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Preface

Cartesian discretization approaches are ubiquitous in computational fluid dynamics.
When applied to problems in geometrically complex domains or fluid–structure
coupling problems, Cartesian schemes allow for automatic and scalable meshing;
however, order-consistent immersed boundary conditions and efficient dynamic
mesh adaptation take forefront roles. This volume contains selected contributions
from the four-session thematic mini-symposium on “Cartesian CFD Methods for
Complex Applications” at ICIAM 2019 held in Valencia in July. The papers
highlight cutting-edge applications of Cartesian CFD methods and describe the
employed algorithms and numerical schemes. An emphasis is laid on complex
multi-physics applications such as magnetohydrodynamics or aerodynamics with
fluid–structure interaction, solved with various discretizations, e.g. finite difference,
finite volume, multi-resolution or lattice Boltzmann CFD schemes. Software design
and parallelization challenges are also addressed briefly.
The volume is organized into two parts of three contributions each. Part one is
focused on incompressible flows and has the following contributions: Bergmann
et al. propose an adaptive finite-volume method with quad-tree discretization of the
incompressible Navier–Stokes equations. Moving immersed bodies are modelled
with volume penalization, and their interface is tracked using level sets. Test cases
with flows around cylinders show the validity and precision of the approach. Fluid–
structure interaction for flexible insect wings is studied in the paper by Truong et
al. A mass spring model is used for the wing structure. The fluid solver is based
on a Fourier pseudospectral discretization with volume penalization to take into
account the complex and time-varying geometry. Applications consider flapping
bumblebee flight in laminar and turbulent flow. The paper by Kadri and Perrier
presents a numerical scheme for incompressible Navier–Stokes equations in three
dimensions using divergence-free wavelets. Constructions for these basis functions
are given for no-slip and free-slip boundary conditions and divergence-free wavelets
in dimension higher than three are given. Numerical examples illustrate the scheme
for lid-driven cavity problems.
The second part deals with compressible and weakly compressible flows and has
likewise three contributions. Perron et al. propose an immersed boundary method
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vi Preface

for compressible flows using structured Cartesian grids. A direct forcing approach
based on the use of ghost cells is chosen. Two flow configurations are considered,
a supersonic flow around a blunt body to demonstrate the capability of mesh
adaptation to increase the accuracy and a large eddy simulation of the flow around
a three-dimensional high-lift airfoil. Comparisons with experimental data and a
reference body-fitted computation are as well presented. Moreira Lopes et al.
discuss the performance and detail verification and validation of a wavelet-adaptive
magnetohydrodynamic solver, realized within the MPI-parallel AMROC (Adaptive
Mesh Refinement in Object-oriented C++) framework. A prototype simulation
fuses this solver with actual satellite date for space weather forecasting. Finally,
Gkoudesnes and Deiterding report on the incorporation of the lattice Boltzmann
method into the AMROC environment. The algorithmic details and verification of
large eddy simulation with the wall-adapting local eddy-viscosity model for dynam-
ically adapting meshes and with ghost cell-based embedded boundary conditions are
presented.
We thank all the speakers of the four sessions for making this mini-symposium a
successful event, and we are grateful to the authors for their contributions. We are
indebted to the numerous referees for their constructive and detailed reports. For
all papers, we had three to four reviews, improving thus further the quality of this
edited volume.

Southampton, UK Ralf Deiterding
São José dos Campos, Brazil Margarete Oliveira Domingues
Marseille, France Kai Schneider
May 2020
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AMR Enabled Quadtree Discretization of
Incompressible Navier–Stokes Equations
with Moving Boundaries

Michel Bergmann, Antoine Fondanèche, and Angelo Iollo

Abstract We present a versatile finite-volume method for the simulation of incom-
pressible flows past moving bodies. The Navier–Stokes equations are discretized on
AMR enabled quadtree grids, where the dynamic in time refinement is adapted to
the evolution of the fluid–solid system. The immersed bodies are modeled through a
second-order volume penalization method, and the interface is tracked using a level-
set description. We highlight on two dimensional test cases that the uniform grids
accuracy can be recovered using quadtree grids with less degrees of freedom.

1 Introduction

Efficient numerical tools to simulate fluid–solid interactions are in interest in a wide
range of application fields, from engineering to medical applications. For instance,
the simulation of a flow around a wind turbine blade [1] or in cardiac support devices
[2] is an essential support to optimize the design of these new technologies.

To face this challenge, a large number of studies have been carried out to
precisely describe these interactions, especially when dealing with complex geome-
tries. These studies are based on two numerical approaches. The first approach
is based on the Arbitrary Lagrangian–Eulerian methodology for which flows are
calculated on a moving mesh in a time-varying area (see [3] for details). These
methods are generally very accurate, based on sophisticated numerical schemes,
but are difficult to implement, especially for the consideration of structures with
large deformations. The generation of a body-fitted mesh is expensive, and the use
of a dynamic mesh partitioner for parallel calculations is moreover necessary. The
second approach is based on fictitious domain methods, such as immersed boundary
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2 M. Bergmann et al.

methods [4] or augmented Lagrangian approaches [5], which represent a balance
between precision and practicability of the simulation.

