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Preface

Bertram Kostant is to be counted as one of the remarkable mathematicians of the
second half of the twentieth century through his fundamental and varied contri-
butions to many aspects of Lie theory, a subject which itself pervades almost the
whole of mathematics. His work is marked by a rare simplicity and characteristic
elegance, making it eminently readable, wonderfully enjoyable, and easily under-
standable even to a true novice. It is often through his work that one may understand
many sophisticated developments of modern mathematics.

The mathematical work of Bertram Kostant has spanned well over fifty years
in which he has published at an almost constant rhythm over 100 papers of which
more than a few have become a cornerstone of rich and fruitful theories. Here, in
briefly listing some of his most important contributions and their eventual ramifi-
cations we can give only a small glimpse into the depth and nature of his legacy.

In one of his earliest works Kostant introduced a partition function describing
weight multiplicities. Significantly, it provided a tool which allowed Jantzen to
compute certain fundamental determinants concerning weight spaces in Verma
modules in the much more difficult parabolic case.

Kostant studied extensively the principal three-dimensional subalgebra of a
semisimple Lie algebra, extracting from its adjoint action the Betti numbers of
the corresponding Lie group. In addition, he thereby obtained a remarkable lin-
earization of the fundamental invariants. Geometrically this realizes an affine slice
to the regular coadjoint orbits, a result subsequently broadened notably by Luna,
Slowody, and Premet, and now of greatly renewed interest.

Kostant followed this work by a further fundamental paper describing har-
monic polynomials in the symmetric algebra. This gave a separation of variables
theorem and a rather precise description of the nilpotent cone. These results have
been key building blocks in many important results in representation theory, in-
cluding the theory of primitive ideals.

Kostant discovered a remarkable connection between the regular nilpotent
element and the Coxeter element in the Weyl group. This was subsequently brought
to a classification of nilpotent orbits by Carter and Elkington and then elevated to a
map from nilpotent orbits to conjugacy classes in the Weyl group by Kazhdan and
Lusztig.

Kostant himself has returned to the many beautiful themes which may be
developed from these early papers. They include an extensive study of Whittaker
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modules, the mathematical underpinnings of the Toda lattice which he generalized
well beyond the dreams of physicists, and quantum cohomology.

Building upon Bott’s geometric results, Kostant computed the Lie algebra
cohomology of certain nilpotent Lie algebras arising as nilradicals of parabolic
subalgebras, studying at the same time their relationship to the cohomology of
the flag variety and its generalizations. This recovered the Bernstein–Gelfand–
Gelfand resolution of simple finite-dimensional modules admitting far-reaching
generalizations to Kac–Moody and later to Borcherds algebras. Here he inadver-
tently rediscovered the Amitsur–Levitski identity, so important in algebras with
polynomial identity, giving it a far simpler proof and placing the result in the more
general context of semisimple Lie algebras.

Kostant was one of the first to realize that a construction of Kirillov to clas-
sify unitary representations of nilpotent Lie groups implied that any coadjoint orbit
admitted the structure of a symplectic variety, that is, the phase space of classical
mechanics. He quickly seized upon the passage to quantum mechanics, developed
by physicists, as a process of “geometric quantization.” The Kostant line bundle
detects which symplectic manifolds are quantizable and this result is fundamen-
tal in Hamiltonian geometry. When applied to the coadjoint orbits, quantization
is designed to produce most unitary representations of the corresponding real Lie
group. With Auslander he classified the unitary representations for real class 1 sim-
ply connected solvable Lie groups, laying the groundwork for the more complete
theory of Pukanszky. The general case, though even more resistant, has come under
the intensive study of many mathematicians, including notably Duflo, Rossmann,
Vergne and Vogan. In more algebraic terms geometric quantization dramatically
laid open the path to the classification of primitive ideals initiated by Dixmier and
Gabriel. Further deep manifestations of geometric quantization are exemplified by
the Duflo isomorphism, the Kashiwara–Vergne conjecture, and the Drinfeld asso-
ciator themselves having been unified and extended following notably the powerful
techniques of Kontsevitch inspired by Feynman diagrams and knot theory.

Stepping outside the purely algebraic framework Kostant discovered a far-
reaching generalization of the Golden–Thompson rule in a convexity theorem sub-
sequently generalized by Atiyah–Bott and Guillemin–Sternberg. Going beyond
zero characteristic, he introduced the “Kostant form” on the enveloping algebra
which has played a major role in modular representation theory. Moreover its gen-
eralization for quantum groups and the subsequent development of the quantum
Frobenius map due to Lusztig allowed Littelmann to complete the Lakshmibai–
Seshadri programme of describing standard monomial bases.
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In a veritable “tour de force” Kostant calculated certain fundamental deter-
minants showing them to have linear factors from which their zeros could be de-
termined. This led to a criterion for unitarity which has so far gone unsurpassed.
Subsequently, many other such factorizations were achieved, particularly that of
Shapovalov and Janzten noted above; but also of Gorelik–Lanzmann which deter-
mined exactly when a Verma module annihilator for a reductive super Lie algebra
was generated by its intersection with the centre.

