

GREEN SYNTHESIS OF NANOMATERIALS FOR BIOENERGY APPLICATIONS

EDITED BY

NEHA SRIVASTAVA | MANISH SRIVASTAVA
P. K. MISHRA | VIJAI KUMAR GUPTA

WILEY Blackwell

Table of Contents

[Cover](#)

[Title Page](#)

[Copyright Page](#)

[List of Contributors](#)

[Foreword](#)

[Acknowledgements](#)

[About the Editors](#)

[1 Nanocatalysts and Biofuels](#)

[1.1 Introduction](#)

[1.2 Biofuels Production](#)

[1.3 Role of Catalysts in Biomass Conversion](#)

[1.4 Application of Nanocatalysts](#)

[1.5 Conclusion](#)

[References](#)

[2 Nanomaterials](#)

[2.1 Introduction](#)

[2.2 Nanomaterials in Different Formats](#)

[2.3 Nanomaterials Synthesis](#)

[2.4 Nanomaterial Characterization](#)

[2.5 Conclusion](#)

[References](#)

[3 Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials](#)

[3.1 Introduction](#)

[3.2 Classification and Types of Nanomaterials](#)

[3.3 Properties of Nanomaterials](#)

3.4 Synthesis of Nanomaterials

3.5 Characterization of Nanomaterials

3.6 Conclusion

References

4 Synthesis of Metallic and Metal Oxide Nanomaterials

4.1 Nanomaterials

4.2 Biogenic Methods for Synthesis of Biocompatible and Hydrophilic Nanomaterials

4.3 Conclusion

Acknowledgments

References

5 Analysis of Green Methods to Synthesize Nanomaterials

5.1 Introduction

5.2 Classification of Nanomaterials

5.3 Natural Sources for Green Nanomaterials

5.4 Green Methods to Synthesize Nanomaterials

5.5 Conclusion

References

6 Biosynthesis of Silver Nanoparticles from *Acacia nilotica* (L.) Wild. Ex. Delile Leaf Extract

6.1 Introduction

6.2 Materials and Methods

6.3 Green Synthesis of Silver Nanoparticles from *Acacia nilotica* Leaf Powder

6.4 Characterization of Silver Nanoparticles

6.5 Result and Discussion

6.6 Conclusion

Acknowledgments

References

7 Nanomaterials for Enzyme Immobilization

7.1 Enzymes

7.2 Conventional Enzyme Immobilization Methods

7.3 New Generation Immobilization Methods

7.4 Conclusion

Acknowledgment

References

8 Nanomaterial Biosynthesis and Enzyme Immobilization

8.1 Introduction

8.2 Types of Nanomaterials

8.3 Size and Forms of Nanomaterials

8.4 Properties of Nanomaterials

8.5 Methods for Nanomaterial Biosynthesis

8.6 Applications of Nanoparticles

8.7 Nanomaterials-Immobilized Enzymes toward Biofuel and Bioenergy Production

8.8 Immobilization

8.9 Matrix for Immobilization

8.10 Methods of Enzyme Immobilization

8.11 Merits of Immobilization

8.12 Immobilization of Enzymes Beneficial for Biofuel Production

8.13 Conclusion

References

9 Carbon Nanotubes for Hydrogen Purification and Storage

9.1 Production and Structure of Carbon Nanotubes

[9.2 H₂ Separation Using Carbon Nanotubes](#)
[9.3 Carbon Nanotubes for Hydrogen Storage](#)
[9.4 Conclusion](#)
[Acknowledgments](#)
[References](#)
[Index](#)
[End User License Agreement](#)

List of Tables

Chapter 1

[Table 1.1 Comparison of BCCTs and TCCTs for biofuel production.](#)
[Table 1.2 Comparison of homogeneous and heterogeneous catalysts \(Miessler and...](#)
[Table 1.3 Applications of nanocatalysts to enhance biogas production.](#)
[Table 1.4 Applications of nanocatalysts in biofuel production via thermochemi...](#)
[Table 1.5 Details of nanocatalysts used for biodiesel production.](#)

Chapter 3

[Table 3.1 Characteristics of nanomaterials in solid, liquid, and gaseous phas...](#)

