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Preface

Computational intelligence is a well-established paradigm, where new theo-
ries with a sound biological understanding have been evolving. The current
experimental systems have many of the characteristics of biological comput-
ers (brains in other words) and are beginning to be built to perform a variety
of tasks that are difficult or impossible to do with conventional computers. In
a nutshell, which becomes quite apparent in the light of the current research
pursuits, the area is heterogeneous as being dwelled on such technologies as
neurocomputing, fuzzy inference systems, artificial life, probabilistic reason-
ing, evolutionary computation, swarm intelligence and intelligent agents and
so on.

Research in computational intelligence is directed toward building think-
ing machines and improving our understanding of intelligence. As evident,
the ultimate achievement in this field would be to mimic or exceed human
cognitive capabilities including reasoning, recognition, creativity, emotions,
understanding, learning and so on. Even though we are a long way from
achieving this, some success has been achieved in mimicking specific areas of
human mental activity.

Recent research in computational intelligence together with other branches
of engineering and computer science has resulted in the development of sev-
eral useful intelligent paradigms. The integration of different learning and
adaptation techniques, to overcome individual limitations and achieve syn-
ergetic effects through hybridization or fusion of some of these techniques,
has in recent years contributed to a large number of new hybrid intelligent
system designs.

Learning methods and approximation algorithms are fundamental tools
that deal with computationally hard problems, in which the input is grad-
ually disclosed over time. Both kinds of problems have a large number of
applications arising from a variety of fields, such as function approximation
and classification, algorithmic game theory, coloring and partitioning, geo-
metric problems, mechanism design, network design, scheduling, packing and
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covering and real-world applications such as medicine, computational finance,
and so on.

In this book, we illustrate Hybrid Computational Intelligence (HCI) frame-
work and it applications for various problem solving tasks. Based on tree-
structure based encoding and the specific function operators, the models can
be flexibly constructed and evolved by using simple computational intelli-
gence techniques. The main idea behind this model is the flexible neural
tree, which is very adaptive, accurate and efficient. Based on the pre-defined
instruction/operator sets, a flexible neural tree model can be created and
evolved. The flexible neural tree could be evolved by using tree-structure
based evolutionary algorithms with specific instructions. The fine tuning of
the parameters encoded in the structure could be accomplished by using pa-
rameter optimization algorithms. The flexible neural tree method interleaves
both optimizations. Starting with random structures and corresponding pa-
rameters, it first tries to improve the structure and then as soon as an im-
proved structure is found, it fine tunes its parameters. It then goes back
to improving the structure again and, provided it finds a better structure, it
again fine tunes the rules’ parameters. This loop continues until a satisfactory
solution is found or a time limit is reached.

This volume is organized into 6 Chapters and the main contributions are
detailed below:

Chapter 1 provides a gentle introduction to some of the key paradigms in
computational intelligence namely evolutionary algorithms and its variants,
swarm intelligence, artificial neural networks, fuzzy expert systems, proba-
bilistic computing and hybrid intelligent systems.

Chapter 2 exhibits the flexible neural tree algorithm development and is
first illustrated in some function approximation problems and also in some
real world problems like intrusion detection, exchange rate forecasting, face
recognition, cancer detection and protein fold recognition. Further the multi-
input multi-output flexible neural tree algorithm is introduced and is illus-
trated for some problem solving. Finally an ensemble of flexible neural trees
is demonstrated for stock market prediction problem.

Chapter 3 depicts three different types of hierarchical architectures. First
the design and implementation of hierarchical radial basis function networks
are illustrated for breast cancer detection and face recognition. Further, the
development of hierarchical B-spline networks is demonstrated for breast can-
cer detection and time series prediction. Finally, hierarchical wavelet neural
networks are presented for several function approximation problems.

Building a hierarchical fuzzy system is a difficult task. This is because the
user has to define the architecture of the system (the modules, the input
variables of each module, and the interactions between modules), as well as
the rules of each modules. Chapter 4 demonstrates a new encoding and an
automatic design method for the hierarchical Takagi-Sugeno fuzzy inference
system with some simulation results related to system identification and time-
series prediction problems.
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Can we evolve a symbolic expression that can be represented as a mean-
ingful expression, i.e., a differential equation or a transfer function and it can
be easily addressed by using traditional techniques? Chapter 5 exhibits a
new representation scheme of the additive models, by which the linear and
nonlinear system identification problems are addressed by using automatic
evolutionary design procedure. First a gentle introduction to tree structural
representation and calculation of the additive tree models is provided. Fur-
ther an hybrid algorithm for evolving the additive tree models and some
simulation results for the prediction of chaotic time series, the reconstruc-
tion of polynomials and the identification of the linear/nonlinear system is
demonstrated.

