Xiaofei Wang · Yiwen Han Victor C. M. Leung · Dusit Niyato Xueqiang Yan · Xu Chen

Edge Al

Convergence of Edge Computing and Artificial Intelligence

Edge AI

Xiaofei Wang • Yiwen Han • Victor C. M. Leung • Dusit Niyato • Xueqiang Yan • Xu Chen

Edge AI

Convergence of Edge Computing and Artificial Intelligence

Xiaofei Wang College of Intelligence and Computing Tianjin University Tianjin, Tianjin, China

Victor C. M. Leung College of Computer Science and Software Engineering Shenzhen University Shenzhen, Guangdong, China

Xueqiang Yan 2012 Lab Huawei Technologies (China) Shenzhen, China Yiwen Han College of Intelligence and Computing Tianjin University Tianjin, Tianjin, China

Dusit Niyato School of Computer and Engineering Nanyang Technological University Singapore, Singapore

Xu Chen School of Data and Computer Science Sun Yat-sen University Guangzhou, Guangdong, China

ISBN 978-981-15-6185-6 ISBN 978-981-15-6186-3 (eBook) https://doi.org/10.1007/978-981-15-6186-3

© The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

At present, we are living in an era of rapid development. Artificial intelligence (AI), as a technology leading the trend of this era and subverting people's traditional lifestyle, is deeply integrated into production and life around the world. With its rapid rise in the fields of smart factories, smart cities, smart homes, and smart Internet of Things, it uses technology to achieve the interaction between humans and machines. At present, AI has replaced human roles in many key areas of high intensity, difficulty, and danger and even has surpassed human capabilities in some areas. Therefore, AI has promoted the liberation of human freedom to a certain extent by replacing labor and management of human beings.

However, the realization of AI requires large-scale data as support. It is based on the training and learning of a large number of sample data that AI can perform nearly or even surpass human performance. The current data in the network is showing an exponential growth, which has created opportunities for the rise and development of AI. However, the rapid increase in the size of network data is a great challenge of current network architecture. In order to alleviate the pressure on the network caused by the explosive growth of data scale, edge computing technology came into being. Edge computing can reduce the pressure on the network and reduce the delay in request response by setting distributed edge nodes at the edge of the network.

The explosive growth of data not only provides a prerequisite for the development of AI but also creates opportunities for the rise of edge computing. However, AI and edge computing, as two popular emerging technologies, are inextricably linked to each other. On the one hand, the characteristics of edge computing that can reduce latency and traffic load can provide basic guarantees for AI. On the other hand, the learning and decision-making capabilities of AI are supporting the efficient and stable operation of edge computing. The two technologies are not only mutually supporting but also merging with each other, and they are inseparable. Deep learning, as the most representative technology of AI in combination with edge computing, has made remarkable progress in many fields through cooperation with edge computing. In this background, the purpose of this monograph is to explore the

vi Preface

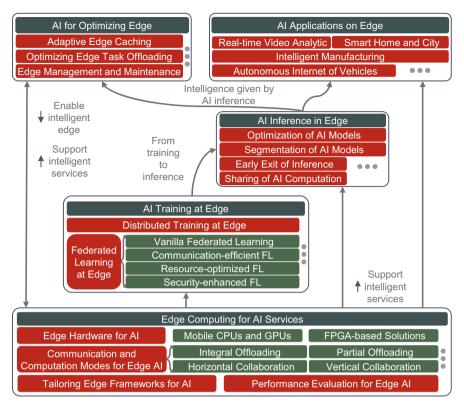


Fig. 1 Conceptual relationships of edge intelligence and intelligent edge

relevant achievements around the relationship between edge computing and artificial intelligence.

