## Snyder & Champness **Molecular Genetics of Bacteria** FIFTH EDITION

Manna Participation

Tina M. Henkin and Joseph E. Peters



| The Genetic Code | The | Genetic | Code |
|------------------|-----|---------|------|
|------------------|-----|---------|------|

|                | Second position |     |      |      |                |  |
|----------------|-----------------|-----|------|------|----------------|--|
| First position | U               | С   | Α    | G    | Third position |  |
|                | Phe             | Ser | Tyr  | Cys  | U              |  |
| U              | Phe             | Ser | Tyr  | Cys  | С              |  |
|                | Leu             | Ser | Stop | Stop | А              |  |
|                | Leu             | Ser | Stop | Trp  | G              |  |
|                | Leu             | Pro | His  | Arg  | U              |  |
| С              | Leu             | Pro | His  | Arg  | С              |  |
|                | Leu             | Pro | Gln  | Arg  | А              |  |
|                | Leu             | Pro | GIn  | Arg  | G              |  |
|                | e               | Thr | Asn  | Ser  | U              |  |
| А              | e               | Thr | Asn  | Ser  | С              |  |
|                | e               | Thr | Lys  | Arg  | А              |  |
|                | Met             | Thr | Lys  | Arg  | G              |  |
|                | Va              | Ala | Asp  | Gly  | U              |  |
| G              | Va              | Ala | Asp  | Gly  | С              |  |
|                | Va              | Ala | Glu  | Gly  | А              |  |
|                | Va              | Ala | Glu  | Gly  | G              |  |



## Names of Nucleic Acid Subunits

|          |            |                        | Abbreviation |      |  |
|----------|------------|------------------------|--------------|------|--|
| Base     | Nucleoside | Nucleotide             | RNA          | DNA  |  |
| Adenine  | Adenosine  | Adenosine triphosphate | ATP          | dATP |  |
| Guanine  | Guanosine  | Guanosine triphosphate | GTP          | dGTP |  |
| Cytosine | Cytidine   | Cytidine triphosphate  | CTP          | dCTP |  |
| Thymine  | Thymidine  | Thymidine triphosphate |              | dTTP |  |
| Uraci    | Uridine    | Uridine triphosphate   | UTP          |      |  |

## **Table of Contents**

C<u>over</u> Table of Contents About the Companion Website Title Page Preface **Acknowledgments** About the Authors Introduction The Biological Universe What Is Genetics? **Bacterial Genetics Phage Genetics** <u>A Brief History of Bacterial Molecular Genetics</u> What Is Ahead 1 The Bacterial Chromosome: DNA Structure, **Replication**, and Segregation **DNA Structure** The Mechanism of DNA Replication **Replication Errors Impediments to DNA Replication Replication of the Bacterial Chromosome and Cell Division** The Bacterial Nucleoid The Bacterial Genome <u>2 Bacterial Gene Expression: Transcription,</u> Translation, Protein Folding, and Localization

**Overview** The Structure and Function of RNA Transcription **RNA Degradation** The Structure and Function of Proteins Translation Protein Folding and Degradation **Protein Localization Protein Secretion and Export Regulation of Gene Expression** What You Need To Know **3** Bacterial Genetic Analysis: Fundamentals and **Current Approaches** Definitions Inheritance in Bacteria **Mutation Rates Types of Mutations Reversion versus Suppression** Genetic Analysis in Bacteria Perspective 4 Plasmids What Is a Plasmid? **Properties of Plasmids** 5 Conjugation Overview Mechanism of DNA Transfer during Conjugation in Proteobacteria **Chromosome Transfer by Plasmids Diversity in Transfer Systems** 

**Integrating Conjugative Elements 6** Transformation Natural Transformation **Artificially Induced Competence** 7 Bacteriophages and Transduction Lytic Development Lysogenic Development **Genetic Analysis of Phages Phage-Mediated Genetic Transfer** Host Defenses Against Phage Infection Phages as Tools 8 Transposition, Site-Specific Recombination, and Families of Recombinases Transposition Mechanisms of Transposition **General Properties of Transposons Transposon Mutagenesis** Site-Specific Recombination Y and S Recombinases Group II Mobile Introns: Elements that Move Using an RNA Intermediate **Importance of Transposition and Site-Specific Recombination in Bacterial Adaptation** 9 Molecular Mechanisms of Homologous Recombination Homologous Recombination and DNA Replication in Bacteria The Molecular Basis for Recombination in *E. coli* **Recombination between Different DNAs in Bacteria** 

Recombineering: Gene Replacements in E. coli with <u>Phage λ Recombination Functions</u> **10 DNA Repair and Mutagenesis Evidence for DNA Repair Specific Repair Pathways General Repair Mechanisms DNA Damage Tolerance Mechanisms** Summary of Repair Pathways in *E. coli* **Bacteriophage Repair Pathways** 11 Regulation of Gene Expression: Genes and Operons **Transcriptional Regulation in Bacteria Negative Regulation of Transcription Initiation Positive Regulation of Transcription Initiation Regulation by Transcription Attenuation Regulation of mRNA Degradation Regulation of Translation Posttranslational Regulation** Why Are There So Many Mechanisms of Gene **<u>Regulation?</u> 12 Global Regulation: Regulons and Stimulons Carbon Catabolite Regulation Regulation of Nitrogen Assimilation Regulation of Ribosome Components and tRNA Synthesis Ribosomal Protein Gene Regulation** Stress Responses in Bacteria Iron Regulation in E. coli <u>Regulation of Virulence Genes in Pathogenic</u> Bacteria

