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Preface

Polymer nanocomposites (PNCs) are multiphase, multicomponent materials in which
one or more components come in the form of particulates with the size less than 100
nm in at least one spatial dimension. The particulates (dispersed phase or fillers) can
be metal, ceramic, carbon, or even polymer nanocrystals; they could have spherical,
cylindrical, platelet, or other shapes; they can possess various chemical, mechanical,
optical, or electrical properties. The polymer matrix, in turn, can be thermoplastic or
thermoset; the polymer can be partially crystalline, rubbery, or glassy. One example
of a PNC is cross-linked styrene-butadiene rubber with nanoscopic silica or carbon
black filler particles, along with other additives, included in varying amounts to create
car tires with good traction and acceptable rolling resistance and wear properties.
Another example is a typical paint, where sub-100-nm pigments can be added to a
liquid formulation, which then undergoes the processes of drying and film formation
to create a nanocomposite coating seen on the walls of our houses and on the bodies
of our vehicles. In these and other cases where PNCs have already found significant
use, including in consumer products such as shoe soles, packaging, and membranes,
even minor adjustments to the formulation to improve the material properties can
have significant practical implications. It is thus important to develop the
Formulation!Structure!Property!Performance roadmap, in which both experi-
mental and theoretical/modeling studies are utilized.

Nanocomposite modeling has made significant progress in recent decades, and
many excellent reviews highlighting various specific topics have been published in
recent years. Yet, with some notable exceptions (such as “Modeling and Prediction
of Polymer Nanocomposite Properties,” edited by Vikas Mittal, Wiley, 2012), there
have been very few books surveying multiple theoretical methods and analyzing
multiple topics under the same cover. Indeed, in order to successfully develop, say,
a nanocomposite gas separation membrane, one needs to consider the question
of the nanoparticle design (length and density of grafted ligands), their dispersion in
the polymer matrix, the processability of the material, and lastly, the gas perme-
ability and selectivity. This design requires multiscale, multiphysics, interdisci-
plinary modeling that does not come naturally even to the best researchers.
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In putting this book together, we hope to stimulate such efforts and highlight some
successful examples.

The structure of the book can be described as follows. The first three chapters
describe molecular or mesoscale approaches to predict the structure, dispersion, and
nanoscale morphologies of nanocomposite materials, given the nanoparticle shape
and loading and, in some cases, the length and density of grafted ligands. The next
two chapters discuss the dynamics of nanocomposites, concentrating specifically on
the behavior of polymer chains at and near the particle surfaces. The remaining six
chapters deal with the prediction of mechanical, transport, electrical, and optical
properties of nanocomposites, and the implications for product design. We now
proceed to describe each chapter more specifically.

In Chap. 1, Arthi Jayaraman discusses the use of the polymer reference inter-
action site model (PRISM) theory, which is generally applied at the coarse-grained
level and includes monomer-scale packing effects along with overall chain and
nanoparticle statistical behavior. PRISM requires information about the polymer
conformations as an input, and this can be either assumed or calculated self-
consistently from molecular simulations as is briefly discussed. A recently devel-
oped open-source code pyPRISM is described that allows for easy use of these
methods.

In Chap. 2, Valeriy V. Ginzburg describes the application of density functional
theory (DFT) to PNCs, which is also generally applied at the coarse-grained level.
This approach, based on classical statistical mechanical functionals that calculate
the free energy from the density profile, has been particularly useful for describing
monomer and nanoparticle packing in confinement or near surfaces. The chapter
first details several examples of standard DFT methods, including calculations
of the polymer-mediated interactions between polymer-grafted spherical, rod, and
plate-shaped particles. The combination of DFT with self-consistent field theory
(SCFT) is then discussed. As is made clear by several examples, this is especially
attractive to describe nanoparticle behavior in systems with long-range microphase
separation such as in block copolymers (where SCFT has found widespread
application for systems without nanoparticles).

In Chap. 3, Robert A. Riggleman and co-workers review their newly developed
coarse-grained method of simulating nanocomposite morphologies, polymer
nanocomposite field theory (PNC-FT). Based on the state-of-the-art polymer field
theory, PNC-FT incorporates the nanoparticles via the excluded volume interac-
tions (“cavity functions”) and enables the evaluation of the free energy of various
nanoscale structures. The authors discuss the application of their modeling
approach to predict the distribution of “hairy” nanospheres in drying polymer films;
calculate the effective interactions between nanoparticles with multicomponent
ligands; and evaluate the interaction between nanorods in a cylinder-forming block
copolymer film. Similar to SCFT-DFT, PNC-FT is now widely used to predict
nanocomposite equilibrium structures and morphologies.

