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A mis padres 





Prólogo 

Una ojeada al índice analítico pondrá de manifiesto que este libro de texto 
trata temas de análisis a nivel de «Cálculo superior». La pretensión ha sido 
proporcionar un desarrollo de la materia que sea honesto, eficaz, puesto al día 
y, al mismo tiempo, que no resulte pedante. El libro constituye una transición 
del Cálculo elemental a cursos más avanzados de la teoría de las funciones 
real y compleja e introduce al lector un poco en el pensamiento abstracto que 
ocupa el análisis moderno. 

La segunda edición difiere de la primera en muchos aspectos. La topología 
en conjuntos de puntos se explica al establecer los espacios métricos generales, 
así como el espacio euclídeo n-dimensional, y se han añadido dos nuevos ca­
pítulos sobre la integración de Lebesgue. Se ha suprimido lo referente a inte­
grales lineales, análisis vectorial e integrales de superficie. Se ha cambiado el 
orden de algunos capítulos, se han escrito totalmente nuevos algunos apartados 
y se han añadido ejercicios nuevos. 

El desarrollo de la integración de Lebesgue se deduce de la propuesta de 
Ri.esz-Nagy que se enfoca directamente a las funciones y sus integrales y no 
depende de la teoría de la medida. El tratamiento aquí está simplificado, puesto 
a la vista y un tanto reordenado para estudiantes de cursos inferiores. 

La primera edición se ha seguido en cursos de matemáticas de distintos 
niveles, desde el primer curso de estudiantes no graduados al primero de gra­
duados. tanto como libro de texto, como de referencia suplementaria. La se­
gunda edición conserva esa flexibilidad: por ejemplo, los capítulos 1 al 5, 12 
y 13 son un curso de cálculo diferencial de funciones con una o más variables; 
los capítulos 6 al JI, 14 y 15, un curso de teoría de la integración. Son posibles 
muchas otras combinaciones: cada profesor puede elegir los temas que se aco­
moden a sus necesidades consultando el diagrama de la página siguiente, que 
expone la interdependencia lógica de los capítulos. 

Quisiera expresar mi gratitud a muchas personas que se tomaron la molestia 
de escribirme sobre la primera edición. Sus comentarios y sugerencias influ­
yeron en la preparación de la segunda. Debo dar las gracias especialmente al 
doctor Charalambos Aliprantis, que leyó detenidamente todo el manuscrito 
de la obra e hizo numerosas observaciones oportunas, además de proporcio­
narme algunos de los nuevos ejercicios.: Por último, quisiera hacer patente mi 
agradecimiento a los estudiantes de Caji'ech, cuyo entusiasmo por las matemá­
ticas fue el primer incentivo para esta obra. 

T. M. A. 
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CAPÍTULO 1 

El sistema de los números 

reales y el de los complejos 

1.1 INTRODUCCióN 

El Análisis matemático estudia conceptos relacionados de alguna manera con 
los números reales ; por ello empezaremos nuestro estudio del Análisis con una 
discusión del sistema de los números reales. 

Existen diversos métodos para introducir los números reales. Uno de ellos 
parte de los enteros positivos 1, 2, 3, ... , que considera conceptos no defini­
dos, utilizándolos para construir un sistema más amplio, los números racio­
nales positivos (cocientes de enteros positivos), los negativos y el cero. Los 
números racionales son utilizados, a su vez, para construir los números irracio­
nales, números reales como •./2 y rr, que no son racionales. El sistema de los 
números reales lo constituye la reunión de los números racionales e irracionales. 

A pesar de que estas cuestiones constituyen una parte importante de los 
fundamentos de la Matemática, no las describiremos aquí con detalle. Es un 
hecho que, en la mayor parte del Análisis, nos interesarán solamente las pro­
piedades de los números reales antes que los métodos utilizados para construir­
los. Por lo tanto, consideraremos los números reales mismos como objetos no 
definidos, sometidos a ciertos axiomas de los que extraeremos ulteriores pro­
piedades. Dado que el lector está, probablemente, familiarizado con la mayoría . 
de las propiedades de los números reales que consideraremos en las páginas que 
siguen, la exposición será más bien breve. Su propósito es examinar las carac­
terísticas más importantes y persuadir al lector de que, de ser necesario, todas 
las propiedades se podrían deducir a partir de los axiomas. Tratamientos más 
detallados podrán hallarse en las referencias del final de este capítulo. 