Developmental Regulation: Sporulation in *B.* subtilis

13 Genomes and Genomic Analysis

The Bacterial Genome

**DNA Sequencing** 

<u>Barriers to Horizontal Transfer: Genome</u>

Gatekeepers and the Molecular Biologist's Toolkit

<u>Glossary</u>

End Papers

<u>Index</u>

End User License Agreement

## List of Illustrations

Introduction

<u>Figure 1 A molecular tree of life capturing diversity</u> <u>using ribosomal proteins...</u>

Chapter 1

<u>Figure 1.1 Schematic drawing of the Watson-Crick</u> <u>structure of DNA, showing the...</u>

<u>Figure 1.2 Chemical structures of</u> <u>deoxyribonucleotides, showing the bases and ...</u>

Figure 1.3 (A) Schematic drawing of a DNA chain, showing the 3'-to-5' attachme...

<u>Figure 1.4 The two complementary base pairs</u> <u>found in DNA. Two hydrogen bonds f...</u>

Figure 1.5 The pathways for synthesis of deoxynucleotides from ribonucleotides...

<u>Figure 1.6 Features of DNA. (A) Polymerization of the deoxynucleotides during ...</u>

<u>Figure 1.7 Functions of the primer and template in</u> <u>DNA replication. (A) The DN...</u>

<u>Figure 1.8 Discontinuous synthesis of one of the</u> <u>two strands of DNA during chr...</u>

<u>Figure 1.9 DNA polymerase I can remove an RNA</u> <u>primer by using strand displacem...</u>

<u>Figure 1.10 "Trombone" model for how both the</u> <u>leading strand and lagging stran...</u>

<u>Figure 1.11 Mistakes in base pairing can lead to</u> <u>changes in the DNA sequence c...</u>

<u>Figure 1.12 Editing function of DNA polymerase.</u> (A) A G is mistakenly placed o...

<u>Figure 1.13 Physical blocks on template DNAs. (A)</u> <u>When DNA polymerase III stal...</u>

<u>Figure 1.14 Structure of the origin of chromosomal</u> <u>replication (*oriC*) region o...</u>

<u>Figure 1.15 Initiation of replication at the</u> <u>Escherichia coli origin (oriC) re...</u>

<u>Figure 1.16 Termination of chromosome replication</u> in *Escherichia coli*. (A) The...

<u>Figure 1.17 Model of the way in which chromosome</u> <u>translocation by FtsK coordin...</u>

<u>Figure 1.18 Model of the way in which unwinding</u> of the template DNA strands ca...

<u>Figure 1.19 Model of the way in which chromosome</u> <u>decatenation by topoisomerase...</u>

<u>Figure 1.20 Model of how an origin region</u> <u>containing *parS* sites bound by the P...</u>

<u>Figure 1.21 The *E. coli* chromosome has four</u> <u>structured regions called macrodom...</u> <u>Figure 1.22 The MinCDE and nucleoid occlusion</u> <u>systems control placement of the...</u>

<u>Figure 1.23 Timing of DNA replication during the</u> <u>cell cycle, with two differen...</u>

Figure 1.24 Replication creates hemimethylated DNA. (A) The A in the sequence ...

<u>Figure 1.25 Model showing the possible functional</u> <u>consequences of SeqA binding...</u>

Figure 1.26 (A) Supercoiled DNA. (B) Twisting of the ends in opposite directio...

<u>Figure 1.27 Action of the two types of</u> <u>topoisomerases. The type I topoisomeras...</u>

Chapter 2

<u>Figure 2.1 RNA precursors. (A) A ribonucleoside</u> <u>triphosphate (rNTP) (the form ...</u>

<u>Figure 2.2 Secondary structure in an RNA. (A) The</u> <u>RNA folds back on itself to ...</u>

<u>Figure 2.3 The structure of bacterial RNA</u> <u>polymerase. The core enzyme is compo...</u>

<u>Figure 2.4 Crystal structure of bacterial RNA</u> <u>polymerase and  $\sigma$  interact...</u>

<u>Figure 2.5 RNA transcription. (A) The</u> <u>polymerization reaction, in whi...</u>

<u>Figure 2.6 (A) Typical structure of a  $\sigma^{70}$  bacterial...</u>

<u>Figure 2.7 Transcription begins at a promoter and</u> <u>ends at a transcription te...</u>

<u>Figure 2.8 Overview of transcription. (A) The</u> <u>transcription cycle. Ea...</u> <u>Figure 2.9 Transcription initiation</u>. (A) Binding of σ to RNA p...

<u>Figure 2.10 Interactions between RNA polymerase</u> <u>subunits and promoter elements...</u>

<u>Figure 2.11 Abortive transcription and RNA</u> <u>polymerase escape from the promoter...</u>

<u>Figure 2.12 The transcription elongation complex</u> (TEC). During elongation, nuc...