This monograph introduces and discusses the advanced technology of edge AI in terms of fundamentals, concepts, frameworks, application cases, optimization method, and future directions, so as to provide students, researchers, and practitioners in related fields with a comprehensive reference. In detail, this book is organized as follows (as abstracted in Fig. 1): In Chap. 1, we have introduced the generation, development, trend, and industrial status of edge computing and given the brief of intelligent edge and edge intelligence. Next, we provide some fundamentals related to edge computing and AI in Chaps. 2 and 3, respectively. The following sections introduce the five enabling technologies, i.e., AI applications on edge (Chap. 4), AI inference in edge (Chap. 5), AI training at edge (Chap. 6), edge computing for AI (Chap. 7), and AI for optimizing edge (Chap. 8). Finally, we present lessons learned and discuss open challenges in Chap. 9 and conclude this book in Chap. 10. Therefore, the intended audience includes scientific researchers and industry professionals engaged in the field of edge computing and artificial

Preface vii

intelligence. Hopefully, this monograph can fill in the gaps in the architecture of edge AI and further expand the existing knowledge system in this field.

Tianjin, China Tianjin, China Shenzhen, China Singapore, Singapore Shenzhen, China Guangzhou, Guangdong, China Xiaofei Wang Yiwen Han Victor C. M. Leung Dusit Niyato Xueqiang Yan Xu Chen

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFB2101901 and No.2018YFC0809803), National Science Foundation of China (No. 61702364, No. 61972432, and No. U1711265), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No.2017ZT07X355), Chinese National Engineering Laboratory for Big Data System Computing Technology. It was also supported in part by Singapore NRF National Satellite of Excellence, Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0007, A*STAR-NTU-SUTD Joint Research Grant Call on Artificial Intelligence for the Future of Manufacturing RGANS1906, WASP/NTU M4082187 (4080), Singapore MOE Tier 1 2017-T1-002-007 RG122/17, MOE Tier 2 MOE2014-T2-2-015 ARC4/15, Singapore NRF2015-NRF-ISF001-2277, and Singapore EMA Energy Resilience NRF2017EWT-EP003-041.

Contents

Part	t I	Introduction and Fundamentals			
1	Introduction				
	1.1		3		
	1.2		6		
	1.3	Industrial Applications of Edge Computing	7		
	1.4		8		
	Ref	ferences	12		
2	Fundamentals of Edge Computing				
	2.1		15		
		2.1.1 Cloudlet and Micro Data Centers	16		
		2.1.2 Fog Computing	17		
		2.1.3 Mobile and Multi-Access Edge Computing (MEC)	17		
		2.1.4 Definition of Edge Computing Terminologies	18		
		2.1.5 Collaborative End–Edge–Cloud Computing	18		
	2.2	Hardware for Edge Computing	19		
		2.2.1 AI Hardware for Edge Computing	19		
		2.2.2 Integrated Commodities Potentially for Edge Nodes	21		
	2.3	Edge Computing Frameworks	22		
	2.4	Virtualizing the Edge	25		
		2.4.1 Virtualization Techniques	27		
		2.4.2 Network Virtualization	28		
		2.4.3 Network Slicing	28		
	2.5				
		2.5.1 Smart Parks	29		
		2.5.2 Video Surveillance	30		
		2.5.3 Industrial Internet of Things	30		
	References				
3	Fu	ndamentals of Artificial Intelligence	33		

