

GREEN SYNTHESIS OF NANOMATERIALS FOR BIOENERGY APPLICATIONS

EDITED BY

NEHA SRIVASTAVA | MANISH SRIVASTAVA
P. K. MISHRA | VIJAI KUMAR GUPTA

WILEY Blackwell

Green Synthesis of Nanomaterials for Bioenergy Applications

Green Synthesis of Nanomaterials for Bioenergy Applications

Edited by

Neha Srivastava

*Department of Chemical Engineering and Technology, IIT (BHU),
Varanasi, Uttar Pradesh, India*

Manish Srivastava

*Department of Chemical Engineering and Technology, IIT (BHU),
Varanasi, Uttar Pradesh, India*

P. K. Mishra

*Department of Chemical Engineering and Technology, IIT (BHU),
Varanasi, Uttar Pradesh, India*

Vijai Kumar Gupta

*ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology,
School of Science, TALLINN University of Technology, Tallinn, Estonia*

WILEY Blackwell

This edition first published 2021
© 2021 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The right of Neha Srivastava, Manish Srivastava, P. K. Mishra and Vijai Kumar Gupta to be identified as the authors of the editorial material in this work has been asserted in accordance with law.

Registered Office(s)

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Srivastava, Neha, 1981– editor.

Title: Green synthesis of nanomaterials for bioenergy applications / edited by Neha Srivastava, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India, Manish Srivastava, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India, P.K. Mishra, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India, Vijai Kumar Gupta, ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology School of Science, TALLINN University Of Technology, Estonia.

Description: First edition. | Hoboken, NJ : Wiley-Blackwell, 2020. |

Includes bibliographical references and index.

Identifiers: LCCN 2020029279 (print) | LCCN 2020029280 (ebook) | ISBN 978119576815 (cloth) | ISBN 978119576808 (adobe pdf) | ISBN 978119576792 (epub)

Subjects: LCSH: Biomass energy. | Green chemistry. | Organic compounds—Synthesis—Technological innovations. | Nanostructured materials—Synthesis. | Nanostructured materials—Industrial applications.

Classification: LCC TP339 .G753 2020 (print) | LCC TP339 (ebook) | DDC 660.028/6—dc23

LC record available at <https://lccn.loc.gov/2020029279>

LC ebook record available at <https://lccn.loc.gov/2020029280>

Cover Design: Wiley

Cover Image: © Chokniti Khongchum/Shutterstock

Set in 9.5/12.5pt STIXTwoText by SPi Global, Pondicherry, India

Contents

List of Contributors *vii*

Foreword *xi*

Acknowledgements *xiii*

About the Editors *xv*

- 1 Nanocatalysts and Biofuels: Applications and Future Challenges** *1*
Desikan Ramesh, Thangavelu Kiruthika, Balasubramaniam Prabha, Maduraimuthu Djanaguiraman, and Subburamu Karthikeyan
- 2 Nanomaterials: Types, Synthesis, and Characterization** *23*
Zahra Vaseghi and Ali Nematollahzadeh
- 3 Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials** *83*
Veer Singh, Priyanka Yadav, and Vishal Mishra
- 4 Synthesis of Metallic and Metal Oxide Nanomaterials** *99*
Ayse Demirbas, Tuna Karaytuğ, Nihan Arabaci, Ebru Sebnem Yilmaz, and Ismail Ocsoy
- 5 Analysis of Green Methods to Synthesize Nanomaterials** *125*
Pavlos Nikolaidis
- 6 Biosynthesis of Silver Nanoparticles from *Acacia nilotica* (L.) Wild. Ex. Delile Leaf Extract** *145*
Karishma I. Sheikh and Kalpesh B. Ishnava
- 7 Nanomaterials for Enzyme Immobilization** *165*
Nihan Arabaci, Tuna Karaytuğ, Ayse Demirbas, Ismail Ocsoy, and Ahmet Kati

8 Nanomaterial Biosynthesis and Enzyme Immobilization:

Methods and Applications 191

Indu, Ankush Yadav, Mrinal Kanti Mandal, and Kashyap Kumar Dubey

9 Carbon Nanotubes for Hydrogen Purification and Storage 211

*Pietro Bartocci, Giovanni Russo, Haiping Yang, Song Hu,
Øyvind Skreiber, Liang Wang, Fausto Gallucci, Gianni Bidini,
and Francesco Fantozzi*

Index 239

List of Contributors

Nihan Arabaci

Department of Biology
 Faculty of Arts and Sciences Çukurova
 University
 Adana
 Turkey