In this work, we use the Brinkman penalization method [6] that is an embedded
interface method such as the immersed boundary method (IBM, introduced by
Peskin [7, 8]) with discrete forcing. In the context of interface-capturing methods
for simulating multiphase flows, such as volume-of-fluid [9], phase field [10], or
level-set [11] descriptions, the whole system is strongly coupled as soon as both
materials are subject to the same constitutive equation. Here we consider a level-
set formulation with the sign distance function, where the fluid–solid interface
is defined by the zero isoline. Cartesian methods for incompressible flows [12–
14] need a very refined mesh to get accurate results because they need a good
representation of the body geometry. With respect to these methods, we propose a
quadtree-based method that provides an equivalent accuracy with a smaller number
of grid points. By refining the mesh in regions of interest, such as in the vicinity
of the interface or where the solution varies significantly and by coarsening where
the solution varies slightly, the computational time is significantly decreased with a
limited loss of accuracy.

2 The Penalized Navier–Stokes Model

The aim of this work is to study the interaction between an incompressible
Newtonian fluid and some rigid moving bodies. A square domain � ⊂ R

2 is
decomposed into two parts, namely � = �f ∪ �s , where �f and �s denote the
fluid and solid domains, respectively. The fluid–solid interface is �(t) = ∂�s(t).
The sketch of the flow configuration is presented in Fig. 1. The governing equations
are

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν�u in �f , (1a)

∇ · u = 0 in �f , (1b)

u = us on �(t), (1c)

u(t = 0, ·) = u0 in �f , (1d)

where u = (u, v)T is the velocity field, p is the pressure, ρ is the density, and ν is
the kinematic viscosity of the fluid. Finally, u0 is the initial condition and us is the
velocity of the body interface.

The volume penalization approach introduced in [6] is chosen. The main idea
of this method is to consider the whole system as porous media, with a variable
permeability ε. The solid structure is considered to have a very low permeability
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Fig. 1 Sketch of the flow
setup

Ωf

Γs(t)

Γe(t)

Ωe

Ωs

ε � 1. The Navier–Stokes equations (1a), (1b), and (1c) can thus be solved in a
coupled way in � as

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν�u + χs

ε
(us − u) (2a)

∇ · u = 0, (2b)

where χs is the characteristic function of the solid, defined as

χs(x) =
{

1 if x ∈ �s

0 if x ∈ �f .

The position of the solid �s is tracked with a level-set function φ, chosen as the
signed distance to the interface �(t) with a negative sign inside the solid and a
positive sign inside the fluid. The interface is then defined as the zero isoline of φ,
namely, �(t) = {x ∈ R

2 : φ(x) = 0}. As a consequence, the characteristic function
χs may be defined using the level-set function as χs(x) = 1−H(φ(x)), where H is
the Heaviside function. Using this method, both solid and fluid equations are solved,
with no distinction. The solution of the system (2) converges towards the solution of
the decoupled system (1) (see [6]) as

√
ε tends to zero [15]. In practice, the choice

ε = 10−10 is suitable for all our simulations.

3 Discretization of the Governing Equations

3.1 Time Integration

We denote by �t the time step such that tn+1 = tn + �t and ϕn := ϕ(tn) the
discrete value of a function ϕ at the time tn. For the sake of simplicity, the time
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step is assumed to be fixed here, but the generalization to an adaptative time step is
straightforward.

We consider the fractional time step method introduced by Chorin [16] and
Temam [17]. First, a prediction step is performed to get a preliminary estimate u∗
of the velocity starting from a guess for the pressure field q . This is done using a
second-order Gear scheme as

3u∗ − 4un + un−1

2�t
+ (2∇ · (u ⊗ u)n −∇ · (u ⊗ u)n−1)

= 1

ρ

(
−∇q + μ�u∗ + χn+1

s

ε
(un+1

s − u∗)
)
.

(3)

We use here the incremental version of the projection method proposed by Goda
[18] for which q := pn. A second-order accurate volume penalization method
is employed as in [12], for which the velocity inside the body us is artificially
imposed by image point correction (IPC). As long as the interface does not fit the
grid points, this technique ensures that the velocity of the interface u|∂�s is enforced,
and therefore, the velocity gradient in the first layer of fluid is consistent.

Since the predicted velocity field is not divergence free, a projection step in a
solenoidal subspace is performed

un+1 − u∗

�t
= − 1

ρ

(∇pn+1 −∇q) in �. (4)

Since we want to recover a divergence-free velocity, i.e., ∇ · un+1 = 0, by applying
the divergence operator to Eq. (4), we get

�p
′ = ∇ · u∗ in �, (5)

where we denote by p′ := �t
ρ
(pn+1 − q) the pressure increment. Homogenous

Neumann boundary conditions are imposed in order to ensure that there is no
perturbation at the boundaries for the normal velocity.