Por conveniencia usaremos la notación y la terminología de la teoría de con­
juntos elemental. Supongamos que S designa un conjunto (una colección de ob­
jetos). La notación x E S significa que x está en el conjunto S, escribiendo x $.S 
para indicar que x no está en S. 

Un conjunto S es un subconjunto de T si cada elemento de S está también 
en T. Lo indicaremos escribiendo S ~ T. Un conjunto es no vacío si contiene, 
por lo menos, un elemento. 

1 
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Suponemos que existe un conjunto no vacío R de elementos, llamados núme­
ros reales, que satisfacen los diez axiomas enumerados a continuación. Los axio­
mas se clasifican de manera natural en tres grupos a los que nos referiremos 
como axiomas de cuerpo, axiomas de orden y axioma de completitud (llamado 
también axioma del supremo o axioma de continuidad). 

1.2 LOS AXIOMAS DE CUERPO 

Junto con el conjunto R de los números reales admitimos la existencia de dos 
operaciones, llamadas suma y multiplicación, tales que, para cada par de nú­
meros reales x e y, la suma x + y y el producto xy son números reales deter­
minados unívoc;:tmente por x e y, satisfaciendo los siguientes axiomas. (En los 
axiomas que a continuación se exponen, x, y, z representan números reales arbi­
trarios en tanto no se precise lo contrario.) 

Axioma l. x + y = y + x, xy = yx (leyes conmutativas). 

Axioma 2. x + (y + z) = (x + y) + z, x(yz) = (xy)z (leyes asociativas). 

Axioma 3. x(y + z) = xy + xz (ley distributiva) . 

. 4xioma 4. Dados dos números reales cualesquiera x e y, existe un número 
real z tal que x + z =y. Dicho número z se designará por y-x; el número 
x- x se designará por O. (Se puede demostrar que O es independiente de x.) 
Escribiremos - x en vez de O- x y al número - x lo llamaremos opuesto de x. 

Axioma 5. Existe, por lo menos, un número real x #O. Si x e y son dos 
números reales con x #O, entonces existe un número z tal que xz =y. Dicho 
número z se desginará por yfx; el número xjx se designará por 1 y puede de­
mostrarse que es independiente de x. Escribiremos x- 1 en vez de Jjx si x *O 
y a x-1 lo llamar(}mos recíproco o inverso de x. 

De estos axiomas pueden deducirse todas las leyes usuales de la Aritmé­
tica; por ejemplo, - (- x) = x, (x-1)-

1 = x, -(x-y) =y-x, x-y = 
x + (-y), etc. (Para un desarrollo más detallado, ver Referencia 1.1.) 

1.3 LOS AXIOMAS DE ORDEN 

Suponemos también la existencia de una relación < que establece una orde­
nación entre los números reales y que satisface los axiomas siguientes : 
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Axioma 6. Se verifica una y sólo una de las relaciones x = y, x <y, x > y. 

NOTA. x > y significa lo mismo que y < x. 

Axioma 7. Si x <y, entonces, para cada z, es x + z <y+ z. 

Axioma 8. Si x > O e y > O, entonces xy > O. 

Axioma 9. Si x >y e y> z, entonces x > z. 

NOTA. Un número real x se llama positivo si x > O y negativo si x < O. Desig­
naremos por R+ el conjunto de todos los números reales positivos y por R- el 
conjunto de todos los números reales negativos. 

De estos axiomas pueden deducirse las reglas usuales que rigen las opera­
ciones con desigualdades. Por ejemplo, si tenemos que x < y, entonces xz < yz 
si z es positivo, mientras que xz > yz si z es negativo. Además, si x > y y 
z > w con y y w positivos, entonces xz > yw. (Para una discusión más detallada 
de estas reglas ver Referencia 1.1.) 

NOTA. El simbolismo x <y se utiliza para abreviar la afirmación: 

"x <Y o X = y." 

Resulta, pues, que 2 < 3 ya que 2 < 3 ; y 2 < 2 ya que 2 = 2. El símbolo > 
se utiliza de forma análoga. Un número real x se llama no negativo si x > O. 
Un par simultáneo de desigualdades tales como x <y, y< z se abrevia por 
medio de la expresión x < y < z. 

El teorema que sigue, que no es más que una consecuencia inmediata de 
los axiomas precedentes, se utiliza a menudo en las demostraciones del Aná­
lisis. 