Chapter 4

[Table 4.1 Plants used in green synthesis of plasmonic nanoparticles.](#)

Chapter 5

[Table 5.1 Nanoparticles synthesized using different natural resources.](#)

[Table 5.2 The principles of green chemistry and the corresponding green nanot...](#)

Chapter 6

[Table 6.1 Presence of different elements in EDX pattern of extract.](#)

[Table 6.2 Presence of different elements in EDX pattern of AgNPs.](#)

Chapter 7

[Table 7.1 Enzymes and their benefits in different industrial applications.](#)

[Table 7.2 Benefits and drawbacks of the most common methods of enzyme immobil...](#)

Chapter 8

[Table 8.1 Types of nanomaterials on the basis of size and material.](#)

[Table 8.2 Types of properties of nanomaterials.](#)

[Table 8.3 Matrix or support for immobilization.](#)

Chapter 9

[Table 9.1 Membrane targets for hydrogen separation.](#)

[Table 9.2 Hydrogen storage in different MWCNTs composites.](#)

[Table 9.3 Hydrogen storage \(wt%\) in activated carbon doped with different tra...](#)

List of Illustrations

Chapter 1

[Figure 1.1 Types of biofuels production from various biomass feedstocks via ...](#)

[Figure 1.2 Nanocatalyst synthesis and nanowaste generation.](#)

Chapter 2

[Figure 2.1 Dimensionality classification of nanostructures.](#)

[Figure 2.2 Schematic representation of \(a\) top-down and \(b\) bottom-up appro...](#)

[Figure 2.3 Step and flash imprint lithography \(S-FIL\) method: 1. Poly ...](#)

[Figure 2.4 Schematic representation of three-dimensional electrospinning set...](#)

[Figure 2.5 Overview of bottom-up methods for nanomaterial synthesis.](#)

[Figure 2.6 Schematic pictures of \(a\) hot wall CVD furnace and \(b\) cold wall ...](#)

[Figure 2.7 Schematic illustration of physical vapor deposition \(PVD\) process...](#)

[Figure 2.8 Schematic diagram of thermal decomposition process.](#)

[Figure 2.9 Schematic representation of the biogenic reducing agents particip...](#)

[Figure 2.10 Schematic diagram of spray drying set up.](#)

[Figure 2.11 Schematic representation of the typical reaction pathway in the ...](#)

[Figure 2.12 FT-IR spectrum of \(a\) *E. campestre* aqueous leaf extract before b...](#)

[Figure 2.13 a-e Raman spectra of ZnO nanoparticles at different temperatures...](#)

[Figure 2.14 \(a\) UV-Vis spectra of trimetallic oxide Cu/Cr/Ni NPs obtained fr...](#)

[Figure 2.15 XRD pattern of Cu/Cr/Ni nanoparticles synthesized using *E. campe...*](#)

[Figure 2.16 Typical X-ray Fluorescence spectrum of the annealed CdO nanopart...](#)

[Figure 2.17 Schematic representation of XPS operation.](#)

[Figure 2.18 XPS spectrum of ZnO nanoparticles.](#)

[Figure 2.19 EDS spectra of trimetallic oxide Cu/Cr/Ni NPs; \(a\) Atomic %, \(b\)...](#)

[Figure 2.20 Schematic representation of the function of NMR spectroscopy...](#)

[Figure 2.21 FESEM and TEM images of Cu/Cr/Ni metal oxide nanoclusters synthe...](#)

[Figure 2.22 \(a\) Diagram of a typical AFM apparatus, \(b\) different imaging mo...](#)

[Figure 2.23 Hysteresis loop of \$\alpha\$ -Fe₂O₃ nanoparticles.](#)

[Figure 2.24 \(a\) Temperature dependence of the zero-field-cooled ...](#)

[Figure 2.25 DSC curves of the graphite nanoparticles-dispersed phase change ...](#)

[Figure 2.26 Histogram showing particle size distribution of ternary Cu/Cr/Ni...](#)

[Figure 2.27 Zeta-potential of bio \(AgNPs\) according to pH value. Error limit...](#)

Chapter 3

[Figure 3.1 Figure shows the application of nanotechnology in various fields....](#)

