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PREFACE

“When I tell people that I am a mathematician, they jokingly ask if
I could help them balance their bank account. Then, when I tell them
I make lots of counting mistakes, they think I must be a pretty mediocre
mathematician.”

That is what one mathematician friend of mine once told me, but it
could as easily have come from just about any mathematician, as almost
everyone in this field complains of how misunderstood the profession
is. There really are a lot of people who have no idea what it is that
mathematicians do.

Math, of course, is an integral part of our daily lives. The 20th cen-
tury could not have been the most revolutionary one hundred years
in the history of science, as indeed it was, without the extraordinary
advances that took place in the field of mathematics. Computers could
not have been created without binary logic, group theory and the
mathematical concept of information. Telephones would not work if
mathematicians hadn’t developed the statistical study of signals and
the algorithms to digitalize and compress data. Automated traffic lights
would no doubt effect chaos, rather than order, if advances in a field of
mathematics called Operations Research had not occurred.

But despite its crucial importance, mathematics is frequently viewed
as an insular, even irrelevant field into which few interesting people
venture, and which has little to contribute to our daily lives. Even the
well-educated often demonstrate a surprising ignorance of the history
of mathematics and its advancements.

I would venture that if you asked an intellectual to name two
or three renowned 20th century philosophers, there would not be
many who could not respond without hesitation. I would also say that
most reasonably educated people could easily name two or three great
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vi PREFACE

contemporary composers. Many of them would also have little diffi-
culty in identifying half a dozen modern schools of art, from cubism to
minimalism. But mathematicians and fields of mathematics? Few peo-
ple know who David Hilbert was or what the formalist school was, or
the important part that Andrey Kolmogorov and John von Neumann
played with respect to probability studies.

This book is full of stories about math, with few equations, lots of
examples and many applications. Math is a fascinating science, of funda-
mental importance for our history and always present in our daily lives.
Many things would not be possible without math: Picasso’s art, online
bank transactions, house numbers and A4 paper sizes, modern maps
and the defeat of Hitler. Math applications appear where you would least
expect them. The history of math is the history of winners.

Lisboa, Portugal Nuno Crato
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EVERYDAY MATTERS



THE DINNER TABLE ALGORITHM

If you want to invite some friends to a dinner party, but your dining
table will only accommodate four people, then you might be faced with a
dilemma: how do you choose three compatible dinner companions from
among your five closest friends? Your buddy Art has recently broken up
with his girlfriend Betty, who is now dating Charlie. Charlie and Art
have managed to remain friends, but Charlie is not speaking to Dan,
who won’t go anywhere without Eva, who can’t stand Art. So how can
you choose your three dinner companions to have a pleasant, hassle-
free evening? The best way, believe it or not, would be to make use of an
algorithm, which is a set of rules that enable you to search systematically
for an answer.

Algorithms are much loved by mathematicians as well as computer
scientists. Even though some algorithms are very complex, the simplest
can sometimes be the most effective. In our case we can follow a system-
atic process of trial and error, which may be quite an efficient algorithm,
despite its apparent simplicity.

So let us start by choosing your friend A. Under the circumstances,
we immediately see that you cannot possibly also invite your friend B.
You could invite C, but he wouldn’t come unless B was also invited.
And so it goes on. It seems there is no scenario under which A could
be included, which means we need to start again, this time with B, and
keep going until we have found three companionable friends for the din-
ner party. Will that be possible in this case? Or will we have to give up,
forced to admit that human relationships are more complicated than
algorithms?

3N. Crato, Figuring It Out, DOI 10.1007/978-3-642-04833-3_1,
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4 FIGURING IT OUT

This type of problem is known as a satisfiability problem.
Mathematicians call them SAT problems, which keeps things simpler.
The dinner party mentioned above is an example of a “2-SAT” problem,
as each restriction contains two variables (“A or B”, “A and C”, etc.). The
problem would become more complicated if Art, Charlie and Dan were
inseparable, i.e., if we had to take three variables in each restriction into
account (“A and B and C” or “A and C or D”).

Such problems are known as “3-SAT” problems. And it is also pos-
sible to imagine restrictions of a more general type, which give rise to
“k-SAT” problems.