Teorema 1.1. Sean a y b números reales tales que 

a ~ b + e para cada e > O. (1) 

Entonces a < b. 

Demostración. Si b <a, entonces la desigualdad (1) no se satisface para e = 
(a- b)/2 puesto que 

a-b a+b a+a 
b + e = b + -- = -- < -- = a. 

2 2 2 
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Por lo tanto, por el axioma 6, resulta que a< b. 
El axioma 10, axioma de completitud, será enunciado en la sección 1.11. 

1.4. REPRESENTACióN GEOMÉTRICA 
DE LOS NúMEROS REALES 

Los números reales son, a menudo, representados geométricamente como pun­
tos de una recta (denominada recta real o eje real). Se elige un punto 
para que represente el O y otro a la derecha del O para que represente el 1, 
como muestra la Fig. 1.1. Esta elección determina la escala. Con un conjunto 
apropiado de axiomas para la Geometría euclídea a cada punto de la recta 
real corresponde un número real y uno sólo y, recíprocamente, cada número 
real está representado por un punto de la recta real y uno solo. Es usual refe­
rirse al punto x en vez de referirse al punto correspondiente al número real x. 

o 
Figura 1.1 

X y 

La relación de orden admite una interpretación geométrica simple. Si x <y, 
el punto x está a la izquierda del punto y, como muestra la figura 1.1. Los nú­
meros positivos están a la derecha del O y los números negativos están a la 
izquierda del O. Si a < b, un punto x satisface las desigualdades a < x < b si, 
y sólo si, 'x está entre a y b. 

1.5 INTERVALOS 

El conjunto de todos los puntos comprendidos entre a y b se denomina inter­
valo. A menudo es importante distinguir entre los intervalos que incluyen sus 
extremos y los intervalos que no los incluyen. 

NOTACIÓN. La notación {x:x verifica, P} designa el conjunto de todos los nú­
meros reales x tales que satisfacen la propiedad P. 

Definición 1.2. Supongamos a< b. El intervalo abierto (a, b) se define por 

(a, b) = {x: a < x < b}. 

El intervalo cerrado [a, b] es el conjunto { x: a < x < b}. Los intervalos semi­
abiertos (a, b] y [a, b) se definen análogamente utilizando, respectivamente, las 
desigualdades a < x < b y a< x < b. Los intervalos infinitos se definen como 
sigue: 

(a, +oo) = {x:x >a}, [a, +oo) = {x:x ~a}, 
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(-oo, a)= {x:x <a}, (- oo, a] = {x: x ~ a}. 

Se utiliza a veces el intervalo (- oo, + oo) para designar la recta real R. 
Un solo punto es considerado como un intervalo cerrado «degenerado». 

NOTA. Los símbolos + ~ y - oo se utilizan aquí tan sólo por conveniencias 
de notación y no deben ser considerados como números reales. Más adelante 
extenderemos el sistema de los números reales incluyendo estos dos símbolos, 
pero, mientras no lo hagamos, el lector deberá entender que todos los números 
reales son «finitos». 

1.6 LOS ENTEROS 

En esta sección se describen los enteros como un subconjunto especial de R. 
Antes de definir los enteros conviene introducir la noción de conjunto induc­
tivo. 

Definición 1.3. Un conjunto de números reales se denomina conjunto in­
ductivo si tiene las dos propiedades siguientes: 

a) El número 1 está en el conjunto. 
b) Para cada x del conjunto, el número x + 1 está también en el conjunto. 

Por ejemplo, R es un conjunto inductivo. También lo es R+. Definiremos 
los enteros positivos como aquellos números reales que pertenecen a todos los 
conjuntos inductivos. 

Definición 1.4. Un número real se denomina entero positivo si pertenece a 
cada uno de los conjuntos inductivos. El conjunto de los enteros positivos se 
designa por z+. 

El conjunto z+ es, a su vez, inductivo. Contiene al número 1, al núme­
ro 1 + 1 (designado por 2), al número 2 + 1 (designado por 3), y así sucesi­
vamente. Como z+ es subconjunto de cada uno de los conjuntos inductivos 
consideraremos a z+ como el menor conjunto inductivo. Esta propiedad de z+ 
se denomina, a menudo, principio de inducción. Suponemos al lector fami­
liarizado con las demostraciones por inducción que se basan en este principio. 
(Ver Referencia 1.1.) Ejemplos de tales demostraciones se dan en la sección si­
guiente. 