[Figure 3.2 Schematic diagram showed the basic classification of nanomaterial...](#)

[Figure 3.3 Classification of nanomaterials on the basis of dimensions.](#)

[Figure 3.4 Nanoparticle synthesis methods.](#)

[Figure 3.5 Common methods for the characterization of nanoparticles.](#)

Chapter 4

[Figure 4.1 Illustration of the most common approaches, top-down and bottom-u...](#)

[Figure 4.2 Illustration of proposed LaMer mechanism for formation of nanomat...](#)

[Figure 4.3 The most common strategies for the phase transfer of hydrophobic ...](#)

[Scheme 4.1 Graphical illustration of the synthesis of MNP@dsDNA-GO composite...](#)

[Figure 4.4 TEM images of nano composites \(a\) ~ 13 nm Cu NPs, \(b\) ~ 10 nm Pt ...](#)

[Figure 4.5 Biomolecules-directed synthesis of nanomaterials.](#)

[Figure 4.6 Antimicrobial mechanism of silver nanoparticles.](#)

Chapter 5

[Figure 5.1 Nanotechnology chart ruler.](#)

[Figure 5.2 Schematic representation of a proposed mechanism for plant-mediat...](#)

[Figure 5.3 Synthesis of metallic nanoparticles through reduction and stabili...](#)

[Figure 5.4 Protocols employed for different synthesis methods of nanoparticl...](#)

[Figure 5.5 Applications of surface-modified nanoparticles.](#)

[Figure 5.6 Nanotechnology application range in modern society.](#)

Chapter 6

[Figure 6.1 *Acacia nilotica* plant leaves.](#)

[Figure 6.2 Graph showing % yield of extract in different solvents.](#)

[Figure 6.3 Absorption spectra of AgNPs.](#)

[Figure 6.4 FT-IR spectra of plant extract.](#)

[Figure 6.5 FT-IR spectra of AgNPs.](#)

[Figure 6.6 EDX graph of plant extract.](#)

[Figure 6.7 EDX graph of AgNPs.](#)

[Figure 6.8 SEM micrograph of plant extract.](#)

[Figure 6.9 SEM micrograph of AgNPs.](#)

[Figure 6.10 TEM micrograph of plant extract.](#)

[Figure 6.11 TEM micrograph of AgNPs.](#)

Chapter 7

[Figure 7.1 Industrial demand for enzymes.](#)

[Figure 7.2 Advantages and disadvantages of enzyme immobilization technology....](#)

Figure 7.3 Conventional enzyme immobilization methods.

Figure 7.4 Shows the scanning electron microscopy (SEM) images of HNFs. a-1,...

Figure 7.5 The membrane with integrated laccase NFs is manufactured, used, w...

Figure 7.6 Possible HRP-Cu²⁺ HNF formation mechanism consists of three parts...

Figure 7.7 NFs stability and activity and free HRP enzyme toward guaiacol. (...

Figure 7.8 Graphic abstract of plant extract preperation VO-inorganic hybrid...

Chapter 8

Figure 8.1 The Classification of Nanomaterials, (a) clusters and spheres; (b...

Figure 8.2 Mechanical milling.

Figure 8.3 Different steps involved in the sol-gel process.

Figure 8.4 Representation of different steps inside heated crucible.

Figure 8.5 Diagram representing flame-assisted ultrasonic spray pyrolysis....

Figure 8.6 Applications of nanotechnology.

Figure 8.7 Adsorption of enzymes.

Figure 8.8 Covalent bonding of enzyme.

Figure 8.9 Crosslinking (copolymerization) of enzyme.

Figure 8.10 Encapsulation and entrapment of enzymes.