Central University of Haryana

Mahendergarh
 Haryana
 India

Pietro Bartocci

Department of Engineering
 University of Perugia
 Perugia
 Italy

Francesco Fantozzi

Department of Engineering
 University of Perugia
 Perugia
 Italy

Gianni Bidini

Department of Engineering
 University of Perugia
 Perugia
 Italy

Fausto Gallucci

Inorganic Membranes and Membrane
 Reactors
 Department of Chemical Engineering and
 Chemistry
 Eindhoven University of Technology
 Eindhoven
 the Netherlands

Ayse Demirbas

Faculty of Fisheries and Aquatic Sciences
 Recep Tayyip Erdogan University
 Rize
 Turkey

Song Hu

State Key Laboratory of Coal
 Combustion
 Huazhong University of Science and
 Technology
 Wuhan
 Hubei
 China
 China-EU Institute for Clean and
 Renewable Energy
 Huazhong University of Science and
 Technology
 Wuhan
 Hubei
 China

Maduraimuthu Djanaguiraman

Department of Crop Physiology
 Tamil Nadu Agricultural University
 Coimbatore
 Tamil Nadu
 India

Kashyap Kumar Dubey

Bioprocess Engineering Laboratory
 Department of Biotechnology

Indu

Bioprocess Engineering Laboratory
 Department of Biotechnology
 Central University of Haryana
 Mahendergarh
 Haryana
 India

Agricultural Engineering College and
 Research Institute
 Tamil Nadu Agricultural University
 Coimbatore
 Tamil Nadu
 India

Kalpesh B. Ishnava

Assistant professor
 Ashok and Rita Patel Institute of Integrated
 Studies and Research in Biotechnology and
 Allied Sciences (ARIBAS)
 Anand
 Gujarat
 India

Mrinal Kanti Mandal

Department of Chemical Engineering
 NIT Durgapur
 Durgapur
 West Bengal
 India

Tuna Karaytuğ

Department of Biology
 Institute of Natural and Applied Sciences
 Çukurova University
 Adana
 Turkey

Vishal Mishra

School of Biochemical Engineering
 IIT (BHU)
 Varanasi
 Uttar Pradesh
 India

Subburamu Karthikeyan

Department of Renewable Energy
 Engineering
 Agricultural Engineering College and
 Research Institute
 Tamil Nadu Agricultural University
 Coimbatore
 Tamil Nadu
 India

Ali Nematollahzadeh

Chemical Engineering Department
 University of Mohaghegh Ardabili
 Ardabil
 Iran

Pavlos Nikolaidis

Department of Electrical Engineering
 Cyprus University of Technology
 Limassol
 Cyprus

Ismail Ocsoy

Department of Analytical Chemistry
 Faculty of Pharmacy
 Erciyes University
 Kayseri
 Turkey

Ahmet Kati

Department of Detergent and Chemical
 Technologies
 Hayat Kimya Research and Development
 Center
 Kocaeli
 Turkey

Balasubramaniam Prabha

Department of Renewable Energy
 Engineering
 Agricultural Engineering College and
 Research Institute

Thangavelu Kiruthika

Department of Renewable Energy
 Engineering

Tamil Nadu Agricultural University
Coimbatore
Tamil Nadu
India

Desikan Ramesh
Horticultural College and Research
Institute for Women
Tamil Nadu Agricultural University
Tiruchirappalli
Tamil Nadu
India

Giovanni Russo
Department of Engineering
University of Perugia
Perugia
Italy

Karishma I. Sheikh
Ashok and Rita Patel Institute of Integrated
Studies and Research in Biotechnology and
Allied Sciences (ARIBAS)
Anand
Gujarat
India

Veer Singh
School of Biochemical Engineering
IIT (BHU)
Varanasi
Uttar Pradesh
India

Øyvind Skreiberg
SINTEF Energy Research
Trondheim
Norway

Zahra Vaseghi
Chemical Engineering Department
University of Mohaghegh Ardabili
Ardabil
Iran

Liang Wang
SINTEF Energy Research
Trondheim
Norway

Priyanka Yadav
School of Biochemical Engineering
IIT (BHU)
Varanasi
Uttar Pradesh
India

Ankush Yadav
Bioprocess Engineering
Laboratory
Department of Biotechnology
Central University of Haryana
Mahendergarh
Haryana
India

Haiping Yang
State Key Laboratory of Coal
Combustion
Huazhong University of Science and
Technology
Wuhan
Hubei
China
China-EU Institute for Clean and
Renewable Energy
Huazhong University of Science and
Technology
Wuhan
Hubei
China