Kostant was one of the first to firmly lay the foundations of supermanifolds
and super Lie groups. He also studied super Lie algebras providing a fundamental
structure theorem for their enveloping algebras. He initiated the study of the ten-
sor product of an infinite-dimensional representation with finite-dimensional ones,
leading in the hands of Jantzen to the translation principle. The latter, combined
with Kostant’s description of the nilpotent cone, led to the Beilinson–Bernstein
equivalence of categories which heralded a new enlightenment in Verma module
and Harish-Chandra theory. Kostant described (in sl(4)) a non-trivial example of
a unitary highest weight module, the theory of which was subsequently completed
by Enright, Howe and Wallach (and independently by Jakobsen). In the theory of
characteristics developed by Guillemin, Quillen and Sternberg, a result of Kostant
proves in the finite-dimensional case the involutivity of characteristics ultimately
resolved in full generality by Gabber.

Among some of his important collaborative works, we mention his paper with
Hochschild and Rosenberg on the differential forms on regular affine algebras, his
paper with Rallis on separation of variables for symmetric spaces, his work with
Kumar on the cohomology and K-theory of flag varieties associated to Kac–Moody
groups, his determination with R. Brylinski of invariant symplectic structures and
a uniform construction of minimal representations, and his work with Wallach
on Gelfand–Zeitlin theory from the point of view of the construction of maximal
Poisson commutative subalgebras particularly by “shift of argument” coming from
classical mechanics.

Even in the fifth and sixth decades of his career, Kostant has continued to
produce results of astonishing beauty and significance. We cite here his work on
the Toda lattice and the quantum cohomology of the flag variety, his re-examination
of the Clifford algebra deformation of “wedge n” with its beautiful realization
of the module whose highest weight is the sum of the fundamental weights, his
introduction of the cubic Dirac operator, his generalization of the Borel–Bott–Weil
theorem with its connection to Euler number multiplets of representations, his work
on the set of abelian ideals in the nilradical of a Borel (wonderfully classified by
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certain elements in the affine Weyl group by Dale Peterson), his longstanding love
affair with the icosahedron, his work with Wallach mentioned above and most
recently an attempt to pin down the generators of the centralizer of a maximal
compact subalgebra.

After receiving his Ph.D. from the University of Chicago in 1954, Bertram
Kostant began his academic career as an Assistant Professor in 1956 at the Univer-
sity of California, Berkeley rose to full professor in 1962 and shortly after moved
to MIT. He taught at MIT until retiring in 1993.

Kostant was elected to the National Academy of Sciences U.S.A. in 1978
and has received many other honours and prizes, including election as a Sackler
Institute Fellow at Tel-Aviv University in 1982, a medal from the Collège de France
in 1983, the Steele prize of the American Mathematical Society in 1990, and several
honorary doctorates.

Kostant maintains his physical fitness after the strains of University life by
a weight lifting regime well beyond the capabilities of many younger colleagues.
This may be one secret to his scientific longevity.

Weizmann Institute of Science, Rehovot, Israel Anthony Joseph
University of North Carolina at Chapel Hill, US Shrawan Kumar
École Polytechnique, Palaiseau, France Michèle Vergne

April, 2008 Editors
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72. (with Ranee Brylinski), Minimal Representations, Geometric Quantization,
and Unitarity, Proc. Natl. Acad. Sci., 91 (1994), 6026–6029.

73. Structure of the Truncated Icosahedron (such as Fullerene or Viral Coatings)
and a 60-element Conjugacy Class in PSl(2,11), Proc. Natl. Acad. Sci., 91
(1994), 11714–11717.

74. Immanant Inequalities and 0-weight Spaces, J. Amer. Math. Soc., 8 (1995),
181–186.

75. (with Ranee Brylinski), Lagrangian Models of Minimal Representations of
E6, E7 and E8, in: Functional Analysis on the Eve of the 21st Century: In
Honor of I. M. Gelfand, Prog. Math., Vol. 131, Birkhäuser, Boston, 1995,
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88. Dirac Cohomology for the cubic Dirac operator, in: Studies in Memory of
Issai Schur, Vol. 210, Prog. Math., 2003, Birkhäuser, Boston, pp. 69–93.
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