<u>Figure 2.13 Backtracked transcription elongation</u> <u>complex (TEC). Backward movem...</u>

<u>Figure 2.14 Transcription termination at a factor-</u> <u>independent termination site...</u>

<u>Figure 2.15 Model for factor-dependent</u> <u>transcription termination at a ...</u>

<u>Figure 2.16 Precursor of rRNA. The precursor</u> <u>transcript (top) contains ...</u>

<u>Figure 2.17 Structure of mature tRNAs. (A)</u> <u>Standard clover leaf ...</u>

<u>Figure 2.18 Pathways for RNA degradation. RNA</u> <u>transcripts that are gene...</u>

<u>Figure 2.19 Two amino acids joined by a peptide</u> <u>bond. The bond connects...</u>

<u>Figure 2.20 Primary, secondary, tertiary, and</u> <u>quaternary structures of ...</u>

<u>Figure 2.21 The composition of a bacterial</u> <u>ribosome containing one copy...</u>

<u>Figure 2.22 Crystal structures of a tRNA and the</u> <u>ribosome. (A)</u> ...

<u>Figure 2.23 Overview of translation. (A) The</u> <u>ribosomal A (amino...</u> <u>Figure 2.24 Aminoacylation of a tRNA by its</u> <u>cognate aminoacyl-tRNA syn...</u>

<u>Figure 2.25 Complementary pairing between a</u> <u>tRNA anticodon and an mRNA...</u>

<u>Figure 2.26 Conversion of methionine (Met) to *N*-<u>formyl-methionin...</u></u>

<u>Figure 2.27 Structure of a typical bacterial</u> <u>translational initiation r...</u>

Figure 2.28 Initiation of translation. (1) The IF3 factor binds ...

<u>Figure 2.29 The peptidyltransferase reaction</u> <u>catalyzes dissociation of ...</u>

<u>Figure 2.30 Termination of translation at a</u> <u>nonsense codon. In the abse...</u>

<u>Figure 2.31 Removal of the N-terminal formyl</u> <u>group by peptide deformyla...</u>

<u>Figure 2.32 *trans*-Translation by transfer-</u> <u>messenger RNA (tmRNA)...</u>

<u>Figure 2.33 Wobble pairing between the anticodon</u> <u>on the tRNA and the ...</u>

<u>Figure 2.34 Structure of a polycistronic mRNA. (A)</u> <u>The coding ...</u>

<u>Figure 2.35 Model for translational coupling in a</u> <u>polycistronic mRNA...</u>

<u>Figure 2.36 Polarity in transcription of a</u> <u>polycistronic mRNA transcr...</u>

<u>Figure 2.37 Chaperonins. The GroEL (Hsp60)-type</u> <u>chaperonin multimers ...</u>

<u>Figure 2.38 Protein transport systems. (A) Cutaway</u> <u>view of the...</u> <u>Figure 2.39 Schematic representation of the type I,</u> <u>II, III, and IV ...</u>

Figure 2.40 Structure and function of a typical autotransporter. A ...

<u>Figure 2.41 Comparison of the *Firmicute-type*</u> <u>injectosome ...</u>

<u>Figure 2.42 The sortase A pathway. (A) Typical</u> <u>sortase sub...</u>

Figure 2.43 (A) The two general types of transcriptional r...

Figure 2.44 Relationship between gene structure in DNA and the co...

<u>Figure 2.45 Transcriptional and translational</u> <u>fusions to express ...</u>

Chapter 3

<u>Figure 3.1 Detection of auxotrophic mutants. Cells</u> <u>were scraped with a loop fr...</u>

<u>Figure 3.2 The number of mutants in a culture is</u> <u>not proportional to the numbe...</u>

<u>Figure 3.3 The Luria and Delbrück experiment. In experiment 1, a single flask ...</u>

<u>Figure 3.4 Mutants are clonal. In experiment 1, cells were spread onto a plate...</u>

<u>Figure 3.5 The number of cell divisions (7) equals</u> <u>the total number of cells I...</u>

<u>Figure 3.6 The fraction of mutants increases as a culture multiplies, and the ...</u>

<u>Figure 3.7 Transitions versus transversions. The</u> <u>mutations are shown in gold s...</u> Figure 3.8 (A) A mispairing during replication can lead to a base pair change ...

<u>Figure 3.9 Removal of deaminated cytosine (uracil)</u> <u>from DNA. (A) Comparison of...</u>

<u>Figure 3.10 Missense mutation. A mutation that</u> <u>changes T to C in the DNA templ...</u>

<u>Figure 3.11 Nonsense mutation. Changing the CAA</u> <u>codon, encoding glutamine (Gln...</u>

<u>Figure 3.12 Frameshift mutation. The wild-type</u> <u>mRNA is translated as glutamine...</u>

<u>Figure 3.13 Slippage of DNA at a repeated</u> <u>sequence (for example, a series of A...</u>

<u>Figure 3.14 Ectopic recombination between</u> <u>directly repeated sequences can caus...</u>

<u>Figure 3.15 Formation of a long tandem-duplication</u> <u>mutation does not Inactivat...</u>

<u>Figure 3.16 Recombination between inverted</u> <u>repeats can cause inversion mutatio...</u>

<u>Figure 3.17 The pathway to galactose utilization in</u> <u>*E. coli* and most other org...</u>

<u>Figure 3.18 Formation of a nonsense suppressor</u> <u>tRNA. (A) Gene X (turquoise) an...</u>

<u>Figure 3.19 Selection of a His<sup>±</sup> revertant. A sample of a His<sup>±</sup> mutant cul...</u>