Ebru Sebnem Yilmaz
Department of Biology
Faculty of Arts and Science
Hatay Mustafa Kemal University
Antakya
Hatay
Turkey

Foreword

Bioenergy is a potential option to replace fossil fuels effectively and in a sustainable manner. Various known bioenergy options such as biohydrogen, biogas, biomethane, bioethanol, biomethanol, biobutanol, algal biofuels, and biodiesel are supposed to be very promising alternative renewable energy options for eliminating severe environmental issues. Significant efforts have been made to explore various bioenergy options and related technologies in practice. However, its commercial viability and symmetrical distribution are still a long way from practical implementation of bioenergy technologies. This book series explores the use of nanotechnology, which is grabbing the attention of the biofuels sector by playing the role of enhancer, to improve bioenergy production technology. Application of nanotechnology is emerging as new area for bio-energy production through its contribution as catalyst, enzyme, and microbial immobilizer. Nanomaterials have enormous potential for commercial markets and the industrial market is expected to grow and become more flexible in coming decades. Therefore, with an accelerating demand for viable and sustainable economic bioenergy production, the potential combination of bioenergy and nanotechnology area must be explored.

Green Synthesis of Nanomaterials for Bioenergy Applications is much needed contribution to this series and I am happy to write this positive and satisfactory message. The book contains nine chapters covering green synthesis and characterization of nanomaterials for cost-effective bioenergy applications. The current world scenario of bioenergy and application of nanotechnology in bioenergy production, different immobilization methods for enhancing bioenergy production, synthesis, and mechanism of nanomaterial for economic bioenergy production with green approach are presented and discussed in detail. The book presents a new horizon of advancement and sustainable solutions for the improvement of bioenergy production in the form of nanotechnology. These chapters suggest that the application of nanotechnology will play a major role in bioenergy production and they will serve as gems for those working in the relevant fields including scientists, researchers, teachers, and students.

I am taking the opportunity to congratulate Dr. Neha Srivastava [IIT (BHU) Varanasi], Dr. Manish Srivastava [IIT (BHU) Varanasi], Prof. (Dr.) P.K. Mishra [IIT (BHU) Varanasi], and Dr. Viaji Kumar Gupta for their significant efforts in bringing about this publication in order to fulfill the needs of scientists, teachers, researchers, and students. My congratulations to

all the editors for their contribution, devotion, and dedication in this endeavor. All the authors and editors of this book deserve sincere appreciation for their commendable achievements.

Date: 10.06.2019

Dr. Anthonia O'Donovan

*Applied Biology and Biopharmaceutical Science,
School of Science and Computing,
Galway-Mayo Institute of Technology,
Galway, Ireland*

Acknowledgements

The editors are thankful to all the academicians, scientists and researchers whose contributions have supplemented this book presentation effectively. We are also thankful to our parents and loved once whose blessings & constant support pumped academic activities deeply. It is natural that some mistakes might have tiptoed in text involuntarily and for these we owe responsibility. Moreover, we are very grateful to all contributors for their contribution in present book. We are also thankful to Wiley for giving this opportunity to editors and Department of Chemical Engineering & Technology, IIT (BHU) Varanasi, U.P., India for all technical support. We thank them from the core of our heart. Editor Manish Srivastava acknowledges the Science and Engineering Research Board for SERB-Research Scientist Award-2019 and also to DST, Govt of India for the DST-INSPIRE Faculty Award [IFA13-MS-02] 2014.

About the Editors

Dr. Neha Srivastava

Institute Post-Doctoral Fellow, Department of Chemical Engineering and Technology
IIT (BHU) Varanasi, Varanasi-221 005, U.P., India

Mobile no. +91-9 988 062 681, Email: sri.neha10may@gmail.com

Field of Expertise: Biofuels production, microbial bioprocessing, and enzyme technologies

Neha Srivastava is currently working as a post-doctorate fellow in the Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India. She has published 26 research articles in peer-reviewed journals and has filed three patents. She completed her PhD from Department of Molecular and Cellular Engineering, SHIATS, India in 2016 in the area of bioenergy. Neha has been received six Young Scientist Awards. Presently, she is working on biofuels production (cellulase enzymes; production and enhancement; biohydrogen production from waste biomass; bioethanol production).

Dr. Manish Srivastava

SERB-Research Scientist

Department of Chemical Engineering and Technology

IIT (BHU) Varanasi, Varanasi-221 005, U.P., India

E-mail: 84.srivastava@gmail.com, manish_mani84@rediffmail.com

Contact no: + 91-7503 757 601

Field of Expertise: Synthesis of nanomaterials and their application as catalysts for development of electrode materials in energy storage, biosensors, and biofuels production.

