266.76

Furthermore, we estimated the parameters by using the maximum likelihood estima-
tion (MLE) which is given in [5] by the following estimators

b̂ = N
∑N

i=1 ViVi−1 − ∑N
i=1 Vi

∑N
i=1 Vi−1

N
∑N

i=1 V
2
i−1

(∑N
i=1 Vi−1

)2

θ̂ =
∑N

i=1

[
Vi − b̂Vi−1

]

N (1 − b̂)

δ̂ = 1

N

N∑
i=1

[
Vi − b̂Vi−1 − θ̂ (1 − b̂)

]2
.

Here, N is number of observations in the data set, Vi denotes the observation V (ti )
at time ti . We obtain the required parameters κ and σ using the equations in (1.13).
The result of the MLE application for the OU model calibration is very close to that
from the AR(1) calibration and reads as

κ = 83.35, θ = 14515.14, σ = 3266.76

CIR Process. The CIR process, which is initially used to model the short rate in [9],
has its dynamics driven by the following SDE

dVt = κ(θ − Vt )dt + σ
√
VtdWt (1.14)

with the constant parameters κ, θ and σ andWt a one-dimensional Brownianmotion.
Under the Feller condition, i.e. 2κθ > σ 2, the CIR process remains strictly positive,