<u>Figure 3.20 Replica plating. (A) A few hundred</u> <u>bacteria are spread on a nonsel...</u>

<u>Figure 3.21 A simplified diagram of recombination</u> <u>between two genetic markers....</u>

<u>Figure 3.22 Different consequences of</u> <u>recombination between linear and circula...</u> <u>Figure 3.23 Using recombination to introduce an</u> <u>antibiotic resistance cassette...</u>

<u>Figure 3.24 Using marker rescue to locate a</u> <u>mutation In the physical map of th...</u>

<u>Figure 3.25 Complementation tests for allellsm.</u> <u>Four mutations, *hisA1, hisA2, …*</u>

<u>Figure 3.26 *E. coli lacZ*  $\alpha$  intragenic</u> <u>complementation. (A) The *lacZ*  $\Delta$  M15 deleti...</u>

<u>Figure 3.27 Identification of clones of the *thyA* gene of *E. coli* by complement...</u>

<u>Figure 3.28 Use of marker rescue to identify a</u> <u>clone containing at least part ...</u>

<u>Figure 3.29 Selected versus unselected markers In</u> <u>a bacterial cross. Replaceme...</u>

<u>Figure 3.30 Example of generalized transduction. A</u> <u>phage Infects a Trp<sup>±</sup> bacter...</u>

<u>Figure 3.31 Cotransduction of bacterial genetic</u> <u>markers. (A) Two-factor cross....</u>

<u>Figure 3.32 Generic test for reversion versus</u> <u>suppression. (A) The mutation ha...</u>

<u>Figure 3.33 Using transduction to distinguish</u> <u>reversion from suppression. If t...</u>

<u>Figure 3.34 Transfer of chromosomal DNA by an</u> <u>Integrated plasmid. Formation of...</u>

<u>Figure 3.35 Partial genetic linkage map of *E. coli* showing the positions (blac...</u>

<u>Figure 3.36 Mapping by Hfr crosses. The</u> <u>phenotypes and positions of the marker...</u>

<u>Figure 3.37 Mapping by gradient of transfer during</u> <u>an Hfr cross. The ordinate ...</u> Chapter 4

Figure 4.1 Supercoiling of a covalently closed circular plasmid. (A) A break i...

<u>Figure 4.2 Some common schemes of plasmid</u> <u>replication. (A) Unidirectional repl...</u>

<u>Figure 4.3 Coexistence of two plasmids from</u> <u>different Inc groups. (A) After di...</u>

<u>Figure 4.4 Genetic map of plasmid ColE1. The</u> <u>plasmid is 6,646 bp long. On the ...</u>

<u>Figure 4.5 Regulation of the replication of ColE1-</u> <u>derived plasmids. RNA II mus...</u>

<u>Figure 4.6 Pairing between an RNA and its</u> <u>antisense RNA. (A) An antisense RNA ...</u>

<u>Figure 4.7 Regulation of replication of the IncFII</u> <u>plasmid R1. (A) Locations o...</u>

<u>Figure 4.8 Regulation of plasmid Collb-P9 copy</u> <u>number by antisense RNA inhibit...</u>

<u>Figure 4.9 Regulation of plasmid pT181 copy</u> <u>number by antisense RNA regulation...</u>

<u>Figure 4.10 The *ori* region of pSC101. R1, R2, and R3 are the three iteron sequ...</u>

<u>Figure 4.11 The "handcuffing" or "coupling" model</u> <u>for regulation of iteron pla...</u>

<u>Figure 4.12 The Xer functions of *E. coli* catalyze site-specific recombination ...</u>

<u>Figure 4.13 Model for partitioning of the R1</u> <u>plasmid. (A) Structure of the *par*</u>

Figure 4.14 Model for partitioning by *par* systems on P1, F, and RK2. (A) Struc...

<u>Figure 4.15 Finding the origin of replication (*ori*) in a plasmid. Random piece...</u>

<u>Figure 4.16 pUC expression vector. A gene cloned</u> <u>into one of the restriction s...</u>

<u>Figure 4.17 pBAC cloning vector for cloning large</u> <u>pieces of DNA. The multiple ...</u>

<u>Figure 4.18 Shuttle plasmid YEp13. The plasmid</u> <u>contains origins of replication...</u>

Chapter 5

<u>Figure 5.1 A simplified view of conjugation by a</u> <u>self-transmissible plasmid, t...</u>

<u>Figure 5.2 Partial genetic map of the ~100-kilobase</u> <u>pair (kbp) self-transmissi...</u>

<u>Figure 5.3 Representation of the F transfer</u> <u>apparatus. The pilus is assembled ...</u>

<u>Figure 5.4 Mechanism of DNA transfer during</u> <u>conjugation, showing the Mpf funct...</u>

<u>Figure 5.5 Reactions performed by the relaxase.</u> (A) The relaxase nicks the DNA...

<u>Figure 5.6 Fertility Inhibition of the F plasmid. Only</u> <u>the relevant *tra* genes ...</u>

<u>Figure 5.7 Gene arrangements of type IV secretion</u> <u>loci. Genes with homologs in...</u>

<u>Figure 5.8 Mechanism of plasmid mobilization. The</u> <u>donor cell carries two plasm...</u>

<u>Figure 5.9 Integration of the F plasmid by</u> <u>recombination between IS2 elements ...</u>

<u>Figure 5.10 Generation of a prime factor by</u> <u>recombination. Recombination may o...</u> Figure 5.11 Self-transmissible and mobilizable elements are found with integra...