Los opuestos de los enteros positivos se llaman enteros negativos. Los en­
teros positivos junto con los enteros negativos y el O (cero), forman un con­
junto Z que llamaremos, simplemente, conjunto de los enteros. 
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1.7 TEOREMA DE DESCOMPOSICióN úNICA 
PARA ENTEROS 

Si n y d son enteros y si n = cd para algún entero e, diremos que d es un divi­
sor de n, o que n es un múltiplo de d, y escribiremos dJn (se lee: d divide a n). 
Un entero n es primo si n > 1 y si los únicos divisores positivos de n son 1 y n. 
Si n > 1 y n no es primo, entonces n es compuesto. El entero 1 no es ni primo 
ni compuesto. 

Esta sección expone algunos resultados elementales acerca de la descom­
posición de enteros, culminando con el teorema de descomposición única, lla­
mado también el teorema fundamental de la Aritmética. 

El teorema fundamental establece que (1) cada entero n > 1 puede ser re­
presentado como producto de factores primos y que (2) esta descomposición 
es única, salvo en el orden de los factores. Es fácil probar la parte (1). 

Teorema 1.5. Cada entero n > 1 es primo o producto de primos. 

Demostración. Utilizaremos la inducción sobre n. El teorema se verifica tri­
vialmente para n = 2. Supongamos que es cierto para cada entero k con 
1 < k < n. Si n no es primo, admite un divisor d con 1 < d < n. Por lo tanto, 
n = cd, con 1 < e < n. Puesto que tanto e como d son < n, cada uno es 
primo o es producto de primos ; luego n es un producto de primos. 

Antes de probar la parte (2), la unicidad de la descomposición, introducire­
mos otros conceptos. 

Si dJa y dJb, diremos que d es un divisor común de a y b. El teorema que 
sigue demuestra que cada par de enteros a y b posee un divisor común que 
es combinación lineal de a y de b. 

Teorema 1.6. Cada par de enteros a y b admite un divisor común d de la 
forma 

d = ax +by 

donde x e y son enteros. Además, cada divisor común de a y b divide a d. 

Demostración. Supongamos primeramente que a > O y b > O y procedamos por 
inducción sobre n = a + b. Si n = O, entonces a = b = O y podemos tomar 
d = O con x = y = O. Supongamos entonces que el teorema ha sido probado 
para O, 1, 2, ... , n-1. Por simetría podemos suponer a> b. Si b =O, en­
tonces d =a, x = 1, y= O. Si b > 1 podemos aplicar la hipótesis de induc­
ción aa-by a b, ya que su suma es a= n- b < n-1. Por lo tanto existe 
u:il divisor común d de a- b y b de la forma d = (a- b)x + by. Este entero d 
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divide también a (a--h)+ b =a, luego d es un divisor común de a y de b 
y tenemos que d = ax +(y --x)b, es combinación lineal de a y h. Para com­
pletar la demostración debemos probar que cada divisor común divide a d. 
Como un divisor común divide a a y a b, dividirá también a la combinación 
lineal ax + (y - x)b = d. Esto completa ·la demostración si a> O y b > O. Si 
uno de ellos o ambos fuesen negativos, aplicaríamos el resultado que acabamos 
de demostrar a lal y lbl. 

NOTA. Si d es un divisor común de a y b de la forma d = ax + by, entonces 
-des también un divisor común de la misma forma, -d = a(-x) + b(-y). 
De estos dos divisores comunes sólo el no negativo se denomina el máximo 
oomún divisor de a y de by se designa por mcd(a, b) o, simplemente, por (a, b). 
Si (a, b) = 1, se dice que a y b son primos entre sí. 

Teorema 1.7 (Lema de Euclides). Si a!bc y (a, b) = 1, entonces a¡c. 

Demostración. Como (a, b) = 1, podemos escribir 1 = ax +by. Por lo tanto, 
e = acx + bey. Pero a!acx y a!bcy, luego a¡c. 

Teorema 1.8. Si un número primo p divide a ab, entonces p¡a o p¡b. En ge­
neral, si un número primo p divide al producto a1 . • • ~. entonces p divide a 
uno de los factores por lo menos. 