Chapter 9

[Figure 9.1 The structure of eight carbon allotropes \(a\) diamond, \(b\) graphit...](#)

[Figure 9.2 Illustration of multiwalled \(a\) and single-walled \(b\) CNT.](#)

[Figure 9.3 The two-dimensional graphene sheet diagram.](#)

[Figure 9.4 A scheme of the arc discharge system.](#)

[Figure 9.5 \(a\) Base-growth mechanism and \(b\) tip-growth mechanism.](#)

[Figure 9.6 Five hydrogen separation mechanisms.,](#)

[Figure 9.7 Scheme of the composite membrane structure.](#)

[Figure 9.8 Energy density for different H₂ storage technologies to be adopte...](#)

[Figure 9.9 Hydrogen storage capacities of CNTs reported in the literature....](#)

[Figure 9.10 A-MWCNT/h-BN nanocomposite preparation.](#)

[Figure 9.11 Hydrogen spillover mechanism: \(1\) dissociation; \(2\) migration; \(...](#)

[Figure 9.12 Maximum capacity and average hydrogenation kinetics of different...](#)

[Figure 9.13 Correlation between carbon electron affinity and hydrogen remova...](#)

[Figure 9.14 H₂ dissociation at the Mg surface: energy barrier and energy pat...](#)

Green Synthesis of Nanomaterials for Bioenergy Applications

Edited by

Neha Srivastava

Department of Chemical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India

Manish Srivastava

Department of Chemical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India

P. K. Mishra

Department of Chemical Engineering and Technology, IIT (BHU), Varanasi, Uttar Pradesh, India

Vijai Kumar Gupta

ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, TALLINN University of Technology, Tallinn, Estonia

WILEY Blackwell

This edition first published 2021
© 2021 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The right of Neha Srivastava, Manish Srivastava, P. K. Mishra and Vijai Kumar Gupta to be identified as the authors of the editorial material in this work has been asserted in accordance with law.

Registered Office(s)

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Srivastava, Neha, 1981- editor.

Title: Green synthesis of nanomaterials for bioenergy applications / edited by

Neha Srivastava, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India, Manish Srivastava, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India, P.K. Mishra, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India, Vijai Kumar Gupta, ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology School of Science, TALLINN University Of Technology, Estonia.

Description: First edition. | Hoboken, NJ : Wiley-Blackwell, 2020. | Includes bibliographical references and index.

Identifiers: LCCN 2020029279 (print) | LCCN 2020029280 (ebook) | ISBN 9781119576815 (cloth) | ISBN 9781119576808 (adobe pdf) | ISBN 9781119576792 (epub)

Subjects: LCSH: Biomass energy. | Green chemistry. | Organic compounds-Synthesis-Technological innovations. | Nanostructured materials-Synthesis. | Nanostructured materials-Industrial applications.

Classification: LCC TP339 .G753 2020 (print) | LCC TP339 (ebook) | DDC 660.028/6-dc23

LC record available at <https://lccn.loc.gov/2020029279>

LC ebook record available at <https://lccn.loc.gov/2020029280>

Cover Design: Wiley

Cover Image: © Chokniti Khongchum/Shutterstock

List of Contributors

Nihan Arabaci

Department of Biology
Faculty of Arts and Sciences Çukurova University
Adana
Turkey

Pietro Bartocci

Department of Engineering
University of Perugia
Perugia
Italy

Gianni Bidini

Department of Engineering
University of Perugia
Perugia
Italy

Ayse Demirbas

Faculty of Fisheries and Aquatic Sciences
Recep Tayyip Erdogan University
Rize
Turkey

Maduraimuthu Djanaguiraman

Department of Crop Physiology
Tamil Nadu Agricultural University
Coimbatore
Tamil Nadu
India

Kashyap Kumar Dubey

Bioprocess Engineering Laboratory
Department of Biotechnology
Central University of Haryana

Mahendergarh
Haryana
India

Francesco Fantozzi
Department of Engineering
University of Perugia
Perugia
Italy

Fausto Gallucci
Inorganic Membranes and Membrane Reactors
Department of Chemical Engineering and Chemistry
Eindhoven University of Technology
Eindhoven
the Netherlands

Song Hu
State Key Laboratory of Coal Combustion
Huazhong University of Science and Technology
Wuhan
Hubei
China
China-EU Institute for Clean and Renewable Energy
Huazhong University of Science and Technology
Wuhan
Hubei
China

Indu
Bioprocess Engineering Laboratory
Department of Biotechnology
Central University of Haryana
Mahendergarh
Haryana
India

Kalpesh B. Ishnava

Assistant professor

Ashok and Rita Patel Institute of Integrated Studies and Research in Biotechnology and Allied Sciences (ARIBAS)