Chapter 6 summarizes the concept of hierarchical hybrid computational
intelligence framework introduced in this book and also provides some future
research directions.

We are very much grateful to Dr. Thomas Ditzinger (Springer Engineer-
ing Inhouse Editor, Professor Janusz Kacprzyk (Editor- in-Chief, Springer
Intelligent Systems Reference Library Series) and Ms. Heather King (Edito-
rial Assistant, Springer Verlag, Heidelberg) for the editorial assistance and
excellent cooperative collaboration to produce this important scientific work.
We hope that the reader will share our joy and will find it useful!

Yuehui Chen and Ajith Abraham*
School of Information Science and Engineering,

University of Jinan, Jiwei Road 106, Jinan 250022,
Peoples Republic of China

http://cilab.ujn.edu.cn
Email: yhchen@ujn.edu.cn

*Machine Intelligence Research Labs (MIR Labs)
Scientific Network for Innovation and Research Excellence

P.O. Box 2259, Auburn, Washington 98071, USA
http://www.mirlabs.org

http://www.softcomputing.net
email: ajith.abraham@ieee.org
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Foundations of Computational Intelligence



1

Foundations of Computational
Intelligence

1.1 Introduction

The field of computational intelligence has evolved with the objective of de-
veloping machines that can think like humans. Computational intelligence
is a well-established paradigm, where new theories with a sound biological
understanding have been evolving. The current experimental systems have
many of the characteristics of biological computers (brains in other words)
and are beginning to be built to perform a variety of tasks that are difficult
or impossible to do with conventional computers. To name a few, we have
microwave ovens, washing machines and digital camera that can figure out on
their own what settings to use to perform their tasks optimally with reason-
ing capability, make intelligent decisions and learn from experience. As usual,
defining computational intelligence is not an easy task. In a nutshell, which
becomes quite apparent in light of the current research pursuits, the area
is heterogeneous as being dwelled on such technologies as neural networks,
fuzzy systems, evolutionary computation, artificial life, multi-agent systems
and probabilistic reasoning. The recent trend is to integrate different compo-
nents to take advantage of complementary features and to develop a synergis-
tic system. Hybrid architectures like neuro-fuzzy systems, evolutionary-fuzzy
systems, evolutionary-neural networks, evolutionary neuro-fuzzy systems etc.
are widely applied for real world problem solving.

This Chapter provides a gentle introduction to some of the key paradigms
in computational intelligence namely evolutionary algorithms and its vari-
ants, swarm intelligence, artificial neural networks, fuzzy expert systems,
probabilistic computing and hybrid intelligent systems.

1.2 Evolutionary Algorithms

Evolution can be viewed as a search process capable of locating solutions to
problems offered by an environment. Therefore, it is quite natural to look for

Y. Chen, A. Abraham.: Tree-Struc. Based Hybrid Com. Intelligence, ISRL 2, pp. 3–36.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



4 1 Foundations of Computational Intelligence

an algorithmic description of evolution that can be used for problem solving.
Such an algorithmic view has been discussed even in philosophy. Those iter-
ative (search and optimization) algorithms developed with the inspiration of
the biological process of evolution are termed evolutionary algorithms (EAs).
They are aimed basically at problem solving and can be applied to a wide
range of domains, from planning to control. Evolutionary computation (EC)
is the name used to describe the field of research that embraces all evolu-
tionary algorithms. The basic idea of the field of evolutionary computation,
which came onto the scene about the 1950s/1960s, has been to make use
of the powerful process of natural evolution as a problem-solving paradigm,
usually by simulating it on a computer. The original three mainstreams of
EC are genetic algorithms (GAs), evolution strategies (ES), and evolutionary
programming (EP) [1][2]. Despite some differences among these approaches,
all of them present the basic features of an evolutionary process as proposed
by the Darwinian theory of evolution.

A standard evolutionary algorithm is illustrated as follows:

• A population of individuals that reproduce with inheritance. Each individ-
ual represents or encodes a point in a search space of potential solutions to
a problem. These individuals are allowed to reproduce (sexually or asexu-
ally), generating offspring that carry some resemblance with their parents;

• Genetic variation. Offspring are prone to genetic variation through muta-
tion, which alters their genetic makeup;

• Natural selection. The evaluation of individuals in their environment re-
sults in a measure of adaptability, quality, or fitness value to be assigned
to them. A comparison of individual fitnesses will lead to a competition for
survival and reproduction in the environment, and there will be a selective
advantage for those individuals of higher fitness [306].