Manish Srivastava has worked as DST INSPIRE faculty in the Department of Physics and Astrophysics, University of Delhi, India during June 2014 to June 2019. Currently he is working as SERB-Research Scientist in the Department of Chemical Engineering and Technology IIT (BHU), Varanasi, India. He has published 46 research articles in peer-reviewed journals, authored several book chapters, and filed one patent. He worked as a post doctorate fellow in the Department of BIN Fusion Technology, Chonbuk National University from August 2012 to August 2013. He was an Assistant Professor in the Department of Physics, DIT School of Engineering, Greater Noida, from July 2011 to July 2012. He received his PhD in Physics from the Motilal Nehru National Institute of Technology, Allahabad, India in 2011. Presently, he is working on the synthesis of graphene-based metal oxide hybrids and their applications as catalysts. His area of interest is synthesis of nanostructured materials and their applications as catalysts for development of electrode materials in energy storage, biosensors, and biofuels production.

Professor P.K. Mishra

Department of Chemical Engineering and Technology

IIT (BHU) Varanasi, Varanasi-221 005, India

Mobile no. 9415301462

Email: pkmishra.che@itbhu.ac.in

Field of Expertise: Biofuels production, microbial bioprocessing, and enzyme technologies.

P. K. Mishra is currently Professor and Head in the Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India. He obtained his PhD in Chemical Engineering from Institute of Technology, Banaras Hindu University in 1995. He has authored/co-authored over 60 technical papers published in reputed national/international journals and supervised more than 20 doctoral students. He has received several awards and honors and has five patents. He is a Fellow of the Institution of Engineers India. He has received several awards and honors at national/international levels. He has also made significant contribution toward development of entrepreneurship ecosystem in the eastern part of the country. He is coordinator for Technology Business Incubator at the Institute and member Executive committee NISBUD, Ministry of Skill Development, Government of India.

Dr. Vijai Kumar Gupta

ERA Chair of Green Chemistry
Department of Chemistry and Biotechnology
School of Science,
Tallinn University of Technology
Akadeemia tee 15, 12618 Tallinn, Estonia
Phone +372 620 2833
Mobile +372 5671 1014
Email: vijai.gupta@ttu.ee; vijaifzd@gmail.com

Dr. Vijai Kumar Gupta, ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia, is one of the leading experts in the area of microbial biology and biotechnology. He is a member of the International Sub-commission on Trichoderma and Hypocrease, Austria; International Society for Fungal Conservation, UK; and Secretary of European Mycological Association. Dr. Gupta is a Fellow of the prestigious Linnaean Society, London, UK; Fellow of Indian Mycological Association; and Fellow of Mycological Society of India. He has been honored with several awards in his career including Indian Young Scientist Award for his advanced research achievements in the field of fungal biology and biotechnology. He is the editor of a number of leading scientific journals of high repute and has many publications, with h-index 21. He has edited many books for publishers of international renown such as CRC Press, Taylor & Francis, USA; Springer, USA; Elsevier Press, The Netherlands; Nova Science Publisher, USA; DE Gruyter, Germany; and CABI, UK.

1

Nanocatalysts and Biofuels

Applications and Future Challenges

Desikan Ramesh¹, Thangavelu Kiruthika², Balasubramaniam Prabha²,
Maduraimuthu Djanaguiraman³, and Subburamu Karthikeyan²

¹Horticultural College and Research Institute for Women, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India

²Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

³Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

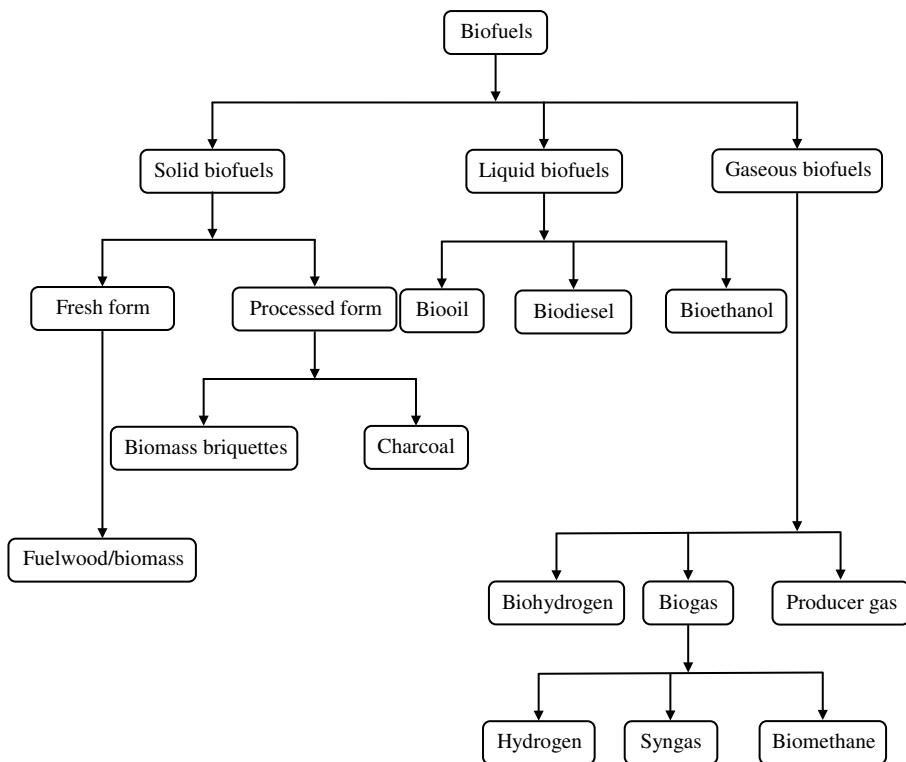
1.1 Introduction

The economy of the developing countries is entirely based on fossil fuels and variation in the price of fossil fuels. On the one hand, the demand for and consumption of fossil fuels are increasing every year because of an increase in population, rapid growth of the automobile sector, and industrialization. Energy consumption, economic growth, and population are interlinked. A recent estimate shows that crude oil, gas, and coal resources will be exhausted in the next five decades if production continues at current resource extraction rates (Behera and Varma 2019). On the other hand, increasing fuel demand, fluctuating fuel prices, uncontrolled population growth, global warming, and ill effects of environmental pollution will force us to search for an alternate ecofriendly fuel to fossil fuels. Among the renewable energy sources, biomass sources—namely plants, oils, and fats—are considered as feedstock to produce a variety of biofuels as future resources (Martini and Schell 2012).

Biomass feedstocks include all types of residues from the agricultural field and processing operations, wood processing industry wastes, forestry residues and branches, lignocellulosic feedstocks, organic fraction of municipal solid waste, and animal wastes, etc. The estimated annual global biomass production is 104.9 billion metric tons of carbon (Field et al. 1998). The annual photosynthesis yield in the world is ca. 720 billion tons of organic raw cellulose materials (Tong 2019) that have potential for conversion to biofuels.

Generally, biomass resources are playing an influential role in supplying food or fuel. Originally, the raw biomass materials were used for the production of heat and other energy requirements, which can make an essential contribution to satisfying the energy needs of society (Ruiz-Alsent 1994). Recently, biofuels production from biomass feedstocks is getting more attraction in developed/developing countries. The reasons for this interest are due to the reduction of foreign currency/crude oil imports, reduced dependence on crude oil,

emissions from burning of fossil fuels, and their impact on the environment, i.e. air pollution as well as global warming, etc. To overcome the abovementioned environmental issues, biofuels can be promoted to replace conventional commercial diesel and petrol fuels in the transport sector. There are several biofuel technology pathways of production from various biomass feedstocks. To mitigate the greenhouse gas emissions, we have to start avoiding fossil fuels and/or promote the use of biofuels. Today, the biofuel industries are facing several challenges: specifically, poor supply chain and logistics, more expensive raw materials, higher costs for processing and production compared to petrofuels, low efficiency of the conversion process, and lack of supporting biofuel policies for promotions. Researchers are focused on improving the conversion efficiency of different biomass conversion methods, which can indirectly reduce the process cost and biofuel price. In conclusion, the economically viable biomass conversion technologies will reach commercial scales.


Recently, nanotechnology has been attempted to improve the overall performance of different biomass conversion systems, which, although in the research stage, have the potential to address the problems currently faced by the biofuel industries. In this chapter, the current research on application of nanocatalysts in the field of biofuels production is presented and their impact on product yield is also discussed.

1.2 Biofuels Production

Biofuel is a solid or liquid or gaseous fuel that can be generated from biomass feedstocks, which can replace (partially or wholly) conventional petrofuels. The biofuel production from feedstocks may be produced through biomass conversion methods. The biofuels can be produced in the form of liquid or gaseous or solid (Figure 1.1).