Figure 5.12 Fluorescence micrograph of *Bacillus* subtilis cells showing the loc...

<u>Figure 5.13 Self-transmissible Integrating</u> <u>conjugative elements (ICE) can carr...</u>

<u>Figure 5.14 Genetic map and diagram of the</u> <u>integration and excision process of...</u>

Chapter 6

<u>Figure 6.1 The Griffith experiment. (A) Type R</u> (rough) nonencapsulated bacteri...

Figure 6.2 Structure of DNA uptake competence systems. (A) Firmicutes. (B) Pro...

<u>Figure 6.3 Visualization of DNA uptake using</u> <u>fluorescent labels. Competent *B.*...</u>

<u>Figure 6.4 Sequence logos showing conservation of</u> <u>uptake sequences for natural...</u>

<u>Figure 6.5 Transformation by plasmid DNA. DNA is</u> <u>linearized outside the cell (...</u>

<u>Figure 6.6 Import of multiple DNA fragments into a</u> <u>single cell by congression....</u>

<u>Figure 6.7 Regulation of competence development</u> <u>by quorum sensing. (A) In *Baci*...</u>

<u>Figure 6.8 Comparison of competence regulatory</u> <u>mechanisms. Green arrows indica...</u>

<u>Figure 6.9 Repair of DNA damage by transforming</u> <u>DNA. Thymine dimers (T residue...</u>

Chapter 7

<u>Figure 7.1 Electron micrographs and plaques of</u> <u>some bacteriophages. (A) A phag...</u>

<u>Figure 7.2 A typical bacteriophage multiplication</u> <u>cycle. After the phage injec...</u>

<u>Figure 7.3 Transcriptional regulation by a</u> <u>regulatory cascade during developme...</u>

<u>Figure 7.4 Genetic map of phage T7. The genes for</u> <u>the RNA polymerase used for ...</u>

<u>Figure 7.5 Regulation of SP01 gene expression by a cascade of  $\sigma$  factors. Early...</u>

<u>Figure 7.6 (A) Genomic map of phage T4. From</u> <u>Karam JD (ed), *Molecular Biology*...</u>

<u>Figure 7.7 Sequence of T4 middle-mode and late</u> promoters. Only the sequences i...

<u>Figure 7.8 Model for T4 DNA replication and</u> <u>activation of a replication-couple...</u>

<u>Figure 7.9 Genetic map of  $\lambda$  cyclized by pairing at the *cos* sites, shown at the...</u>

<u>Figure 7.10 Antitermination of transcription in phage  $\lambda$ . (A) Before the N prot...</u>

<u>Figure 7.11 Sequences of the *nutL* and *nutR* regions of bacteriophage  $\lambda$ . Box A, ...</u>

<u>Figure 7.12 Formation of the Q protein</u> <u>antitermination complex at the  $p_{\rm R}$ ' prom...</u>

<u>Figure 7.13 Infection cycle of the single-stranded</u> <u>DNA phage f1. Steps 1 throu...</u>

<u>Figure 7.14 Schematic representation of the</u> <u>filamentous bacteriophage M13. The...</u>

<u>Figure 7.15 Replication of the circular single-</u> <u>stranded DNA phage M13. First, ...</u> <u>Figure 7.16 Overview of replication of phage  $\lambda$ . See text for details.</u>

<u>Figure 7.17 Replication of phage T7 DNA.</u> <u>Replication is initiated bidirectiona...</u>

<u>Figure 7.18 Initiation of replication of phage T4</u> <u>DNA. In stage 1, replication...</u>

<u>Figure 7.19 T4 DNA headful packaging. Packaging</u> of DNA longer than a single ge...

<u>Figure 7.20 Timing of phage lysis by activation of holins. The antiholin keeps...</u>

<u>Figure 7.21 Overview of the fate of  $\lambda$  DNA in the lytic and lysogenic pathways...</u>

<u>Figure 7.22 Genetic map of phage  $\lambda$ . The locations of key genes and transcripts...</u>

<u>Figure 7.23 Formation of lysogens after  $\lambda$  infection.</u> (A) The *c*II and *c*III gene...

<u>Figure 7.24 Integration of  $\lambda$  DNA into the chromosome of *E. coli.* (A) The Int p...</u>

<u>Figure 7.25 Regulation of repressor synthesis in the</u> <u>lysogenic state. The dumb...</u>

<u>Figure 7.26 Cro prevents repressor binding and</u> <u>synthesis by binding to the ope...</u>

<u>Figure 7.27 Induction of λ. Accumulation of single-</u> stranded DNA (ssDNA) due to...

<u>Figure 7.28 Retroregulation. (A) After infection,</u> the xis and int genes cannot...

<u>Figure 7.29 Competition determining whether</u> <u>phage will enter the lytic or lyso...</u>

<u>Figure 7.30 Recombination between two phage</u> <u>mutations. The two different mutan...</u> <u>Figure 7.31 Tests of complementation between</u> <u>phage mutations. Phages with diff...</u>

<u>Figure 7.32 Generalized transduction. A phage</u> <u>infects one bacterium, and in th...</u>

<u>Figure 7.33 Formation of a  $\lambda d$  gal transducing</u> particle. A rare mistake in recom...