Although this example may seem trivial, a similar approach can be
applied to many basic tasks, such as drawing up timetables in large
schools, organizing conferences, or planning flight schedules for air-
lines. It is the basis of a new branch of mathematics called computational
complexity, which aims to study and classify problems in terms of their
inherent difficulty. When such SAT problems could only be solved
manually, one after the other, it was difficult to study many of their
characteristics. However, from the time it became possible to employ
computers to solve them, attempts have been made to study the com-
plexity of the processes used to solve them, i.e., the algorithms, and to
evaluate the time that it takes a computer to solve them.

In 1959, Richard Karp was still a 24-year-old mathematician who
had just earned a Ph.D. from Harvard and begun to work at the IBM
research laboratory at Yorktown Heights, NY. At the time, computers
were in their infancy, but the invention of transistors made it possible
to incorporate more and more elaborately designed circuits. Karp’s task
at IBM was to find an automatic process for designing circuits with as
few transistors as possible. Written as a computer program, the algo-
rithm he wrote was limited to checking out all the possible circuits
and calculating their costs. Later, in 1985, when he was presented with
the prestigious Turing Award given by the Association for Computing
Machinery, Karp recalled that although this approach seemed simple, it
contained a basic problem: “The number of circuits that the program
had to comb through grew at a furious rate as the number of input vari-
ables increased, and, as a consequence, we could never progress beyond
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the solution of toy problems.”1 Karp, who spent 10 years more at IBM
before becoming a professor at Caltech, had identified a phenomenon
that came to occupy the attention of hundreds of researchers and to
generate thousands of studies: the problems might well be simple and
the technique might be easy to apply, but they could rapidly grow to
become impossible to solve, even when using the most powerful com-
puters. Mathematicians, logicians and computer scientists spent many
years subsequently trying to devise more efficient algorithms, but always
arrived at the same result: there are problems that can be resolved sim-
ply and that have a complexity that increases in a controlled fashion,
and there are problems that quickly become impossible to solve because
their complexity increases exponentially with the number of variables
and restrictions.

At present, a distinction is made between the “type P” problems,
in which the complexity increases in polynomial time with the rise
in the number of variables, and the “non-P” type problems, in which
this does not happen. In particular, there is a class of non-P problems
that are all reducible to each other and whose solution can be checked
in polynomial time. These are the so-called “NP-complete” problems
(nondeterministic polynomial). Even though solutions for these prob-
lems can be checked efficiently, to find such solutions there are known
algorithms that increase dramatically in computing time (more than
polynomially) as their dimension grows. These problems thus become
impractical when the number of variables increases. It is still not known
if type NP-complete problems are amenable to a type P approach. This
question was also posed by Karp in 1985 during his Turing Award
speech, but even today remains a major unsolved issue in computer
science. Specialists assume that these are two different and irreducible
types of problems, but they have not been able to prove this yet.

Our dinner table dilemma, which is a 2-SAT problem, is of type P.
Even if we had to select thirty persons from a group of 50 instead of hav-
ing to choose three of our five friends, a computer program could find

1 From Karp’s 1985 Turing Award lecture “Combinatorics, complexity, and randomness”
(in http://awards.acm.org)



6 FIGURING IT OUT

a solution rapidly or indicate that there is no possible solution, which
would be equally important to know.

And if we were, say, holding an event at the UN and had to select
300 persons from a list of 500 possible guests, this would indeed keep
the computer busy for a little longer, but we would still have an answer
in a reasonable amount of time.

Strangely enough, though, we enter another world entirely when we
move on to a 3-SAT problem by inserting restrictions such as “either
not including Art and Betty or Charlie”. We then cross the line dividing
type P problems, for which we will eventually find a solution, from NP-
complete problems, when having a few dozen friends is enough to make
it impossible for any computer in the world to organize our dinner table
in time.



CUTTING THE CHRISTMAS CAKE

When a small cake has to be cut in two pieces to be shared by two people,
and the person who cuts the cake is also the person who chooses which
half to take, then there is no guarantee that one of the two people will
not be disadvantaged. The best way to avoid any complaints about the
division of the cake is for one person to cut the cake and the other to
choose which half to take. This way, it is in the first person’s interest to
divide the cake as fairly as possible, as otherwise he or she might very
well end up with the smaller piece. It is a wise solution, requiring that
two persons, basically motivated by egotism, cooperate with one another
in such a way that neither is deprived of a fair share.