3.1 Artificial Intelligence and Deep Learning

xii Contents

	3.2	Neural Networks in Deep Learning
		3.2.1 Fully Connected Neural Network (FCNN) 35
		3.2.2 Auto-Encoder (AE)
		3.2.3 Convolutional Neural Network (CNN) 36
		3.2.4 Generative Adversarial Network (GAN)
		3.2.5 Recurrent Neural Network (RNN)
		3.2.6 Transfer Learning (TL)
	3.3	Deep Reinforcement Learning (DRL)
		3.3.1 Reinforcement Learning (RL)
		3.3.2 Value-Based DRL
		3.3.3 Policy-Gradient-Based DRL 42
	3.4	Distributed DL Training
		3.4.1 Data Parallelism
		3.4.2 Model Parallelism
	3.5	Potential DL Libraries for Edge
	Refe	erences
Par	t II	Artificial Intelligence and Edge Computing
4	Arti	ficial Intelligence Applications on Edge
	4.1	Real-time Video Analytic
		4.1.1 Machine Learning Solution
		4.1.2 Deep Learning Solution
	4.2	Autonomous Internet of Vehicles (IoVs)
		4.2.1 Machine Learning Solution
		4.2.2 Deep Learning Solution
	4.3	Intelligent Manufacturing
		4.3.1 Machine Learning Solution
		4.3.2 Deep Learning Solution
	4.4	Smart Home and City
		4.4.1 Machine Learning Solution
		4.4.2 Deep Learning Solution
	Refe	erences
5	A rti	ficial Intelligence Inference in Edge
3	5.1	Optimization of AI Models in Edge
	5.1	5.1.1 General Methods for Model Optimization 66
		5.1.2 Model Optimization for Edge Devices
	5.2	Segmentation of AI Models 69
	5.3	Early Exit of Inference (EEoI)
	5.4	Sharing of AI Computation
		erences
6		ficial Intelligence Training at Edge
	6.1	Distributed Training at Edge
	6.2	Vanilla Federated Learning at Edge
	6.3	Communication-Efficient FL83

Contents xiii

		_								
	6.4		rce-Optimized FL	85						
	6.5		ity-Enhanced FL	86						
	6.6		e Study for Training DRL at Edge	89						
		6.6.1	Multi-User Edge Computing Scenario	89						
		6.6.2	System Formulation	90						
		6.6.3	Offloading Strategy for Computing Tasks Based							
			on DRL	92						
		6.6.4	Distributed Cooperative Training	93						
	Refe	erences		93						
7	Edg	Edge Computing for Artificial Intelligence								
	7.1	Edge Hardware for AI								
	,,,	7.1.1	Mobile CPUs and GPUs	97 97						
		7.1.2	FPGA-Based Solutions	99						
		7.1.3	TPU-Based Solutions	100						
	7.2		Data Analysis for Edge AI	101						
		7.2.1	Challenge and Needs for Edge Data Process	101						
		7.2.2	Combination of Big Data and Edge Data Process	102						
		7.2.3	Architecture for Edge Data Process	103						
	7.3		nunication and Computation Modes for Edge AI	103						
	1.5	7.3.1	Integral Offloading	103						
		7.3.2	Partial Offloading	103						
		7.3.3	Vertical Collaboration	104						
		7.3.4	Horizontal Collaboration	108						
	7.4		ing Edge Frameworks for AI	110						
	7.5		mance Evaluation for Edge AI	112						
				113						
8	Arti		ntelligence for Optimizing Edge	117						
	8.1	AI for	Adaptive Edge Caching	117						
		8.1.1	Use Cases of DNNs	121						
		8.1.2	Use Cases of DRL	122						
	8.2	AI for	Optimizing Edge Task Offloading	123						
		8.2.1	Use Cases of DNNs	124						
		8.2.2	Use Cases of DRL	125						
	8.3	AI for	Edge Management and Maintenance	126						
		8.3.1	Edge Communication	126						
		8.3.2	Edge Security	127						
		8.3.3	Joint Edge Optimization	128						
	8.4	A Pra	ctical Case for Adaptive Edge Caching	129						
		8.4.1	Multi-BS Edge Caching Scenario	129						
		8.4.2	System Formulation	130						
		8.4.3	Weighted Distributed DQN Training and Cache							
			Replacement	131						
		8.4.4	Conclusion for Edge Caching Case	132						
	Refe	erences		132						