Demostración. Supongamos que p!ab y que p no divida a a. Si probamos que 
(p, a) = 1, el lema de Euclides implica que p¡b. Sea d = (p, a). Entonces d!p, 
luego d = 1 o d =p. No puede ser que d = p ya que d!a, pero p no divide a a. 
Por lo tanto, d = l. Para demostrar la afirmación más general se procede por 
inducción sobre el número k de factores. Los detalles se dejan al lector. 

Teorema 1.9 (Teorema de descomposición única). Cada entero n > 1 
puede ser representado como producto de factores primos, y si se prescinde del 
orden de los factores la representación es única. 

Demostración. Procederemos por inducción sobre n. El teorema es cierto para 
:n = 2. Supongamos, entonces, que es cierto para todos los enteros mayores 
que 1 y menores que n. Si n es primo, no hay nada que demostrar. Suponga­
mos, por lo tanto, que n es compuesto y que admite dos descomposiciones en 
factores primos ; a saber 

n = P1P2 · · · Ps = q¡qz · · · q,. (2) 

Deseamos probar que s ·= t y que cada p es igual a algún q. Dado que p1 di­
vide a q, -q, ... qt, divide por lo menos a uno de los factores. Cambiando los 
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índices de las q, si es necesario, se puede suponer p1/q1• Por lo tanto, PI = q 1 

ya que tanto pi como q1 son primos. En (2) simplificamos p 1 en ambos miem­
bros y obtenemos 

n 
= Pz · · · Ps = qz · · · q,. 

Como n es compuesto, 1 < n]p1 < n; luego por la hipótesis de inducción las 
dos descomposiciones de njp1 son idénticas, si se prescinde del orden de los 
factores. Por lo tanto, lo mismo es cierto para (2) y la demostración está ter­
minada. 

1.8 LOS NúMEROS RACIONALES 

Los cocientes de enteros ajb (donde b =1= O) se llamarán números racionales. 
Por ejemplo, 1/2, - 7/5, y 6 son números racionales. El conjunto de los nú­
meros racionales, que designaremos por Q, contiene a Z como subconjunto. 
Observe el lector que todos los axiomas de cuerpo y todos los axiomas de 
orden se verifican en Q. · 

Suponemos que el lector está familiarizado con ciertas propiedades elemen­
tales de los números racionales. Por ejemplo, si a y b son racionales, su me­
dia (a+ b)/2 también lo es y está comprendida entre a y b. Así pues, entre 
dos números racionales hay una infinidad de números racionales, lo cual im­
plica que, dado un número racional cualquiera, no sea posible hablar del 
número racional «inmediato superior». 

1.9 LOS NúMEROS IRRACIONALES 

Los números reales gue no son racionales se denominan irracionales. Por ejem­
plo, los números .J2, e, n y e" son irracionales. 

En general no es fácil probar que un cierto número particular es irracional. 
No existe ninguna demostración simple de la irracionalidad de tr'· por ejemplo. 
Sin embargo, la irracionalidad de números tales como J2 . .J3 no es excesi­
vamente difícil de establecer y, de hecho, probaremos fácilmente el siguiente : 

Teorema 1.10. Si n es un entero positivo que no sea un cuadrado perfecto, 
entonces ,J;;.. es irracional. 

Demostración. Suponemos en primer lugar que n no admite ningún divisor 
> 1 que sea cuadrado perfecto. Si admitimos que ,J;;. es racional, llegamos a 
contradicción. Supongamos que ,J;;. = ajb, donde a y b son enteros sin divi­
sores comunes. Entonces nb2 = a2 y, dado que el primer miembro de esta 
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igualdad es un múltiplo de n, también lo será iT. Sin embargo, si iT es múlti­
plo de n, a deberá serlo ya que n no admite divisores > 1 que sean cuadrados 
perfectos. (Esto se ve fácilmente examinando la descomposición de a en f~cto­
res primos.) Todo ello significa que a = en, donde e es un entero. Entonces 
la ecuación nb2 = a2 se transforma en nb2 = c2n2

, o b2 = nc2. El mismo argu­
mento prueba que b debe ser asimismo múltiplo de n. Entonces a y b serían 
ambos múltiplos de n, lo cual contradice el hecho de que a y b carecen de di­
visores comunes. Esto finaliza la demostración en 'el caso de que n no admita 
un divisor ·> 1 que sea cuadrado perfecto. 