<u>Figure 7.34 Induction of the  $\lambda$ dgal phage from a dilysogen containing both  $\lambda$ dga...</u>

<u>Figure 7.35 Lysogenic conversion. (A) Shiga toxins</u> <u>encoded by close relatives ...</u>

<u>Figure 7.36 Use of phage T7 for phage display. (A)</u> <u>A randomized protein-coding...</u>

Chapter 8

<u>Figure 8.1 Overview of transposition. See the text</u> <u>for details.</u>

<u>Figure 8.2 Steps in transposon excision. Inverted</u> <u>repeats (IRs) (shown as oran...</u>

<u>Figure 8.3 Steps in transposon insertion. The</u> <u>transposon inserts into a target...</u>

<u>Figure 8.4 Structures of some composite</u> <u>transposons. The left (L) and right (R...</u>

<u>Figure 8.5 Two insertion sequence (IS) elements</u> <u>can transpose any DNA between ...</u>

<u>Figure 8.6 R factors, or plasmids containing many</u> <u>resistance genes, may have b...</u>

<u>Figure 8.7 Some examples of noncomposite</u> <u>transposons. The positions of the tra...</u>

<u>Figure 8.8 Example of a mating-out assay for</u> <u>transposition. See the text for d...</u> <u>Figure 8.9 The DDE transpose has been adapted in</u> <u>multiple ways for different f...</u>

<u>Figure 8.10 Replicative transposition of Tn3</u> (orange) and formation and resolu...

<u>Figure 8.11 Model for single-strand DNA</u> transposition with IS*608*. IS*608* moves ...

<u>Figure 8.12 Regulation of Tn5 transposition. Two</u> <u>similar IS50 elements flank t...</u>

<u>Figure 8.13 Transposition after DNA replication</u> <u>facilitates DNA repair. (A and...</u>

<u>Figure 8.14 Transposon Tn7 uses an element-</u> <u>encoded heteromeric transposase and...</u>

<u>Figure 8.15 Random transposon Tn5 mutagenesis.</u> <u>Random transposon mutagenesis o...</u>

<u>Figure 8.16 Cloning genes mutated by insertion of</u> <u>a transposon. A transposon u...</u>

<u>Figure 8.17 Assembly of integrons. The primary</u> <u>transposon carries an integron ...</u>

<u>Figure 8.18 Example of a superintegron from Vibrio</u> <u>cholerae</u>. More than 100 cas...

Figure 8.19 Regulation of *Salmonella* phase variation and some other members of...

<u>Figure 8.20 Domain structure of tyrosine</u> recombinases (Cre, XerCD, etc.; λ Int...

<u>Figure 8.21 Model for the reaction promoted by the</u> <u>Cre tyrosine (Y) recombinas...</u>

<u>Figure 8.22 Structures of some sites recognized by</u> <u>tyrosine (Y) recombinases.</u>...

<u>Figure 8.23 Domain structure of serine (S)</u> <u>recombinases. The conserved catalyt...</u> <u>Figure 8.24 Model for the reaction promoted by the</u>  $\gamma\delta$  recombinase. (A) Four re...

<u>Figure 8.25 How successive attacks by nucleophilic</u> <u>hydroxyl groups of serine (...</u>

<u>Figure 8.26 Excision of a group II mobile intron</u> <u>from an mRNA. (A) After trans...</u>

<u>Figure 8.27 Integration of a group II mobile intron</u> <u>into double-stranded DNA b...</u>

Chapter 9

<u>Figure 9.1 Replication forks initiated at *oriC* can collapse when there are nic...</u>

<u>Figure 9.2 Model for promotion of recombination</u> <u>Initiation at a  $\chi$  site by the ...</u>

<u>Figure 9.3 Model for how χ sites can help RecBCD</u> <u>load RecA to direct DNA repli...</u>

<u>Figure 9.4 Models for recombination Initiation by</u> <u>the RecF pathway on substrat...</u>

<u>Figure 9.5 Model for how DNA substrates with</u> <u>various types of DNA breaks are p...</u>

<u>Figure 9.6 Model for synapse formation and strand</u> <u>exchange between two homolog...</u>

<u>Figure 9.7 Holliday junctions can form through the</u> <u>action of RecA. The movemen...</u>

<u>Figure 9.8 Model for the mechanism of action of the Ruv proteins. (1) One or t...</u>

<u>Figure 9.9 A synthetic Holliday junction with four</u> <u>complementary strands. The ...</u>

<u>Figure 9.10 Model for how linear fragments are</u> <u>recombined Into the chromosome ...</u> <u>Figure 9.11 Recombineering: *in vivo* DNA</u> <u>modification in *E. coli* using  $\lambda$  phage-...</u>

<u>Figure 9.12 Migration of Holliday junctions. By</u> <u>breaking the hydrogen bonds ho...</u>

<u>Figure 9.13 Repair of a mismatch in a heteroduplex</u> <u>region formed during recomb...</u>

<u>Figure 9.14 Repair of mismatches can give rise to</u> <u>recombinant types between tw...</u>

Chapter 10

<u>Figure 10.1 Survival of cells as a function of the time or extent of treatment...</u>

Figure 10.2 (A) Modified bases created by deaminating agents, such as nitrous ...