xiv Contents

Par	t III	Challe	enges and Conclusions		
9	Less	ons Learned and Open Challenges			
	9.1		Promising Applications	137	
	9.2			138	
		9.2.1	Ambiguous Performance Metrics	138	
			Generalization of EEoI	139	
		9.2.3	Hybrid Model Modification	139	
			Coordination Between AI Training and Inference	140	
	9.3		ete Edge Architecture for AI	140	
		-	Edge for Data Processing	140	
			Microservice for Edge AI Services	142	
			Incentive and Trusty Offloading Mechanism for AI	142	
		9.3.4	Integration with "AI for Optimizing Edge"	143	
	9.4	Practic	al Training Principles at Edge	143	
		9.4.1	Data Parallelism Versus Model Parallelism	144	
		9.4.2	Training Data Resources	144	
			Asynchronous FL at Edge	145	
			Transfer Learning-Based Training	145	
	9.5		ment and Improvement of Intelligent Edge	146	
	Refe			147	
10	Con	Conclusions			

Acronyms

A3C Asynchronous advantage actor-critic

AC Actor-critic AE Auto-encoder

AI Artificial intelligence

A-LSH Adaptive locality sensitive hashing

ALU Arithmetic and logic unit

APU AI processing unit AR Augmented reality

ASIC Application specific integrated circuit

B/S Browser/server

BNNS Binarized neural networks

BS Base station C/S Client/server

CDN Content delivery network
CNN Convolutional neural network
C-RAN Cloud-radio access networks

CV Computer vision D2D Device-to-device

DAD Deep architecture decomposition

DAG Directed acyclic graph

DBMS Database management system
DDNNs Distributed deep neural networks
DDOS Distributed denial of service
DDPG Deep deterministic policy gradient

DL Deep learning
DNN Deep neural network
Double-DQL Double deep *Q*-learning
DP Differential privacy
DQL Deep *Q*-learning

DQN Deep Q-learning network

DRAM Dynamic RAM

xvi Acronyms

DRL Deep reinforcement learning
DSL Domain-specific language
Dueling-DQL Dueling deep Q-learning

DVFS Dynamic voltage and frequency scaling eBNNs Embedded binarized neural networks

ECC Edge Computing Consortium
ECSP Edge computing service provider

EEoI Early exit of inference EH Energy harvesting

ETSI European Telecommunications Standards Institute

FAP Fog radio access point FCN Fog computing node

FCNN Fully connected neural network

FIFO First in first out
FL Federated learning
FTP Fused Tile Partitioning

GAN Generative adversarial network

GNN Graph neural network
GPU Graphics processing unit

IID Independent and identically distributed

IOB Input-output block IoT Internet of Things Internet of vehicles **IoVs** Knowledge distillation KD kNN*k*-nearest neighbor LCA Logic cell array LFU Least frequently used LRU Least recently used Long short-term memory LSTM Multi-armed bandit MAB **MDC** Micro data center

MDP Markov decision process

MEC Mobile (multi-access) edge computing

MLP Multi-layer perceptron NCS Neural compute stick

NFV Network functions virtualization NLP Natural language processing

NN Neural network

NPU Neural processing unit

P2P Peer-to-peer PC Personal computer

PPO Proximate policy optimization

QoE Quality of experience QoS Quality of service RAM Random access memory Acronyms xvii

RAN Radio access network
RL Reinforcement learning
RNN Recurrent neural network

RoI Region-of-Interest
RPC Remote procedure call
RRH Remote radio head
RSU Road-side unit

SDK Software development kit SDN Software-defined network SGD Stochastic Gradient Descent

SINR Signal-to-interference-plus-noise ratio SNPE Snapdragon neural processing engine

SNR Signal-to-noise ratios

SRAM Static random access memory SVD Singular value decomposition

TL Transfer learning
TPU Tensor processing unit
UE User equipment
V2V Vehicle-to-vehicle

VHDL Very-high-speed integrated circuit hardware description language

VM Virtual machine

VNF Virtual network function VPU Vision processing unit

VR Virtual reality

WLAN Wireless local area network

ZB Zettabytes

Part I Introduction and Fundamentals