This well-known anecdote is applicable to many situations in our
day-to-day lives, and not only ones involving cakes. However, the prob-
lem becomes more difficult when the cake has to be divided among more
than two persons. How would you divide a cake among three people, for
instance? Two cut and one chooses? Couldn’t two of them conspire to
deprive the third of a fair share? And what if many more people wanted
a slice of the action? What if a cake had to be shared by twenty equally
sweet-toothed persons?

That is not a trivial problem, and mathematicians are beginning to
develop algorithms for equal shares. These algorithms can be applied in
very diverse areas, ranging from personal matters like the sharing of an
inheritance to affairs of state such as establishing international borders.

The “one cuts, the other chooses” algorithm can be directly applied
to some situations in which more than two people are involved. If four
people want a slice of the cake, for example, the algorithm is applied in

7N. Crato, Figuring It Out, DOI 10.1007/978-3-642-04833-3_2,
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8 FIGURING IT OUT

two steps. We start by assigning the four people to two groups, each con-
taining two members. One of the groups then cuts the cake in two, and
the other group chooses its half. In the second step each group divides
its half of the cake, using the established procedure of one person cutting
and the other choosing.

It is easy to see that this repetitive method can also work well with
eight participants or indeed with any number that is a power of two. It
is not so simple to find a solution when three persons want to share the
cake. But if you think carefully about it, you will find a solution to this
problem. Can you suggest a way?

However, mathematicians don’t like methods that work only in spe-
cial cases; they prefer to devise algorithms that can be more widely
applied. The ideal would be to find methods that could be applied
to any number of persons. One of these methods, first proposed by
the Polish mathematicians Stefan Banach (1892–1945) and Bronislaw
Knaster (1893–1980), resolves the problem utilizing what has been
dubbed the “moving knife procedure”. It is easier to explain if we take a
loaf cake as an example.

The persons who want a slice of the cake gather round it while one
of them begins to slide the knife along the cake. The knife keeps moving
until one of the participants says “Stop!”. At this precise moment the
knife stops moving and a slice is cut from the cake and handed to the
person who said “Stop”. This person then has a slice that he or she con-
siders to be at least a fair share of the cake – if he or she had thought that
the knife had not yet traveled far enough to provide a fair share, then he
or she would have remained silent. Now the others also had the chance
to say “Stop”, but they did not do so. So presumably they did not con-
sider that the slice of cake offered was larger than a fair share – otherwise
they would have claimed this slice.

After being given a slice, the first participant leaves the game while
the knife continues to travel along the cake until one of the remaining
participants says “Stop!” and is given the corresponding slice. This pro-
cess is repeated until only two participants remain in the game. At this
stage, the first person to speak receives the slice that is cut and the other
receives the remainder of the cake.
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Stop! Stop!

The moving knife method can be used to divide a homogeneous cake into equal
portions for an arbitrary number of persons. One person moves a knife along the
cake until one of the participants says “Stop!” and claims the slice of cake that is cut
at that point. The procedure is continued until another participant claims a slice, and
so on until the cake has been divided into slices for each person

The interesting thing about this method is that, even considering the
fallibility of each of the participants in assessing the right moment to say
“Stop”, none of them can claim that he or she has been disadvantaged.
If any person has not in fact received their fair share, then it is their own
fault, as he or she did not speak up at the right time.