Anand

Gujarat

India

Tuna Karaytuğ

Department of Biology

Institute of Natural and Applied Sciences

Çukurova University

Adana

Turkey

Subburamu Karthikeyan

Department of Renewable Energy Engineering

Agricultural Engineering College and Research Institute

Tamil Nadu Agricultural University

Coimbatore

Tamil Nadu

India

Ahmet Kati

Department of Detergent and Chemical Technologies

Hayat Kimya Research and Development Center

Kocaeli

Turkey

Thangavelu Kiruthika

Department of Renewable Energy Engineering

Agricultural Engineering College and Research Institute

Tamil Nadu Agricultural University

Coimbatore

Tamil Nadu

India

Mrinal Kanti Mandal

Department of Chemical Engineering
NIT Durgapur
Durgapur
West Bengal
India

Vishal Mishra

School of Biochemical Engineering IIT (BHU)
Varanasi
Uttar Pradesh
India

Ali Nematollahzadeh

Chemical Engineering Department
University of Mohaghegh Ardabili
Ardabil
Iran

Pavlos Nikolaidis

Department of Electrical Engineering
Cyprus University of Technology
Limassol
Cyprus

Ismail Ocsoy

Department of Analytical Chemistry
Faculty of Pharmacy
Erciyes University
Kayseri
Turkey

Balasubramaniam Prabha

Department of Renewable Energy Engineering
Agricultural Engineering College and Research Institute
Tamil Nadu Agricultural University
Coimbatore

Tamil Nadu
India

Desikan Ramesh

Horticultural College and Research Institute for Women
Tamil Nadu Agricultural University
Tiruchirappalli
Tamil Nadu
India

Giovanni Russo

Department of Engineering
University of Perugia
Perugia
Italy

Karishma I. Sheikh

Ashok and Rita Patel Institute of Integrated Studies and
Research in Biotechnology and Allied Sciences (ARIBAS)
Anand
Gujarat
India

Veer Singh

School of Biochemical Engineering
IIT (BHU)
Varanasi
Uttar Pradesh
India

Øyvind Skreiberg

SINTEF Energy Research
Trondheim
Norway

Zahra Vaseghi

Chemical Engineering Department
University of Mohaghegh Ardabili

Ardabil
Iran

Liang Wang
SINTEF Energy Research
Trondheim
Norway

Priyanka Yadav
School of Biochemical Engineering
IIT (BHU)
Varanasi
Uttar Pradesh
India

Ankush Yadav
Bioprocess Engineering Laboratory
Department of Biotechnology
Central University of Haryana
Mahendergarh
Haryana
India

Haiping Yang
State Key Laboratory of Coal Combustion
Huazhong University of Science and Technology
Wuhan
Hubei
China
China-EU Institute for Clean and Renewable Energy
Huazhong University of Science and Technology
Wuhan
Hubei
China

Ebru Sebnem Yilmaz
Department of Biology
Faculty of Arts and Science

Hatay Mustafa Kemal University
Antakya
Hatay
Turkey

Foreword

Bioenergy is a potential option to replace fossil fuels effectively and in a sustainable manner. Various known bioenergy options such as biohydrogen, biogas, biomethane, bioethanol, biomethanol, biobutanol, algal biofuels, and biodiesel are supposed to be very promising alternative renewable energy options for eliminating severe environmental issues. Significant efforts have been made to explore various bioenergy options and related technologies in practice. However, its commercial viability and symmetrical distribution are still a long way from practical implementation of bioenergy technologies. This book series explores the use of nanotechnology, which is grabbing the attention of the biofuels sector by playing the role of enhancer, to improve bioenergy production technology. Application of nanotechnology is emerging as new area for bioenergy production through its contribution as catalyst, enzyme, and microbial immobilizer. Nanomaterials have enormous potential for commercial markets and the industrial market is expected to grow and become more flexible in coming decades. Therefore, with an accelerating demand for viable and sustainable economic bioenergy production, the potential combination of bioenergy and nanotechnology area must be explored.