As soon as the increment of pressure p′ is determined by solving the Poisson
equation (5), the pressure pn+1 can be updated and the velocity field is corrected as
follows:

pn+1 = q + ρ

�t
p′, (6a)

un+1 = u∗ − ∇p′. (6b)
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L3

L2

L1

L0

Fig. 2 Graded quadtree grid with the global Z-ordering. The different colors depicts the balancing
between processors

3.2 Spatial Discretizations

The computational domain � is discretized with a quadtree grid. As depicted
in Fig. 2, a quadtree grid is composed of square cells with different levels of
refinement. Here, the hierarchical grid is graded, which means that the difference
of level between a cell and all its adjacent cells (called neighbors) is at most one.
Thanks to the library PABLO, as a part of Bitpit library,1 we get use of an efficient
tool for storing the data structure. Following the linear Z-ordering proposed by
Morton in 1966 [19], we can get access to data coming from neighboring cells in an
optimized way from computational cost and memory aspects. Moreover, Adaptative
Mesh Refinement (AMR) is used to adapt the mesh dynamically to the flow
configuration by refining in the areas of interest, such as wakes of bodies, vortices, or
around the structures, which is even more interesting when the structures can move
or be deformed. For the domain decomposition, the number of communications
between processors is limited to only one layer of ghost cells. While this constraint
guarantees a very high scalability of the parallelism, the discretizations of the
operators are built with compact stencils limiting the order of numerical scheme.

In this section, we detail the finite-volume discretizations of the operators
involved. To describe these discretizations, let ϕ be a scalar function and v a
vector field. The square domain � is decomposed into a quadtree partition of Ncells

square cells �i of level Li (being the leaves of the tree) such that � =
·⋃
i�i .

By convention, the grid configuration is identified by its minimum and maximum
levels of refinement Lmin and Lmax . In other words, for a Lmin − Lmax grid, the
characteristic length hi of �i is between hmin = mink hk and hmax = maxk hk .
A two dimensional uniform L grid is hence composed of 22 cells. We denote by
xi the center of the cell �i , |�i | its area, and ϕi := ϕ(xi ) the discrete value of a
quantity ϕ evaluated at the cell center xi .

For a finite-volume method, the discrete operators are computed as face contri-
butions called fluxes. Let f be the intersecting face of �out and �in. The length of

1https://optimad.github.io/bitpit.

https://optimad.github.io/bitpit
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f is denoted by |f |. As a convention, the normal vector nf of f is pointing from
�in to �out . The discrete values of ϕ in �in and �out are denoted by ϕin and ϕout ,
respectively.

3.2.1 Discretization of the Divergence Operator

The divergence operator is integrated over each cell �i . Using the Stokes theorem,
the volume integral is transformed into a surface integral as

∇ · v
∣∣
�i

= 1

|�i|
∫
�i

∇ · v dx = 1

|�i |
∮
∂�i

v · n ds, (7)

where n is the outward normal vector of the boundary ∂�i . By decomposing the
whole boundary into separate faces, the discrete value of ∇·v on�i can be computed
as

(∇ · v)i = 1

|�i |
∑

f⊂∂�i

vf c · nf |f |, (8)

where subscript f c refers to the center position of the face f . Using the relation
∇ϕ = ∇ · (ϕI), the discrete cell-center gradient (∇ϕ)i is estimated similarly.

If the collocated cell-center velocity u∗ is used to compute ∇ ·u∗ in Eq. (5), some
spurious grid-to-grid oscillations may appear due to odd–even decoupling between
velocity and pressure. This is one of the main drawbacks for non-staggered grids.
As a consequence, this decoupling causes large variations of pressure that are even
more critical for quadtree grids, and this problem can lead to numerical instabilities
at the level jumps. As shown by Ferziger and Peric [20], traditional collocated
methods cannot guarantee the pressure smoothness and the mass conservation
simultaneously. One way to overcome this problem has been proposed by Patankar
[21] and consists in a fully staggered arrangement of the variables (u, p). For this
kind of methods, the prediction step (3) and the Poisson equation (5) are solved
at different locations, which leads to different spatial discretizations. In this sense,
staggered arrangements become more challenging for Cartesian methods.

In order to stabilize the method, the collocated approach introduced by Rhie and
Chow [22] for steady flows, and Zang et al. [23] for unsteady flows, is considered.
A face-center velocity called U∗

f c is defined in � (see [13]) as

ũ = u∗ + �t

ρ
(∇pn)cc (9a)

Ũf c = F (ũ) (9b)

U∗
f c = Ũf c − �t

ρ
(∇pn)f c, (9c)