This method seems to be perfect, but it fails to take some inter-
esting aspects into consideration. It works well with a homogeneous
cake, but would it work with a cake that has various ingredients that
are distributed irregularly, like a Christmas cake? Would it be possible
to devise an algorithm that guarantees that each person ends up with
an equal quantity of glacé cherries, almonds, sultanas and dough? An
answer to this question is provided by a theorem the Polish mathemati-
cian Hugo Steinhaus (1887–1972) proved in the 1940’s and that came to
be known by the curious name of the “ham sandwich theorem”. Let us
take a three-dimensional object with three components such as a sand-
wich consisting of bread, butter and ham – it does not matter if these
components are distributed equally or not, are concentrated in different
areas or are spread uniformly. What this theorem proves is that there is
always a plane that divides the object in two halves in such a way that
each half contains an equal quantity of the three components. In other
words, even if the ham or the butter are distributed unequally, there is
always a way to cut the sandwich into two completely equal halves.
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In the case of a two-dimensional object an equal division works
only with two components. Let us suppose that salt and pepper are
spread on a table, for example. Steinhaus’s theorem proves that there
is always a straight line that divides the surface of the table into two sec-
tions containing equal quantities of salt and pepper. If there were three
ingredients, let us say salt, pepper and sugar, it is easy to imagine a con-
centration of the substances in three different places so that it would
be impossible to draw a straight line that would divide them equally.
Generally the theorem states that for n dimensions there is always a
hyperplane that simultaneously divides n components equally. As it
seems that we live in a three-dimensional world, and as the Christmas
cake has many more ingredients than just three, we have just learned
that no knife exists that can cut slices of Christmas cake containing equal
quantities of all the ingredients.



ORANGES AND COMPUTERS

For more than 2000 years mathematics has been making progress by
means of rigorous proofs, based on explicit assumptions and logical
arguments. The arguments should be faultless. But how can their valid-
ity be checked? This has always been the subject of debate and has never
been completely resolved. The issue was rekindled at the end of the 20th
century, when some prestigious mathematical journals accepted proofs
completed with the help of computers. Should these proofs be accepted
as legitimate? Should they even be considered mathematical proofs?

One of these disputes involved a well-known and easily understood
problem: what is the best way to stack spheres? Is it the way that super-
markets sometimes stack oranges, in little pyramids structured in layers,
with each orange sitting in the space between those on the layer below?
This system seems more efficient than piling one orange exactly on top
of another, for instance. But aren’t there other more efficient ways to
stack them?

Legend has it that this particular mathematical problem originated
in a question that the English explorer Sir Walter Raleigh (1552–1618)
posed to the scientist Thomas Harriot (1560–1621). Raleigh was inter-
ested in finding a procedure for rapidly estimating the quantity of his
munitions. For this purpose, he wanted to be able to calculate the num-
ber of cannonballs in each pile simply by inspecting it, without having
to count them. Harriot was able to provide him with a correct and sim-
ple answer for square pyramidal piles: if each side of the bottom layer of
the pile has k cannonballs, then the stack consists of k(1 + k)(1 + 2 k)/6
cannonballs. So, for instance, if the bottom layer of a square pyramidal

11N. Crato, Figuring It Out, DOI 10.1007/978-3-642-04833-3_3,
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12 FIGURING IT OUT

pile has four balls on each side, then the pile has a total of 30 balls. You
could check this yourself by stacking thirty oranges of your own.

Harriot studied various ways of stacking balls. Years later, he
brought up the problem in a discussion with the German astronomer
Johannes Kepler (1571–1630), who posed an even more interesting
question: what is the most efficient way of packing spheres?

Kepler conjectured that the best way would be to put balls in parallel
layers, with each layer disposed along a hexagonal grid. Balls on layers
below and above should be inserted on the spaces formed by the balls
on the other layers. Kepler concluded that there was no better solution
than this one but he was unable to prove it mathematically. Centuries
passed, and the problem became known as the sphere-packing problem.
The astronomer’s supposition became known as the Kepler conjecture.
It was always admitted that the supposition was true, but nobody ever
succeeded in proving it with absolute certainty.

Then in 1998, Thomas C. Hales, a mathematics professor at the
University of Michigan, surprised the scientific community by provid-
ing a proof. After this, Kepler’s conjecture seemed to have ceased being
a simple hypothesis and to have become a perfectly proven theorem.
However, there was a problem with all this. Just one minor problem. . .