In Chap. 4, Argyrios V. Karatrantos and Nigel Clarke describe the dynamics of
polymers near the nanofiller surfaces, and specifically the impact of the nanoparticle
size and the particle–polymer interaction on the relaxation time, the self-diffusion

vi Preface



coefficient, and the glass transition temperature. They utilize coarse-grained
molecular dynamics (CG-MD) to show that the mobility of the polymer chains near
a strongly attracting particle surface is severely depressed compared to the bulk
polymer; near a weakly attracting or repulsive surface, on the other hand, the
mobility seems to be slightly enhanced. Overall, CG-MD provides a very useful
insight into the interfacial dynamics of PNCs.

In Chap. 5, Jack F. Douglas, Francis W. Starr, and co-workers attack a very
similar problem using a combination of CG-MD and analytical scaling theories.
They specifically investigate the relationship between the glass transition temper-
ature shift in nanocomposite materials and the density changes induced by the
addition of nanoparticles. The authors discuss the relationship between the mobility
gradient scale and the density gradient scale, and also comment on the similarities
and differences between nanocomposites and thin films in terms of their glass
transition and glassy dynamics.

In Chap. 6, Alexey V. Lyulin and co-workers describe the use of multiscale
modeling to predict the transport properties of polyelectrolyte membranes (PEMs).
Such membranes are used in fuel cells and batteries. The authors discuss how the
addition of nanoparticles (such as graphene oxide or silicon dioxide) can influence
the proton conductivity through the membrane by impacting the phase separation
between the water-rich and polymer-rich domains, as well as the diffusion coeffi-
cient and mobility of water near the particle surfaces. Several relevant simulation
techniques, from ab initio simulations of electronic structure to classical atomistic
molecular dynamics to coarse-grained dynamic density functional theory (DDFT),
are employed in this multiscale modeling study.

In Chap. 7, Nitin K. Hansoge and Sinan Keten describe the use of multiscale
modeling to predict mechanical properties of matrix-free (or “one-component
nanocomposites”) assemblies of “hairy nanoparticles.” They start by discussing the
“energy renormalization” procedure to go from atomistic to coarse-grained
molecular dynamics. Using CG-MD, they calculate the morphology of the
nanocomposite (i.e., the crystalline structure of the rigid nanoparticle cores sepa-
rated by the soft ligands). They then used CG-MD to calculate mechanical prop-
erties (Young’s modulus and toughness) and generate Ashby plots and Pareto fronts
to come up with the optimal designs to balance the two properties. Finally, an
approach is described whereby the conformational degrees of freedom for the
ligands can be integrated out, allowing for computationally inexpensive mesoscale
models involving only the particle cores interacting via effective pairwise potential
of mean force (PMF).

In Chap. 8, Pavan K. Valavala and Gregory M. Odegard review various
approaches to predict mechanical properties of composites and nanocomposites.
They start by differentiating between discrete-medium (like MD) and
continuous-medium models, and provide an extensive overview of the latter.
Within the continuous-medium framework, the authors distinguish between ana-
lytical micromechanical theories and computational finite element analysis (FEA),
both of which are based on linear elasticity and enable the prediction of linear
elastic moduli (Young’s modulus and shear modulus for the case of isotropic
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materials). Multiscale modeling is also discussed for those cases where a number of
disparate length scales is involved.

In Chap. 9, Valeriy V. Ginzburg and Jian Yang describe theoretical and mod-
eling approaches to the prediction of thermal conductivity (critically important in
many applications, including electronics and transportation). Similar to the previous
chapter, the authors discuss the use of analytical micromechanical models and FEA.
The role of interfacial thermal resistance—often leading to thermal conductivity
being significantly lower than expected—is also reviewed.

In Chap. 10, Michael J. A. Hore discusses ways to predict optical and electrical
properties of PNCs. Calculating those properties requires solving Maxwell’s
equations in complex media, at either very high frequencies (optical) or low fre-
quencies (electrical). Optical properties of interest include scattering and absorption
cross section, UV–Vis spectra, and plasmonic resonances. As the author shows, the
calculation techniques here range from analytical theories (Rayleigh and Mie
scattering) to more computationally expensive finite difference, time domain
(FDTD) simulations. For the case of electrical properties (static electrical conduc-
tivity), the author emphasizes the importance of percolation (infinite clusters of
conducting bonds) and simple methods to predict it (resistor network models). The
dependence of electrical conductivity on the conducting filler loading, shape, and
alignment is also discussed.