The kind of biofuel mainly depends on the process conditions used in the technology and nature of feedstock materials. The biofuel production technologies for biomass feedstocks have reached the fourth generation, depending on conversion methods and feedstocks used. The first generation deals with the production of biofuels using food crops, and technologies under this category are commercialized for biodiesel and bioethanol production. Feedstocks used for this generation include various carbohydrate and lipid sources for bioethanol and biodiesel production. The second generation deals with non-food crops for biofuel production. This generation's target is to produce bioethanol from all types of lignocellulosic feedstocks. The third generation focusses on production of biofuels (biodiesel/bioethanol) from microalgae. The fourth generation aims to produce biodiesel/bioethanol from genetically modified crops or microbial lipids. Among them, only the first generation for biofuel production from food crops is commercialized. Other generation technologies are still at the research and development stage.

Generally, there are three major biofuel production routes: thermochemical, biochemical, and chemical conversion methods. The thermochemical conversion technologies (TCCTs) deal with the conversion of feedstocks into biofuels using heat with or without air/oxygen, whereas biochemical conversion technologies (BCCTs) use microorganisms under aerobic or anaerobic conditions. The comparison of the BCCT and TCCTs on biofuels is presented in Table 1.1. The chemical conversion technologies (CCTs) are used to produce biodiesel from vegetable oil feedstocks. Biofuels are facing difficulty in selling at a commercial level; conventional fossil fuels are of higher calorific value and cheaper than biofuels. It is very

Figure 1.1 Types of biofuels production from various biomass feedstocks via different biomass energy conversion methods.

Table 1.1 Comparison of BCCTs and TCCTs for biofuel production.

S. No.	Parameters	BCCTs	TCCTs
1	Mode of action	Microorganisms	Heat
2	Maximum reaction temperature	< 60 °C	Up to 1200 °C
3	Products from biomass		
	a. Solid fuels	Not possible	Possible (e.g. charcoal)
	b. Liquid fuels	Possible (e.g. biooil, bioethanol)	Possible (e.g. biooil, biomethanol)
	c. Gaseous fuels	Possible (e.g. biogas)	Possible (e.g. syngas)
4	Suitable technology available for feedstocks with higher moisture content	Anaerobic digestion	Hydrothermal process
5	End products like multiple products	Acetone-Butanol-Ethanol (ABE)	Biocrude
6	Chemicals production from biomass feedstocks	Possible	Possible
7	Secondary products as soil amendments to maintain health	Biodigested slurry	Biochar
8	Reaction time	h to days	sec. to days

challenging to enhance the calorific value of biofuels and make them on par with fossil fuels. This may result in an increase of the production cost, which is a major challenge for scaling-up to a commercial level. Hence, the production costs should be brought down through technological breakthrough or government policies that provide support in the form of incentives and tax benefits to promote biofuels and protect the environment.

1.3 Role of Catalysts in Biomass Conversion

The biomass composition is one determining factor that prescribes the biofuels and biochemicals that can be produced from the biomass feedstocks via TCCTs, BCCTs, or CCTs. The yield of end products is varied when it comes to biomass types and reaction conditions used. The process conditions are determined by the catalyst types and quantity, reaction temperature, reaction pressure, reaction time, biomass compositions, and its properties. The catalyst has a significant influence in speeding up the reactions in the process and thus, the product yield. The catalysts are classified into four categories viz., homogeneous, heterogeneous, biocatalyst, and hetero-homogenized types (Philippot and Serp 2013). The strength and weakness of homogeneous and heterogeneous catalysts used in the chemical reactions are presented in Table 1.2. The catalyst selection for the biomass conversion

Table 1.2 Comparison of homogeneous and heterogeneous catalysts (Miessler and Spessard 1991; Farnetti et al. 2009; Chen 2014).

S. No	Parameters	Homogeneous	Heterogeneous
1	Nature of catalyst	The reaction occurs between the same type of catalyst and reactants	This catalysis uses the different type of catalyst to that of the reactants
2	Examples	Soluble organometallic or coordination compounds	Bulk metal or metal on a solid support
3	The type of catalyst used	Usually liquid	Mostly solid
4	Stability and degrading nature	Low	Comparatively high
	Thermal stability	Poor	Good
5	Reaction mechanisms	Easy to understand	Unknown and difficult to understand
6	Separation of catalyst from end products	Difficult	Easy
7	Applicability	Limited	Wide
8	Selectivity	High	Low
9	Active site	Well-defined	Poorly designed
10	Reutilization of catalyst	Difficult and costly	Simple and cheap
11	Neutralization	More amount of water required	Less in this case
12	Continuous processes	Limited	Possible
13	Corrosion	More	Less

process is based on different parameters such as low cost, high reactivity, efficiency and ecofriendliness, and reusability (Liu 2005). Limitations of heterogeneous catalysts used for biomass conversion are long reaction rates and low efficiency due to poor mass transfer or diffusion between the heterogeneous catalyst and reactants (Klaewkla et al. 2011).