<u>Figure 10.3 Repair of altered bases by DNA</u> <u>glycosylases. (A) The specific DNA ...</u>

<u>Figure 10.4 (A) Structure of 8-oxoG. (B)</u> <u>Mechanisms for avoiding mutagenesis d...</u>

<u>Figure 10.5 Alkylation of guanine to produce O<sup>6</sup></u> <u>methyiguanine. The altered bas...</u>

<u>Figure 10.6 (A)</u> The adaptive response. (B) <u>Regulation of the adaptive response...</u>

<u>Figure 10.7 Two common types of pyrimidine</u> <u>dimers caused by UV irradiation. In...</u>

<u>Figure 10.8 Photoreactivation. The</u> <u>photoreactivating enzyme (photolyase) binds...</u>

<u>Figure 10.9 Base analogs 2-amlnopurlne (2-AP) and</u> <u>5-bromouracll (5-BU). The am...</u>

Figure 10.10 Mutagenesis by incorporation of the adenine analog 2-AP into DNA....

<u>Figure 10.11 Mutagenesis by a frameshift mutagen.</u> <u>Intercalation of a planar ac...</u>

<u>Figure 10.12 The methyl-directed mismatch repair</u> <u>system. The newly replicated ...</u>

<u>Figure 10.13 MutSLH DNA repair in *E. coli.* (A)</u> <u>One arm of a replication fork i...</u>

<u>Figure 10.14 Colonies due to *mut* mutants have</u> <u>more papillae. A *lacZ* mutant was...</u>

<u>Figure 10.15 Model for nucleotide excision repair</u> <u>by the UvrABC endonuclease.</u>...

<u>Figure 10.16 Model for transcription-coupled</u> <u>nucleotide excision repair. Mfd-d...</u>

<u>Figure 10.17 Model for recombination-mediated</u> <u>bypass of DNA damage in the DNA ...</u>

<u>Figure 10.18 Fork regression model for</u> <u>recombination-mediated replicative bypa...</u>

<u>Figure 10.19 Models for how regressed replication</u> <u>forks can be repaired by mul...</u>

<u>Figure 10.20 Repair of a DNA interstrand cross-link</u> <u>through the combined actio...</u>

<u>Figure 10.21 Regulation of the SOS response</u> <u>regulon in *Escherichia coli*. About...</u>

<u>Figure 10.22 Detection of a mutant defective in</u> <u>mutagenic repair. Colonies of ...</u>

<u>Figure 10.23 Regulation of SOS mutagenesis in *E.*</u> <u>*coli.* **(A)** Before DNA damage o...</u>

Chapter 11

Figure 11.1 Complementation of *lac* mutations. One mutation (*m1*) is in the chro...

Figure 11.2 The  $p_{jac}$  mutations cannot becomplemented and are cis acting. A pl...

Figure 11.3 Complementation with two types of constitutive mutations. (A) The

<u>Figure 11.4 The Jacob and Monod model for</u> <u>negative regulation of the *lac* opero...</u>

<u>Figure 11.5 Locations of the three operators in the</u> <u>lac operon (A) and a model...</u>

<u>Figure 11.6 (A)</u> DNA sequence of the promoter and operator regions of the *lac* o...

<u>Figure 11.7 Three-dimensional structure of the LacI</u> <u>protein, showing regions d...</u>

<u>Figure 11.8 Structure of the galactose operon of *E.*</u> <u>*coli.* The *galE*, *galT*, and</u>

<u>Figure 11.9 Pathway for galactose utilization In E.</u> <u>coli.</u>

<u>Figure 11.10 Formation of the *gal* operon</u> <u>repressosome. (A) Structure of the *ga...*</u>

<u>Figure 11.11 Structure of the tryptophan</u> <u>biosynthetic (*trp*) operon of *E. coli*.</u>

<u>Figure 11.12 Negative regulation of the *trp* operon by the TrpR repressor. Bind...</u>

<u>Figure 11.13 Structure of the TrpR repressor and</u> <u>an illustration of how trypto...</u>

<u>Figure 11.14 (A) Structure and function of the L-</u> <u>arabinose operon of *E. coli*.</u>

<u>Figure 1 Figures 1–4 adapted from Dove SL,</u> <u>Hochschild A, *in* Higgins NP (ed), *T*...</u>

Figure 2

Figure 3

Figure 4

<u>Figure 11.15 Recessiveness of *araC* mutations. The presence of a wild-type copy...</u>

<u>Figure 11.16 A model to explain how AraC can be a positive activator of the *ar*...</u>

<u>Figure 11.17 Face-of-the-helix dependence. (A)</u> <u>Molecules of AraC in the PI sta...</u>

<u>Figure 11.18 Regulation of fatty acid biosynthesis</u> <u>and degradation pathways. (...</u>

<u>Figure 11.19 Transcription attenuation. (A) The</u> presence of a transcription te...