Finally, in Chap. 11, Craig Burkhart, L. Catherine Brinson, and co-workers
describe the application of both first-principles and data-driven approaches to the
design of nanocomposite materials for automotive tires. The material considered is
carbon-black (CB)-filled styrene-butadiene rubber (SBR). The authors discuss the
importance of experimental characterization (microscopy) to precisely determine
the morphology of the CB network in the SBR matrix; once this morphology is
determined, it can serve as input into FEA simulations analyzing the viscoelastic
behavior of the material. The predicted linear viscoelastic (LVE) response can be
then compared to the “optimal” response known to the industry. Given the com-
plexity of the process, one also looks to simplify the search for best compositions
by employing machine learning (ML) tools, and the authors highlight their roadmap
in this quest.

In summary, PNC material designers seeking to take advantage of many
potential options for polymer and nanoparticles, including their chemical types and
amounts, length/size, and architecture (e.g., whether and to what extent chains are
cross-linked or grafted to the nanoparticle surface), can turn to modeling approa-
ches to understand how PNC component properties lead to desirable overall
material behavior. While the chapters of this book, in order, are meant to present a
coherent picture of the range of current PNC modeling techniques from small to
large scales and from structure to dynamics to specific material properties, each
chapter is written to be independent and readable by itself. We hope the reader will
take away an understanding of which modeling methods can be effective and how
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they can be used, depending on the system and properties of interest, to closely
connect synthetically controllable polymer and particle variables to the resulting
overall PNC structure and/or dynamics, and allow for rational design of future
materials.

Midland, USA Valeriy V. Ginzburg
Columbus, USA Lisa M. Hall
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Chapter 1
Polymer Reference Interaction Site
Model (PRISM) Theory and Molecular
Simulation Studies of Polymer
Nanocomposites

Arthi Jayaraman

Abstract This chapter is focused on Polymer Reference Interaction Site Model
(PRISM) theory and its use along with molecular simulation techniques for studying
polymer nanocomposites (PNCs). In the first section of this chapter, we summarize
key experimental and computational studies on PNCs from the literature to show the
reader the types of fundamental questions that these studies have tackled. These are
the types of questions that one could also use PRISM theory to answer. Then, we
describe the basics of PRISM theory with relevant equations and show how PRISM
theory is linked to molecular simulations to obtain meaningful results pertaining
to PNC structure and thermodynamics. We also bring to the readers’ attention the
open-source package, pyPRISM, developed for both expert and novice computa-
tional researchers to easily incorporate PRISM theory into their PNC studies. We
then discuss briefly past, present, and potential new directions of PNC studies using
PRISM theory and conclude the chapter highlighting some of the limitations of
PRISM theory.

1.1 Introduction

Polymer nanocomposites (PNCs) are a specific class of macromolecular soft mate-
rials that have garnered significant attention in the past two to three decades from
researchers around the world. This is evident from the many review articles and
perspectives on this topic [1–17]. As the name suggests, a polymer nanocomposite is
a mixture of the polymer (matrix) as the majority component and nanoscale additives
(fillers) as the minority component. The chemical and physical nature of the fillers
andmatrix and their relative composition in the PNC is selected based on the eventual
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application of the PNC. There is a broad range of applications where PNCs have been
used, such as in automobile parts (e.g., car bumpers, tires) [18], aerospace industry
(e.g., components of thermal resistance aircraft body parts) [19], in separations (e.g.,
membranes for gas transport and absorption) [20], in electronics (e.g., organic/hybrid
solar cells) [21], and in biomaterials (e.g., tissue mimics, drug delivery vehicles)
[22]. To achieve the desired function or macroscopic property of the PNC needed
for these applications, one has to select the components of the PNCs based on their
individual properties (e.g., biocompatible matrix and filler when used in biomedical
applications, electron donating/accepting matrix and filler in organic/hybrid elec-
tronics) as well as on how they interact and spatially organize within the PNC (i.e.,
structure/morphology). Additionally, the ease during processing (e.g., response to
shear, temperature) of the PNC, a critical feature for large-scale manufacturing, is
another variable to consider during the material selection process. The non-trivial
relationship between the structure/morphology, dynamics, and thermodynamics for
a selected filler and matrix at a specific composition within PNCs has motivated
exciting research aimed at unraveling the complex interplay between PNC design
and its macroscopic behavior. In particular, computational tools (e.g., coarse-grained
models, theory, and simulation) have become valuable tools in this quest to both
predict PNC behavior for a variety of PNC design parameters as well as to explain
less understood experimental observations in PNCs.

This chapter specifically focuses on how Polymer Reference Interaction Site
Model (PRISM) theory and molecular simulation methods have been used to tackle
questions about PNC structure and thermodynamics. To help the reader appreciate
the value of these tools,wefirst review in Sect. 1.2 relevant past experimental, compu-
tational, and theoretical work on PNC structure and thermodynamics to describe the
types of fundamental questions that researchers working with PNCs tackle and that
PRISM theory can be used for. Then, in Sect. 1.3, the details of PRISM theory,
the open-source package for readers wishing to use this method, and complemen-
tary molecular simulation methods used along with PRISM theory are discussed.
In Sects. 1.4 and 1.5, the past, present, and potential new directions for PRISM
theory-based studies of PNCs are described along with the key limitations of PRISM
theory.