1.4 Application of Nanocatalysts

The biomass conversion technologies are subjected to frequent changes with updating of latest conversion technologies in this field. Nanotechnology is one of new emerging sciences, which has application in different fields—namely biomedical applications, optic and electronic, sorbents, sensors, and catalysis—due to its merits over conventional catalytic conversion technologies (Ali Sinag 2018). Through nanotechnology nanocatalysts were developed by combining characteristics such as higher catalytic activities and easy recovery for homogeneous and heterogeneous catalysts respectively, which also has the higher specific surface area (Zuliani et al. 2018). Nanocatalysts can be made from low-cost metals, which must fulfill important properties such as high metal dispersion and stability (Chen et al. 2015). The properties of nanoscale materials can exhibit different from that of macroscale materials, and this offers unique applications for nanomaterials (Chaturvedi et al. 2012). The nanosized materials as nanocatalysts can be used directly or as solids supported with nanoparticles (Tong 2019). The properties of nanoparticles may be modified according to the requirements of varying conditions of the nanoparticle synthesis process (Pélisson et al. 2012; Akia et al. 2014). The usage of nanocatalysts can minimize the mass transfer resistance due to its large surface to volume ratios (Zuliani et al. 2018). Nanocatalysts also have a more comprehensive scope in the area of biomass conversion technologies for biofuel production from different biomass feedstocks.

1.4.1 Biomass Pretreatment

Lignocellulosic biomass feedstocks (LCB) are one of the possible candidates for promoting the bioeconomy for sustainable development. Pretreatment is one of the most crucial processes involved for turning LCB into liquid biofuels via the biochemical route. Downstream process selection is mainly based on biomass pretreatment used and by-products produced. The major obstacles in LCB-based liquid biofuels by larger scale units are costly, energy intensive, and complex processes involved in the pretreatment method. The barriers of first-generation biofuels can be partially overcome by effective utilization of LCB, which are inexpensive and readily available as waste. Cellulosic ethanol is much more cost-effective and has a higher net energy ratio than that of grain ethanol. Release of fermentable sugars from LCB for further processing remains challenging due to complex binding between lignin, cellulose, and hemicellulose compounds, which are closely linked with each other.

In comparison with sugar and starch crops, the lignin acts as a shield to protect carbohydrates in LCB and prevent the enzymatic hydrolysis and releasing fermentable sugars. Several biomass pretreatment methods such as physical, chemical, biochemical, or combined approaches have been tried for different LCB materials and are currently in the research and development stage. Pretreatment can be a costly process in LCB into biofuels conversion; it

holds significant potential for efficiency improvement through advanced technologies. To achieve economic and environmental sustainability, the ideal pretreatment process should handle high solid loadings with minimal use of chemicals and energy. Existing catalysts have a number of problems such as inhibitors production, higher catalyst cost (enzyme), degradation of sugars, corrosion, low conversion efficiency, and biomass loading rates.

Recent studies have shown that the nanoparticles are performing better than conventional catalysts used in the biomass pretreatment (Pan et al. 2012; Duque and Eugenia 2013; Koo et al. 2017). Silica-coated magnetic nanoparticles (SiM NPs) with perfluoroalkyl sulfonic/alkylsulfonic were used to pretreat wheat straw. Ten percent of wheat straw hemicellulose was solubilized by nanoparticles; higher than that of the control (Duque and Eugenia 2013). Pan et al. (2012) reported that the titanium dioxide nanotube/leadoxide electrode performed better at treating kraft lignin due to its higher oxidative and increased surface area available for the reactions. Magnetite nanoparticles (Fe_3O_4 NPs) are also used to convert LCB to sugar. The enzymatic digestibility was enhanced by 177% and 87% for reed stem and paddy straw, respectively, under optimal conditions of H_2O_2 and Fe_3O_4 NPs. Advantages of the method are that NPs can be quickly recovered and recycled (Koo et al. 2017). Paramagnetic-based nanocatalysts are an attractive choice for depolymerization of cellulose into glucose monomer due to simplified catalyst separation using magnetic field (Guo et al. 2012; Lee et al. 2014).