The standard evolutionary algorithm is a generic, iterative and probabilistic
algorithm that maintains a population P of N individuals, P = x1, x2, , xN ,
at each iteration t (for simplicity of notation the iteration index t was sup-
pressed). Each individual corresponds to (represents or encodes) a potential
solution to a problem that has to be solved. An individual is represented
using a data structure. The individuals xi, i = 1, , N , are evaluated to give
their measures of adaptability to the environment, or fitness. Then, a new
population, at iteration t + 1, is generated by selecting some (usually the
most fit) individuals from the current population and reproducing them, sex-
ually or asexually. If employing sexual reproduction, a genetic recombination
(crossover) operator may be used. Genetic variations through mutation may
also affect some individuals of the population, and the process iterates. The
completion of all these steps: reproduction, genetic variation, and selection,
constitutes what is called a generation. An initialization procedure is used
to generate the initial population of individuals. Two parameters pc and pm

correspond to the genetic recombination and variation probabilities, and will
be further discussed.
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Note that all evolutionary algorithms involve the basic concepts common
to every algorithmic approach to problem solving:

• representation (data structures);
• definition of an objective; and
• specification of an evaluation function (fitness function).

START

n = 0

SELECTION

CROSSOVER

MUTATION

END

n < Loop

n = n+1

Fig. 1.1 A flowchart of simple genetic algorithm

Genetic algorithms (GAs) are globally stochastic search technique that em-
ulates the laws of evolution and genetics to try to find optimal solutions to
complex optimization problems. GAs are theoretically and empirically proven
to provide to robust search in complex spaces, and they are widely applied
in engineering, business and scientific circles. The general flowchart of GA is
presented in Figure 1.1.

GAs are different from more normal optimization and search procedures
in different ways:

• GAs work with a coding of the parameter set, not the parameter them-
selves.

• GAs search from a population of points, not a single point.
• GAs use objective function information, not derivatives or other auxiliary

knowledge, but with modifications they can exploit analytical gradient
information if it is available.

• GAs use probabilistic transition rules, not deterministic rules.
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Coding and Decoding

Coding refers to the representation of the parameter used in the optimization
problem. The usually used coding methods in GAs are base-2, base-10 and
floating-point coding methods. In a base-2 representation, alleles (values in
the position, genes on the chromosome) are 0 and 1. In base-10, the alleles
take on integer values between 0 and 9. In floating-point representation, the
alleles are real-valued number. In base-2 and base-10 representations, the re-
lationship between the real value of a parameter and its integer representation
can be expressed by:

x = a+ x̄
range

resolution
(1.1)

where x is the real value of the parameter, x̄ is the integer value corresponding
to the x, a is the lowest value assumed by x̄, range is the interval of definition
of the parameters, and resolution is the number that take in account the
number of bits used, i.e., 2number of bits − 1.

Genetic Operators

A simple genetic algorithm that yields good results in many practical prob-
lems consists of three genetic operators:

• Reproduction is a process in which individual strings are copied according to
their objective or fitness function values. Fitness function can be imagined
as some measure of profit, utility, or goodness to be optimized. For example,
in curve fitting problem, the fitness function can be mean square error:

Fitness =
1
n

n∑

i=1

(yi − f(yi, ai))2 (1.2)

where yi is the experimental data, f(yi, ai) is the function chosen as model
and ai are the model parameters to be optimized by GA. When GA is
used to optimize an adaptive controller, the error and change in error
information can be taken account for the designing of a proper fitness
function. In general, reproduction operator guarantee survival of the better
individual to the next generation with a higher probability, which is an
artificial version of natural selection.

• Crossover is a partial exchange of the genetic content between couples
of members of the population. This task can be done in several different
ways and it also depends on the representation scheme chosen. In integer
representation, the simple way to do it, is to choose a random value with
a uniform distribution as [1, length of chromosome]. This number repre-
sents a marker inside the two strings of bits representing the couple of
chromosomes. It cuts both the chromosomes into two parts. Then, the left
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or the right parts of the two chromosomes are swapped. This occurs in such
a way that both the two new chromosomes will contain a part of the ge-
netic information of both the parents. In the floating-point representation,
the crossover should be realized by:

new1 = a · old1 + (1 − a) · old2, (1.3)
new2 = (1 − a) · old1 + a · old2, (1.4)

where new1 and new2 are the chromosomes after the crossover, old1 and
old2 are the chromosomes before the crossover, a is a random number with
uniform distribution in [0,1].

• Mutation is needed because, even through reproduction and crossover effec-
tively search and recombine extant notions, occasionally they may become
overzealous and lose some potentially useful genetic materials. In GA, the
mutation operator protects against such an irrecoverable loss. In other
words, mutation tries to escape from a local maximum or minimum of the
fitness function, and it seeks to explore other areas of the search space in
order to find a global maximum or minimum of the fitness function. In in-
teger representation, the mutation of gene in a position of the chromosome
is randomly changed form one integer to another. In floating-point repre-
sentation, mutation will randomly change the value of the chromosome
within a range of definition.