<u>Figure 11.20 Structure of the leader region of the</u> <u>*trp* operon. (A) Key feature...</u>

<u>Figure 11.21 Details of regulation by transcription</u> <u>attenuation In the *trp* ope...</u>

<u>Figure 11.22 TRAP regulation of the *trp* operon in</u> <u>Bacillus subtilis. (A) Model...</u>

<u>Figure 11.23 Regulation of the *bgl* operon by</u> <u>proteinmediated antltermlnatlon.</u>

<u>Figure 11.24 The tRNA-responsive T box riboswitch</u> <u>system. The leader RNAs for ...</u>

<u>Figure 11.25 Metabolite-binding riboswitch</u> <u>regulation of transcription attenua...</u>

<u>Figure 11.26 Regulation by mRNA degradation. The</u> <u>*E. coli rne* gene, which encod...</u>

<u>Figure 11.27 Regulation of the *E. coli rpoH* gene by an RNA thermosensor. Trans...</u>

<u>Figure 11.28 Regulation by translational arrest in</u> <u>the ribosome. (A) Regulatio...</u>

<u>Figure 11.29 Regulated proteolysis of o<sup>s</sup> by</u> <u>adaptors and antiadaptors. Under n...</u>

Chapter 12

Figure 12.1 Diauxic growth of *E. coli* in a mixture of glucose and galactose. T...

<u>Figure 12.2 Exogenous glucose inhibits both cAMP</u> <u>synthesis and the uptake of o...</u>

<u>Figure 12.3 Model for CAP activation at class I and</u> <u>class II CAP-dependent pro...</u>

<u>Figure 12.4 Summary of the RNA polymerase-</u> promoter and activator-promoter inte...

<u>Figure 12.5 Regulation of the *lac* operon by both</u> <u>glucose and the inducer lacto...</u>

<u>Figure 12.6 Mutations in the *lac* regulatory region</u> <u>that affect activation by c...</u>

Figure 12.7 Carbon catabolite regulation in *B.* subtilis. (A) The CcpA regulato...

<u>Figure 12.8 Pathways for nitrogen assimilation in *E.*</u> <u>coli and other enteric ba...</u>

<u>Figure 12.9 Regulation of nitrogen assimilation</u> <u>genes by a signal transduction...</u>

Figure 1 Modified from Dhiman A, Schleif R, J Bacteriol **182**:5076–5081, 2000.

Figure 2

<u>Figure 12.10 Sequence comparison of promoters</u> <u>recognized by the RNA polymerase...</u> Figure 12.11 Model for the activation of the  $p_2$ promoter by phosphorylated Ntr...

<u>Figure 12.12 Translational autoregulation of</u> <u>ribosomal protein gene expression...</u>

<u>Figure 12.13 Model for synthesis of ppGpp after</u> <u>amino acid starvation. Cells a...</u>

<u>Figure 12.14 Regulation of SpoT activity. SpoT has</u> <u>both (p) ppGpp synthetase a...</u>

<u>Figure 12.15 Induction of the heat shock response</u> in *E. coli*. The *rpoH* mRNA is...

<u>Figure 12.16 Repression and activation by the DsrA</u> <u>sRNA. (A) Domain 1 of the D...</u>

<u>Figure 12.17 Two envelope stress responses in *E.*</u> <u>*coli* respond to different str...</u>

<u>Figure 12.18 Regulation of operons in the Fur</u> <u>regulon. (Left) Negative regulat...</u>

<u>Figure 12.19 Regulation of the C. *diphtheriae tox* gene of prophage ß. The DtxR...</u>

<u>Figure 12.20 Regulatory cascade for *V. cholerae*</u> <u>virulence factors. The ToxR-To...</u>

<u>Figure 12.21 Quorum sensing. In systems regulated</u> <u>by quorum sensing, expressio...</u>

<u>Figure 12.22 Quorum sensing in *Photobacterium* <u>harveyi and Vibrio cholerae. (A)</u></u>

<u>Figure 12.23 Stages of sporulation. The left side of each panel shows an elect...</u>

<u>Figure 12.24 The phosphorelay activation of the</u> <u>transcription factor Spo0A. Th...</u>

<u>Figure 12.25 Phosphate transfer through the</u> <u>sporulation phosphorelay. Unlike m...</u> <u>Figure 12.26 Compartmentalization of sigma</u> <u>factors and temporal regulation of ...</u>

<u>Figure 12.27 Sequential and compartmentalized</u> <u>activation of the *B. subtilis* sp...</u>

<u>Figure 12.28 Model for the regulation of  $\sigma^{\underline{F}}$  activity.</u> <u>SpoIIAB holds  $\sigma^{\underline{F}}$  in an I...</u>

<u>Figure 12.29 Model for activation of  $\sigma^{\underline{E}}$  in the mother cell compartment...</u>

<u>Figure 12.30 Model for regulation of Pro- $\sigma^{\underline{K}}$ </u> <u>processing. Proteolytic cleavage o...</u>

Chapter 13

<u>Figure 13.1 Bacterial strains from within the same</u> <u>species can be significantl...</u>

Figure 1

<u>Figure 2 Modified from Gill SR, Fouts DE, Archer</u> <u>GL, et al, *J Bacteriol* **187**:24...</u>

<u>Figure 1</u>

Figure 2

<u>Figure 13.2 Popular DNA-sequencing strategies</u> <u>involve fragmenting the DNA subs...</u>

<u>Figure 13.3 Steps in PCR. In the first cycle, the</u> <u>template is denatured by hea...</u>

<u>Figure 13.4 Multiple types of restriction</u> <u>endonucleases exist where the DNA se...</u>

<u>Figure 13.5 Recombinant DNAs can be joined using</u> <u>compatible ends formed by dig...</u>

<u>Figure 13.6 A single gene from a region of the genome can be cloned using PCR ...</u>