1.2 Relevant Past Experimental and Computational
Studies on PNCs

Past studies focused on PNCs (see references in review articles [1–13, 15, 17]) have
shown that any experimental or computational tool that is used to study PNC structure
andmorphology should be able to tackle/probe all relevant length scales including the
size of the monomer, the polymer chain, the nanoscale (bare or unmodified) particle
or filler, and if phase separated, size of the domains of fillers andmatrix chains. As the
nanoscale dimension of the fillers decreases (e.g., curvature of spherical nanoparticle
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increases), the total interfacial area between filler and matrix in the PNC increases,
which in turn affects the polymer chain conformation (e.g., radius of gyration) as
compared to its (zero-filler or neat polymer) melt-state ideal chain conformation.
The chain conformation also alters the effective filler-matrix interaction. If one sets
aside the polymer and filler chemistry and the resulting enthalpic driving forces from
consideration for amoment, theywill realize that the effectivefiller-matrix interaction
is purely a function of the entropic driving forces determined by the filler shape
and size, the matrix polymer molecular weight and architecture, and their relative
volume fractions in the PNC. The effective filler-matrix or filler-filler interactions
dictate whether the filler and the polymer matrix remain mixed (i.e., dispersed filler
morphology) or demixed (i.e., aggregated filler morphology) within the PNC. If one
also takes into consideration the actual chemistries of the (unmodified) filler and
matrix polymer(s), the enthalpic driving forces arising from the filler-filler, matrix-
matrix, and filler-matrix (direct) interactions will cooperate/compete with entropic
driving forces to alter/retain the chain conformations and the effective filler-matrix
interactions that lead to dispersed/aggregated filler morphologies.

To gobeyond the (limited) design space of PNCswithunmodified orbare additives
and incorporate additional tuning parameters that can alter the energetic and entropic
driving forces for the PNCmorphology and dynamics, one can functionalize the filler
surfaces. Themany advances in synthetic schemes in the past two decades have paved
the way for controllably engineering functionalized/grafted/tethered nanoparticles
at the molecular level with a variety of ligand—surfactants, polymers, proteins, and
nucleic acids—at a desired grafting density, dispersity, and with desired chemistries.
PNCs comprised of polymer-grafted nanoparticles (PGNs) have garnered much
interest within the PNC community, both from computational and experimental
researchers. References in review articles [10–13, 15–17] have established the link
between the molecular design of PGNs and the macroscale structure of PGNs within
a polymer matrix for linear (architecture) graft andmatrix polymers. At high grafting
density or the brush-limit, if the chemistry of the graft andmatrix polymer is the same
or similar, the system is driven purely by entropic driving forces. Much focus has
been placed on tailoring the PGNs such that the resulting entropic driving forces favor
mixing of PGNs and matrix chains. The extent to which the matrix chains mix with
and penetrate the grafted layer is termed extent of ‘wetting.’ As wetting increases,
the matrix chains and PGNs mix, and the extent of filler dispersion within the PNC
increases. The key design rules for tuning entropic driving forces to favor wetting are:
(a) use matrix polymers of a smaller molecular weight than that of the graft polymer,
with the curvature of the filler particle and the value of grafting density dictating how
much smaller the matrix chains need to be compared to the graft chain to achieve
wetting; (b) include a high dispersity in molecular masses of the graft polymers so
as to include few long graft polymers and many short polymers within the grafted
layer; and (c) if grafting density and particle size are fixed, choose graft and matrix
polymer chemistries that are less flexible and have higher persistence lengths. If
the matrix and graft polymer chemistries are dissimilar, then the Flory-Huggins χ

parameter between the matrix and graft polymer chemistry together with the other
factors that govern the entropic driving forces dictateS whether the PGNs and the



4 A. Jayaraman

matrixwill demix ormix at a given temperature. Using a negativeχ graft–matrix pair,
one can improve grafted layer wetting and push the limits of PGN volume fraction
that exhibit PNC dispersion. Recent studies [23–25] have shown that the first-order
dispersion to aggregation transition is not synonymous with the wetting to dewetting
transition; the latter occurs continuously as the PNC transitions from dispersed to
aggregated states. For linear graft and matrix polymers, at low grafting density, the
filler surface may not be completely shielded by the grafted chains from the matrix
chains and then the energetic driving forces based on the direct filler-graft, filler-
filler, and filler-matrix interactions along with the entropic driving forces decide the
extent of mixing/demixing of the PGNs and the matrix.