the proof had been derived with the help of a computer.
Hales had explicitly resolved many of the steps that were required

to prove the hypothesis, but he had left others to be tested automati-
cally using software specially written for this purpose. He claimed that
combining the results from the computer with his own work would
unquestionably prove the theorem. This was not the first time that
a proof had been made with the assistance of a computer. In 1976,
Wolfgang Haken and Kenneth Appel, from the University of Illinois,
had also used a computer to attain another of the great goals of math-
ematics – the proof of the four colors theorem, which posits that four
colors are sufficient to color a flat map in such a way that no two adja-
cent regions have the same color. And in 1996 Larry Wos and William
McCune, of the Argonne Laboratory in the USA, used logical software to
provide proof of another famous supposition, the “Robbins conjecture”,
a deep statement in mathematical logic.
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As soon as Hales announced his achievement, the Annals of
Mathematics, a prestigious scientific journal, offered to publish his work,
but as is usual in academic circles, only after it had been peer-reviewed,
that is reviewed by fellow experts. It then took years of work before a
panel of 12 experts declared that they had been defeated by the enor-
mity of the task. They confirmed that they were 99% certain that the
proof was valid, but they could not succeed in independently verify-
ing all the steps the computer had performed. The editor of the journal
regretfully wrote to Hales that while the experts had approached their
task with unprecedented vigor, they had become completely exhausted
before being able to complete the verification.

The editors of Annals of Mathematics did eventually decide to accept
the work performed by Hales, though they would only publish those
parts that had been verified via explicit logical reasoning, as is nor-
mal in the field of mathematics. The computational parts of Hales’
proof were published in another, more specialized journal, Discrete and
Computational Geometry. The provision of computer-generated proof
has thus been implicitly admitted into the realm of pure mathematics,
but it continues to be regarded with suspicion. Will this ever change?



WHEN TWO AND TWO DON’T
MAKE FOUR

Two and two always makes four. But the four can result from the sum
“two plus two” or from the sum “one plus three”. It would seem impos-
sible to differentiate between the two fours. However, this problem has
a tremendous practical importance for statistics.

In 1919, two American political scientists, William Ogburn and Inez
Goltra, published a study on the voting behavior of Oregon women who
had recently registered to vote for the first time. The two investiga-
tors only knew the total number of votes cast in the election, but had
no information on voting patterns according to gender. “Even though
the method of voting makes it impossible to count women’s votes” they
wrote, “one wonders if there is not some indirect method of solving the
problem”.1 They decided to estimate the correlation between the num-
ber of votes cast in each district with the number of women who had
voted in that district. In this way, in the districts with more women,
they could attribute the departures from the mean to the higher num-
ber of women voters. Still, as the investigators themselves conceded,
their method was fallible, as there could have been another explanation:
men could have changed their voting habits in those districts that had a
greater number of women.

The problem of reconstructing individual behavior from aggregate
data came to be known as the ecological inference problem (as ecology
is the science that is concerned with the relationships between the

1 W. F. Ogburn and I. Goltra, Political Science Quarterly 34, 413–433, 1919.
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elements and their environment), but very few basic steps were taken
to solve it.

Thirty years later an American sociologist named William Robinson
published a study that decisively influenced the future methodology
of the social sciences. Essentially, Robinson showed that the existing
methods at that time did not permit the reconstruction of partial data
from aggregate data, and he afterwards coined the expression “ecolog-
ical fallacy” to describe the faulty inferences that could be drawn as a
result. Robinson’s study cast doubt on several strands of sociological
investigation. Geopolitical studies, which were flourishing in France,
Germany and the USA, practically ground to a halt when the validity
of the methods then used was questioned.

However, the ecological inference problem is still a pressing ques-
tion in applied statistics. The questions posed by the studies are too
important for scientists to simply accept that no solution exists. The
prime example that is usually cited is the attempt to understand the
political and electoral success of the Nazi party in the early 1930s. In
this case it is necessary to differentiate between the groups and classes
that supported Hitler’s rise to power. The sociologists have based such
studies on the data for each electoral district, for which only aggregate
data is available. They have no other option.

Another prime example of the importance of ecological inference is
taken from epidemiology. The total number of persons affected during
an outbreak of disease is often known, but the specific areas of the pop-
ulation that are most affected are often much less evident. The data are
aggregated in the hospitals, but in less developed countries it is always
very difficult to process them so that the zones where the epidemic is
spreading most rapidly can be pinpointed quickly. An efficient method
for comparing aggregate data with the existing parceled information
(for instance, in some better-organized health centers) could be used
to detect the origin of the epidemic and to help save many human lives.

Yet another example comes from marketing. The success or failure
of an advertising campaign in attracting new customers can usually be
measured, as can the age and income distribution of the target popu-
lation. Nevertheless, it may be too costly to carry out the research that