1.4.2 Biochemical Conversion Route

In the case of biochemical conversion method, the microorganism of specific species or a consortium of microorganisms is used to convert the raw materials into biofuels. The two main methods falling under this category are anaerobic digestion and fermentation process. In the case of anaerobic digestion, the organic matter present in the biomass can be utilized by microorganisms to yield the biogas and biodigested slurry. The bioethanol can be produced by the fermentation process using different feedstocks. Bioethanol can then be added to gasoline to run a petrol engine. The problems associated with existing biochemical methods are higher production cost and low yield per raw materials used, i.e. low conversion efficiency. In the case of anaerobic digestion, the conversion rate for organic matter into biogas ranged from 30% to 40% (Faisal et al. 2019). This indicates maximum efficiency of conversion of biomass through present anaerobic digestion without catalyst, which can be further improved by adopting advanced technologies with suitable nanocatalysts. To increase the performance and yield of existing practices, the nanocatalysts can be introduced in the BCCTs.

1.4.2.1 Anaerobic Digestion

The moisture content of raw materials plays a significant role in the selection of appropriate biofuel production technology. In the case of biomass feedstocks with higher moisture content, anaerobic digestion is a preferable method than TCCTs. The biogas can be used for lighting, cooking, engine fuel, and electricity generation. The calorific value of the biogas depends on methane content (average CH_4 :60%) and other impurities in the biogas, which can be improved by the removal of these impurities. The biogas with more than 90% methane content is called as biomethane. The details of nanocatalysts' applications to anaerobic digestion of different feedstocks for enhancing biogas and methane productions are shown in Table 1.3. In a recent study, it was observed that use of nanoparticles in the anaerobic

Table 1.3 Applications of nanocatalysts to enhance biogas production.

S. No.	Biomass feedstock used	Nanocatalyst used	Targeted biofuel	Yield	Reference
1	Mixed liquor volatile suspended solids	Fe nanocatalyst	Biogas	0.345 (l/g VS reduction)	Thiruselvi et al. (2018)
2	Cattle manure	Nanostructured SiC	Biogas	499 ml/g TS	Li et al. (2018)
3	Rice straw	Fe ₃ O ₄ nanoparticle	Methane	129%	Khalid et al. (2019)
4	Slaughterhouse wastewater	Biosynthesized iron NPs	Methane	45%	Yazdani et al. (2019)
5	Poultry litter	12 mg/l Ni NPs	Methane	368 ml/g VS	Hassanein et al. (2019)
6	Waste-activated sludge	Fe ⁰	Methane	217.16 ml/g VSS	Wang et al. (2016)
7	Waste-activated sludge	Fe ₂ O ₃	Methane	217.16 ml/g VSS	Wang et al. (2016)
8	Waste-activated sludge	Fe ⁰	Methane	70.6%	Su et al. (2013)
9	Sewage sludge	Ni (100 nm, 5–10 mg/kgVS)	Methane	Increased up to 10%	Tsapekos et al. (2018)
10	Domestic sludge	Zero valent iron	Methane	88%	Amen et al. (2017)
11	Raw manure (feces and urine)	2 mg/l Ni NPs	Biogas, Methane	614.5 ml/g VS, 361.6 ml/g VS	Abdelsalam et al. (2017a)
12	Manure	20 mg/l Fe ₃ O ₄ magnetic NPs	Biogas, Methane	584 ml/g VS, 351.8 ml/g VS	Abdelsalam et al. (2017b)
13	Cattle dung slurry	Ni NPs	Biogas, Methane	1190.8 ml, 707.1 ml	Abdelsalam et al. (2016)
14	Cattle dung slurry	Co NPs (1 mg/l)	Biogas, Methane	1142.1 ml, 653.1 ml	Abdelsalam et al. (2016)
15	Cattle dung slurry	Fe NPs (20 mg/l)	Biogas, Methane	985.2 ml, 545.1 ml	Abdelsalam et al. (2016)
16	Cattle dung slurry	20 mg/l Fe ₃ O ₄ NPs	Biogas, Methane	1154 ml, 703.3 ml	Abdelsalam et al. (2016)
17	Dairy cattle manure	500 mg/l TiO ₂ NPs	Biogas, Methane	336.25, 192.31 ml/gVS	Farghali et al. (2019)
18	Wastewater sludge	Fe ₃ O ₄ (7 nm, 100 ppm)	Biogas, methane	180%, 234%	Casals et al. (2014)
19	Microalgae Enteromorpha	Fe ₃ O ₄ NPs, Ni NPs	Biogas, Biohydrogen	624 ml, 51.42% (v/v)	Zaidi et al. (2018)