Moving away from a traditional definition of PNCs that has a matrix and a filler
component mixed together, one could also consider a melt of PGNs in the absence
of a matrix making an effectively one-component PNC. These systems are termed
‘matrix-free PGNs’ and have been receiving attention in the past few years (see for
example studies in references [20, 26–29]). One advantage of using these matrix-
free PGNs is the ease of processing without dealing with the hassles of creating a
homogeneously mixed PNC. Second advantage is the regularity of particle spacing
in a polymer melt accomplished through the grafted polymer segments extending
from the nanoparticle core. This regularity in interparticle spacing can be exploited in
applications like optics, photonics, separation of small molecules, etc. In the absence
of freematrix chains, at high grafting density, the grafted chains create a dense region
around the core extended outward. Depending on the molecular weight of the grafted
chains and the grafting density, one could observe interpenetration between grafted
chains on adjacent particles or isolated ‘soft’-grafted particles arranged in an array.
Instead of melts, if one created a dense solution of matrix-free PGNs, one can create
porous polymer material that can be used for separations [20, 29, 30]. In a recent
study conducted on a dried matrix-free PGN solution, upon exposure to a solvent,
a combination of small angle x-ray and neutron scattering results showed that the
small molecule solvent uniformly distributes around the nanoparticle surface [29].
Going beyond homopolymers as grafts, one could also use block copolymer grafts
in such matrix-free PGN melts/dense solutions to achieve matrix-free PNCs with
nanoparticles at precise periodicities within microphase-separated block copolymer
domains. For example, in a recent experimental study done on poly(styrene-block-(n-
butyl acrylate))-grafted silica nanoparticles, the authors found that at higher grafting
density, there was better microphase separation of the block copolymers and more
uniform filler (core) dispersion in the covalently linked matrix polymer than at lower
grafting density with similar polymer chain length and composition [31].

In thin films of PGNs with and without matrix, additional factors including the
competing PGN interaction with the free surface, substrate and matrix will affect
structure and dynamics. Kim and Green [32], for instance, showed the three regimes
of structural organization—PGNs phase separating from the matrix and residing
at the free surface and bottom substrate (unstable film is regime I and stable film is
regime II) or PGNs beingmiscible within the film (regime III). They also find that the
phase separation in regime I is analogous to thin film of polymer blends (specifically
micelles in homopolymers) while the phase separation in regime II is like that seen
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in hard spheres in an athermal homopolymer melt. Going beyond homogeneous
surfaces, recent experiments on topographically patterned substrate [33] show that
the segregation of PGNs can be achieved by varying the relative confinement entropy
of grafted versusmatrix chains. In studies ofmatrix-free PGNs adsorbed on a surface,
it has been found that increasing the monomer–surface adsorption strength leads to
extended polymer chain conformations and adsorption on the surface and adoption of
a ‘canopy’ shape. The grafted chains from neighboring ‘canopies’ can interpenetrate
at low-moderate graft density and low surface attraction strength. In contrast, at high
graft density and/or high surface attraction strengths, the spacing between particles
increases and interparticle entanglements reduce. Self-assembly within monolayers
of PGNs on surfaces as a function of core–core and core–polymer interactions has
also been shown using simulations [34]. These simulations show the relative values
of these interactionswhere one can observe dispersed PGNs, single PGNwide strings
of PGNs, stripes of PGNs with width equal to two or three PGNs and clusters of
PGNs.

PRISM theory has played an important role in some of the above studies. Before
describing these studies in Sect. 1.4, it is useful to first go into the basics of PRISM
theory, how it links to simulations and ways one could conduct PRISM theory
calculations, in the next section.

1.3 PRISM Theory

1.3.1 Basics

PRISM theory was developed by Schweizer and Curro [35, 36] from the Reference
Interaction Site Model (RISM) theory [37–40] to study chain molecules (i.e., poly-
mers). Its formalism is similar to theOrnstein–Zernike integral equation [40, 41]with
the total site–site intermolecular pair correlation function, hij(r), being related to the
intermolecular direct correlation function, cij(r), and intramolecular pair correlation
function, ωij(r). In Fourier space, PRISM theory takes on the form:

H
∧

(k) = �
∧

(k)C
∧

(k)
[
�
∧

(k) + H
∧

(k)
]