Sin admite un factor que sea cuadrado perfecto, podremos escribir n = m2 k, 
donde k_> 1 y k_no admite_divisores > 1 que sean cuadra<!_os perfectos. Por lo 
tanto .J n = m.J k; y si .J n fuese racional, el número .J k sería también ra­
cional, contradiciendo lo que acabamos de demostrar. 

Un tipo distinto de argumentación es preciso para probar que el número e 
es irracional. (Suponemos cierta familiaridad con la exponencial e" del Cálculo 
elemental y su representación como serie infinita.) 

Teorema 1.11. Si e"= 1 + x + X 2/2! + x 3/3! + ... + X"/n! + ... , entonces 
el número e es irracional. 

Demostración. Probaremos que e-1 es irracional. La serie e-1 es una serie al­
ternada con términos que decrecen constantemente en valor absoluto. En tales 
series el error cometido al cortar la serie por el n-ésimo término tiene el signo 
algebraico del primer término que se desprecia y, en valor absoluto, es menor que 
el del primer término que se desprecia. Por lo tanto, si s~ =~=o (-1Y</k!, 
tenemos la desigualdad 

O -1 1 <e - Szk-1 < - - , 
(2k)! 

de la que se obtiene 
1 ) 1 1 O < (2k - 1)! (e- - Szk- 1 < 

2
k :::; 2, (3) 

para todo entero k> l. Ahora bien (2k- 1)! s2k_1 es siempre un entero. Si e-1 

fuese racional, entonces podríamos elegir k suficientemente grande para, que 
(2k- 1)! e-1 fuese también un entero. A causa de (3) la diferencia entre am­
bos enteros debería ser un número comprendido entre O y i, lo cual es impo­
sible. Luego e-1 no es racional y, por tanto, e tampoco lo es. 

NOTA. Para una demostración de la irracionalidad de rr, ver Ejercicio 7.33. 

Los antiguos griegos sabían de la existencia de los números irracionales 
allá por el año 500 a.C. Sin embargo, una teoría satisfactoria de tales números 
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no sería desarrollada hasta finales del siglo diecinueve en que tres teorías dis­
tintas son introducidas al mismo tiempo por Cantor, Dedekind y Weierstrass. 
En la Referencia 1.6 puede hallarse información acerca de las teorías de De­
dekind y Cantor y sus equivalencias. 

1.10 COTAS SUPERIORES; ELEMENTO MÁXIMO, 
COTA SUPERIOR MíNIMA (SUPREMO) 

Los números irracionales aparecen en Álgebra cuando se pretenden resolver 
ciertas ecuaciones cuadráticas. Por ejemplo, se desea un número real x tal que 
x2 = 2. De los nueve axiomas enumerados anteriormente no puede deducirse 
si en R existe o no un número x, puesto que Q satisface también estos nueve 
axiomas y hemos probado que no existe ningún número racional cuyo cua­
drado sea 2. El axioma de . completitud nos permitirá introducir los números 
irracionales en el sistema de los números reales y proporcionar al sistema de 
los números reales una propiedad de continuidad que es fundamental en mu­
chos de los teoremas de Análisis. 

Antes de describir el axioma de completitud, es conveniente introducir una 
terminología y una notación adicionales. 

Definición 1.12. Sea S un conjunto de números reales. Si existe un número 
real b tal que x < b para todo x de S, diremos que b es una cota superior de S 
y que S está acotado superiormente por b. 

Decimos una cota superior ya que cada número mayor que b también es 
una cota superior. Si una cota superior b es, además, un elemento de S, b se 
denomina último elemento o elemento máximo de S. A lo sumo habrá uno. 
de tales b. Si existe tal número b, escribiremos 

b = máx S. 
Un conjunto carente de cotas superiores se denomina no acotado superior­
mente. 

Las definiciones de los términos cota inferior, acotado inferiormente, primer 
elemento (o elemento mínimo) pueden formularse análogamente. Si S tiene un 
elemento mínimo, designaremos a dicho mínimo por mín S. 

Ejemplos. 

l. El conjunto R+ = (0, + oo) es un conjunto no acotado superiormente. No po­
see ni cotas superiores ni elemento máximo. Está acotado interiormente por O, 
pero no posee elemento mínimo. 

2. El intervalo cerrado S= [0, 1] está acotado superiormente por 1 e interiormen­
te por O. De hecho, máx S = 1 y mín S = O. 