1.2.1 Genetic Programming

Genetic Programming (GP) technique provides a framework for automatically
creating a working computer program from a high-level problem statement of
the problem [30]. Genetic programming achieves this goal of automatic pro-
gramming by genetically breeding a population of computer programsusing the
principles of Darwinian natural selection and biologically inspired operations.
The main difference between genetic programming and genetic algorithms is
the representation of the solution. Genetic programming creates computer pro-
grams in the LISP or scheme computer languages as the solution. LISP is an
acronym for LISt Processor and was developed by John McCarthy in the late
1950s. Unlike most languages, LISP is usually used as an interpreted language.
This means that, unlike compiled languages, an interpreter can process and
respond directly to programs written in LISP. The main reason for choosing
LISP to implement GP is due to the advantage of having the programs and data
have the same structure, which could provide easy means for manipulation and
evaluation.

GP is the extension of evolutionary learning into the space of computer
programs. In GP the individual population members are not fixed length
character strings that encode possible solutions to the problem at hand, they
are programs that, when executed, are the candidate solutions to the prob-
lem. These programs are expressed in genetic programming as parse trees,
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A 

   B        C 

Fig. 1.2 A simple tree structure of GP

rather than as lines of code. Example, the simple program a+ b ∗ c would be
represented as shown in Figure 1.2. The terminal and function sets are also
important components of genetic programming. The terminal and function
sets are the alphabet of the programs to be made. The terminal set con-
sists of the variables and constants of the programs (example, A,B and C in
Figure 1.2).

The most common way of writing down a function with two arguments is
the infix notation. That is, the two arguments are connected with the oper-
ation symbol between them as follows:

A+B

A different method is the prefix notation. Here the operation symbol is writ-
ten down first, followed by its required arguments.

+AB

While this may be a bit more difficult or just unusual for human eyes, it opens
some advantages for computational uses. The computer language LISP uses
symbolic expressions (or S-expressions) composed in prefix notation. Then a
simple S-expression could be

(operator, argument)

where operator is the name of a function and argument can be either a
constant or a variable or either another symbolic expression as shown below:

(operator, argument(operator, argument)(operator, argument))

A parse tree (Figure 1.3) is a structure that develops the interpretation of
a computer program. Functions are written down as nodes, their arguments
as leaves. A subtree is the part of a tree that is under an inner node of this
tree. If this tree is cut out from its parent, the inner node becomes a root
node and the subtree is a valid tree of its own.
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(+5(-31)) 

Fig. 1.3 Illustration of a parse tree and a subtree

There is a close relationship between these parse trees and S-expression;
in fact these trees are just another way of writing down expressions. While
functions will be the nodes of the trees (or the operators in the S-expressions)
and can have other functions as their arguments, the leaves will be formed
by terminals, that is symbols that may not be further expanded. Terminals
can be variables, constants or specific actions that are to be performed. The
process of selecting the functions and terminals that are needed or useful for
finding a solution to a given problem is one of the key steps in GP.

Evaluation of these structures is straightforward. Beginning at the root
node, the values of all sub-expressions (or subtrees) are computed, descending
the tree down to the leaves. GP procedure could be summarized as follows:

• Generate an initial population of random compositions of the functions
and terminals of the problem;

• Compute the fitness values of each individual in the population;
• Using some selection strategy and suitable reproduction operators produce

offsprings;
• Procedure is iterated until the required solution is found or the termination

conditions have reached (specified number of generations).

The creation of an offspring from the crossover operation is accomplished
by deleting the crossover fragment of the first parent and then inserting the
crossover fragment of the second parent. The second offspring is produced in
a symmetric manner. A simple crossover operation is illustrated in Figure 1.4.
In GP the crossover operation is implemented by taking randomly selected
sub trees in the individuals and exchanging them.

Mutation is another important feature of genetic programming. Two types
of mutations are commonly used. The simplest type is to replace a function
or a terminal by a function or a terminal respectively. In the second kind an
entire subtree can replace another subtree. Figure 1.5 explains the concept
of mutation:

GP requires data structures that are easy to handle and evaluate and robust
to structural manipulations. These are among the reasons why the class of S-
expressions was chosen to implement GP. The set of functions and terminals
that will be used in a specific problem has to be chosen carefully. If the set of
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Fig. 1.4 Illustration of crossover operator

functions is not powerful enough, a solution may be very complex or not to be
found at all. Like in any evolutionary computation technique, the generation
of first population of individuals is important for successful implementation
of GP. Some of the other factors that influence the performance of the algo-
rithm are the size of the population, percentage of individuals that participate
in the crossover/mutation, maximum depth for the initial individuals and the
maximum allowed depth for the generated offspring etc. Some specific ad-
vantages of genetic programming are that no analytical knowledge is needed
and still could get accurate results. GP approach does scale with the problem