(1.1)

where each term is a matrix of size N × N for a system that can be modeled with
N types of interaction sites. For example, in a PNC comprised of homopolymer
matrix chains of chemistry A with bare nanoscale fillers of chemistry B, if all repeat
units along each matrix chain can be treated as equivalent sites of type A and each
nanofiller treated as a single site or collection of sites of type B, N would be equal to
2. If the PNC has PGNs, then the graft polymer site (A), matrix polymer site (B) and
particle site (C) make it a 3-site system (see Fig. 1.1), and thus, the matrices would
be 3 × 3. In that 3-site system, the components of the matrices in (1.1) will be:
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Fig. 1.1 Schematic of a polymer-grafted nanoparticle (PGN) and a matrix polymer chain, and the
definition of the three possible types of sites A, B, and C. The reader should note that in this figure,
for the grafted chains, the tethered end segment, the intermediate segments and the free end segment
are treated equally with the same type of site (type A). Similarly, for the matrix chain, the free ends
and intermediate segments are treating equally (with type B site). In principle, this could be relaxed
by using different types of sites representing various parts of the chains. As the number of sites
used to represent/model, the system increases so does the size of the matrices in (1.2a−c) and the
corresponding numerical complexity for solving the PRISM equations

H
∧

(k) =
⎡

⎢
⎣

ρ
pair
AA ĥ AA(k) ρ

pair
AB ĥ AB(k) ρ

pair
AC ĥ AC(k)

ρ
pair
BA ĥBA(k) ρ

pair
BB ĥBB(k) ρ

pair
BC ĥBC(k)

ρ
pair
C A ĥC A(k) ρ

pair
CB ĥCB(k) ρ

pair
CC ĥCC(k)

⎤

⎥
⎦ (1.2a)

in which ρ
pair
αβ = ραρβ and ρα and ρβ correspond to the site number densities of site

types α and β,

�
∧

(k) =
⎡

⎣
ρsi te
AA ω

∧

AA(k) ρsi te
AB ω

∧

AB(k) ρsi te
AC ω

∧

AC(k)
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BA ω

∧

BA(k) ρsi te
BB ω

∧
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BC ω

∧

BC(k)
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C A ω

∧
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∧
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∧

CC(k)

⎤
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where ρsi te
αβ = (ρα + ρβ) if α �= β otherwise ρsi te

αβ = ρα , and

C
∧

(k) =
⎡

⎣
ĉAA(k) ĉAB(k) ĉAC(k)
ĉB A(k) ĉBB(k) ĉBC(k)
ĉC A(k) ĉCB(k) ĉCC(k)

⎤

⎦ (1.2c)
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where cαβ = cβα . The design parameters of the PNC, for example, the filler composi-
tion (or volume fraction of filler), grafting density, and graft and/or matrix molecular
masses (i.e., chain lengths of the polymer) dictate the ρ i of the sites of type i.

The matrix elements of �
∧

(k) are the intramolecular pair correlation functions in
inverse space (or wave vector k) between sites i and j within a certain molecule;
these are known and given as an input to the (1.1). For some systems, these functions
can be derived analytically (e.g., ideal chain conformations in a polymer melt). The
analytical expression for a Gaussian chain conformation is

ω
∧

αβ(k) = 1 − f 2 − 2 f
n + 2 f n+1

n

(1 − f )2
(1.3)

where f is defined as f = exp
(−k2σ 2/6

)
, n is the number of monomers in the

Gaussian chain, and σ is the characteristic distance unit [42]. Similarly, (1.3) can be
used to model a freely jointed chain (FJC) with f = sin(kl)/kl, where l is the bond
length between sites along the chain [42]. For PGNs, analytic expressions for the
particle–graft and graft–graft ω

∧

αβ(k) have been derived when the number of grafted
chains on the surface is small [43–46]. The scattering community has also derived
many analytical forms of ω

∧

αβ(k) as ‘form factors’ for fitting the scattering data of
commonly studied polymer systems. However, in many cases, analytical expressions
forω

∧

αβ(k) for the PNCof interest does not exist. Rather than deriving a newanalytical
expression, one can simulate the PNC and sample configurations of the molecule of
interest to calculate the ω

∧

αβ(k) (see description in Sect. 1.3.2.1).
The matrix elements of H

∧

(k) and C
∧

(k) are usually unknown and are to be solved
for. Given two unknown matrices and one PRISM equation (1.1), we need one
more independent equation to solve for the two unknowns. This additional equa-
tion is called the closure relation. Closure relations connect the real-space direct pair
correlation functions cij(r), total intermolecular pair correlation function hij(r), and
pair-wise interaction potentials, Uij(r). Since the closures include pair-wise interac-
tion potentials, Uij(r), it is through these closures that the chemical details of the
PNC are specified. Examples of closures include Percus–Yevick (PY), Hypernetted
Chain (HNC), Mean-Spherical Approximation (MSA), Martynov–Sarkisov (MS),
and Laria–Wu–Chandler (LWC) [47, 48]. The choice of the type of closure used to
solve (1.1) is critical as this choice dictates how realistic or correct the PRISM theory
predictions are. We discuss this again in the limitations of this method (Sect. 1.5).
Therefore, the right closure must be found or developed for the system being studied.
For PNCs, based on agreement between PRISM theory and molecular simulations,
for mixtures of nanoparticles and homopolymers, many studies [43–46, 49–54] have
used the PY closure for polymer–polymer pair and polymer–particle pair, and the
HNC closure for particle–particle pair. If σ ij is the distance of closest approach
between sites i and j, (e.g., σ ij = d for monomer–monomer pairs and σ ij = (D +
d)/2 for particle–monomer pairs, where d is the size of the monomer site and D is
the size of the particle) the impenetrability condition applies inside the hard core.
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gi j (r) = 0 r < σi j (1.4a)