Green Synthesis of Nanomaterials for Bioenergy Applications is much needed contribution to this series and I am happy to write this positive and satisfactory message. The book contains nine chapters covering green synthesis and characterization of nanomaterials for cost-effective bioenergy applications. The current world scenario of bioenergy and application of nanotechnology in bioenergy production, different immobilization methods for enhancing

bioenergy production, synthesis, and mechanism of nanomaterial for economic bioenergy production with green approach are presented and discussed in detail. The book presents a new horizon of advancement and sustainable solutions for the improvement of bioenergy production in the form of nanotechnology. These chapters suggest that the application of nanotechnology will play a major role in bioenergy production and they will serve as gems for those working in the relevant fields including scientists, researchers, teachers, and students.

I am taking the opportunity to congratulate Dr. Neha Srivastava [IIT (BHU) Varanasi], Dr. Manish Srivastava [IIT (BHU) Varanasi]), Prof. (Dr.) P.K. Mishra [IIT (BHU) Varanasi], and Dr. Viaji Kumar Gupta for their significant efforts in bringing about this publication in order to fulfill the needs of scientists, teachers, researchers, and students. My congratulations to all the editors for their contribution, devotion, and dedication in this endeavor. All the authors and editors of this book deserve sincere appreciation for their commendable achievements.

Dr. Anthonia O'Donovan

*Applied Biology and Biopharmaceutical Science,
School of Science and Computing,
Galway-Mayo Institute of Technology,
Galway, Ireland*

Date: 10.06.2019

Acknowledgements

The editors are thankful to all the academicians, scientists and researchers whose contributions have supplemented this book presentation effectively. We are also thankful to our parents and loved once whose blessings & constant support pumped academic activities deeply. It is natural that some mistakes might have tiptoed in text involuntarily and for these we owe responsibility. Moreover, we are very grateful to all contributors for their contribution in present book. We are also thankful to Wiley for giving this opportunity to editors and Department of Chemical Engineering & Technology, IIT (BHU) Varanasi, U.P., India for all technical support. We thank them from the core of our heart. Editor Manish Srivastava acknowledges the Science and Engineering Research Board for SERB-Research Scientist Award-2019 and also to DST, Govt of India for the DST-INSPIRE Faculty Award [IFA13-MS-02] 2014.

About the Editors

Dr. Neha Srivastava

Institute Post-Doctoral Fellow, Department of Chemical Engineering and Technology

IIT (BHU) Varanasi, Varanasi-221 005, U.P., India

Mobile no. +91-9 988 062 681, Email:

sri.neha10may@gmail.com

Field of Expertise: Biofuels production, microbial bioprocessing, and enzyme technologies

Neha Srivastava is currently working as a post-doctorate fellow in the Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, India. She has published 26 research articles in peer-reviewed journals and has filed three patents. She completed her PhD from Department of Molecular and Cellular Engineering, SHIATS, India in 2016 in the area of bioenergy. Neha has been received six Young

Scientist Awards. Presently, she is working on biofuels production (cellulase enzymes; production and enhancement; biohydrogen production from waste biomass; bioethanol production).

Dr. Manish Srivastava

SERB-Research Scientist

Department of Chemical Engineering and Technology
IIT (BHU) Varanasi, Varanasi-221 005, U.P., India

E-mail: 84.srivastava@gmail.com,
manish_mani84@rediffmail.com

Contact no: + 91-7 503 757 601

Field of Expertise: Synthesis of nanomaterials and their application as catalysts for development of electrode materials in energy storage, biosensors, and biofuels production.

Manish Srivastava has worked as DST INSPIRE faculty in the Department of Physics and Astrophysics, University of Delhi, India during June 2014 to June 2019. Currently he is working as SERB-Research Scientist in the Department of Chemical Engineering and Technology IIT (BHU), Varanasi, India. He has published 46 research articles in peer-reviewed journals, authored several book chapters, and filed one patent. He worked as a post doctorate fellow in the Department of BIN Fusion Technology, Chonbuk National University from August 2012 to August 2013. He was an Assistant Professor in the Department of Physics, DIT School of Engineering, Greater Noida, from July 2011 to July 2012. He received his PhD in Physics from the Motilal Nehru National Institute of Technology, Allahabad,