Outside the hard core, the PY approximation for ij pair of sites is written as

ci j (r) = (
1 − eβUi j (r)

)
gi j (r) r > σi j (1.4b)

and the HNC closure, often used for the particle–particle pair (hence the subscript
CC based on type of sites as shown in Fig. 1.1), is described as

cCC(r) = hCC(r) − ln gCC(r) − βUCC(r) r > D (1.4c)

Past studies by Schweizer and Yethiraj have suggested that molecular closures
[47, 55, 56] could prove more accurate for systems with strongly segregating poly-
mers or monomer species (e.g., strongly segregating copolymer matrix polymer or
copolymers grafts, or strongly segregating graft and matrix homopolymers). For this
statement to be confirmed for the PNC system at hand, one needs to conduct system-
atic comparisons of results from PRISM theory using atomic and molecular closures
against results from experiments and/or molecules simulation results.

After the closures have been selected, one can solve the above system of coupled
nonlinear integral (PRISM theory) equation and closure(s). Analytical solutions only
exist for atomic systems while numerical solutions are found for complex polymer
systems. In principle, one could select any method from existing numerical methods
used commonly to solve integral equations [57, 58]. Recent studies have employed
the KINSOL algorithm [59] with the line search optimization strategy which mini-
mizes the objective function along an optimum descent direction. KINSOL exhibits
convergence for complex nonlinear integral equations easier and faster as compared
to the Picard technique, which has also been used in some PRISM theory studies
[7, 58]. Irrespective of the numerical algorithm one chooses to use, upon solving the
PRISM equation and closure(s), one will obtain the total intermolecular pair corre-
lation functions, hij(r), which can be related to the gij(r) (=hij(r) + 1) and the partial
collective structure factors, Sij(k). The partial structure factors are the elements of
the S

∧

(k) matrix which are related to the direct pair correlation functions and total
pair correlation functions as

S
∧

(k) = C
∧

(k) + H
∧

(k) (1.5a)

These pair-wise structure factors can be compared to the corresponding pair
correlation functions from simulations or scattering results from experiments. By
obtaining thegij(r), one can calculate other properties of interest aswell. For example,
the potential ofmean force (PMF) between particles,WCC(r), can be calculated, from
the particle–particle pair correlation function as follows.

WCC(r) = −kT ln gCC(r) (1.5b)
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Similarly, the second virial coefficient can be calculated from gcc(r) for PNCs at
infinitely dilute concentrations. The pair-wise structure factors and the intermolecular
direct correlation function together also provide an estimate of the induced solvation
potential that one component (e.g., PGN) feels because of the other component (e.g.,
matrix chains); this is described in Sect. 1.3.2.2.

For some PNC design parameters, (e.g., stronger attractive interaction strengths,
large site size ratios, D/d, etc.), the numerical method selected may not yield any
solutions. This could be an issue with numerical convergence due to a poor initial
guess [57] or due to deviations from liquid-like behavior due to (micro/macro) phase
separation within the system. This is discussed further in the limitations described
in Sect. 1.5.

1.3.2 Linking to Molecular Simulation

PRISM theory calculations can be complemented by molecular simulations in
multiple ways and this section describes some of these synergies.

1.3.2.1 Providing Realistic Intramolecular Pair Correlation Function
(i.e., Shapes of Molecules)

Inmany past PRISM theory studies of PNCs (e.g., bare fillers in homopolymermatrix
or lightly grafted PGNs in homopolymer matrix) [43–46, 49–54] the intramolec-
ular pair correlation, �ij, was calculated by assuming ideal conformations of the
matrix chains. But, assuming ideal chain conformations for the polymer could be
far from reality in some systems. For example, the chains on a densely grafted
PGN or a copolymer-grafted particle have been shown to adopt non-ideal confor-
mations, and therefore, using ideal conformations for the grafted chains is not valid.
Similarly, the grafted chains in chemically dissimilar graft–matrix systems could
adopt extended (collapsed) configurations to initiate (deter) formation of energeti-
cally favorable (unfavorable) contacts with matrix chains. For such cases where an
off-the-shelf analytical expression of the intramolecular pair correlation, �ij, is not
available or existing analytical intramolecular pair correlation functions are not valid,
molecular simulations serve as a valuable tool for providing realistic intramolecular
pair correlation, �ij. For example, one can use molecular dynamics simulations
or Monte Carlo (MC) simulation techniques (e.g., see review articles on simu-
lations of polymers and PNCs [60–64]) to sample a single homopolymer-grafted
nanoparticle in a polymer matrix. These simulations provide the ensemble average
graft monomer–graft monomer, graft monomer–particle, matrix monomer–matrix
monomer intramolecular pair correlation functions. These correlation functions are
calculated using the Debye scattering relation [65, 66]
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ω
∧

αβ(k) =
〈

1
N total

Nα∑

i

Nβ∑

j

sin(k·ri j)
k·ri j

〉

(1.6)

in which α and β represent site types, Nα is the total number of sites of type α in
each molecule, Nβ is the total number of sites of type β in each molecule, N total =
(Nα + Nβ) if α �= β otherwise N total = Nα , ri j is the distance between sites i and j,
and the angle brackets represent ensemble averaging over uncorrelated snapshots in
a simulation trajectory.

In some cases, to reduce the computational intensity of having to simulate the
PGN(s) in a melt-like matrix, one could simulate separately a single matrix polymer
chain in vacuum and a single PGN in vacuum to obtain the pair-wise intramolecular
correlations. However, these vacuum simulations do not capture the effects of the
matrix chains on the grafted polymer configurations or vice versa, and thus, are
approximate intramolecular pair correlations.

1.3.2.2 Self-consistent PRISM Theory-Simulation Loop

PRISM theory and molecular simulations can also be linked together in a self-
consistent loop where the intramolecular pair correlation functions (e.g., chain
conformations) that are input to PRISM theory are provided by simulations of a
single PGN in an external medium-induced solvation potential that is obtained from
PRISM theory. The interdependence of the chain conformations and the medium-
induced solvation potential gives rise to the self-consistent loop (Fig. 1.2). The steps
involved in this self-consistent loop are described next.

First, the pair-wise decomposed medium-induced solvation potential, �ψ ij(r),
is obtained from the PRISM theory output. This pair-wise function describes the
interaction between any two sites i and j as mediated by all the other sites in the
system. The form of the solvation potential depends on the approximation used in its
derivation [67–72]. The PY and HNC forms of the solvation potential are as follows:

Δψ PY
i j (r) = −kBT ln

[
1 + cik(r) ∗ skk ′(r) ∗ ck ′ j (r)

]
(1.7a)

ΔψHNC
i j (r) = −kBT cik(r) ∗ skk ′(r) ∗ ck ′ j (r) (1.7b)

where ‘*’ in (1.7a) and (1.7b) denote a convolution integral in spatial coordinates and
kB is the Boltzmann constant and T is the temperature. The terms on the right-hand
side of (1.7a) and (1.7b) are the real-space pair-wise direct pair correlation function
and real-space analog of the structure factors. The solvation potential, �ψ ij(r), is
then input to a molecular simulation of a single PGN and/or a single matrix chain.
In the simulation, the total interaction potential between sites i and j separated by a
distance r,U tot

i j (r) is defined as the sum ofUij(r) and the solvation potential,�ψ ij(r),
obtained from the preceding PRISM step. To ensure the sites in the PRISM theory



1 Polymer Reference Interaction Site Model … 11

Fig. 1.2 Flowchart of self-consistent PRISM—molecular simulation approach. ‘pyPRISM’ is
the open-source package which the reader could use to conduct this calculation. This package
is described in Sect. 1.3.3. This figure is reprinted with permission from [58] (2018) American
Chemical Society

and molecular simulations represent the same thing, it is best to keep the model
chosen to represent the PGN and the matrix polymer to be the same in both PRISM
theory and molecular simulations.

Next, the PRISM theory calculation and molecular simulation steps are repeated
one after the other. In PNCswith PGNs, one could either alternately simulate a single
PGN or a single matrix chain with the newest set of pair-wise solvation potentials
from PRISM calculations or simultaneously simulate the single PGN and a single
matrix chain (in parallel) with the same set of solvation potentials calculated from
the previous PRISM step. Irrespective of the simulation method, the intramolecular
structure factors between site pairs are sampled from uncorrelated configurations and
the ensemble average of the intramolecular structure factors is calculated to serve as
the new input for the following iteration of PRISM theory calculations.

The self-consistent PRISM theory—molecular simulation loop iterations are
continued until convergence is achieved. One convergence criterion is the sum of
squared errors (SSE) of �ψ ij(r) between iterations n and n + 1:


