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A mis padres






Proélogo

Una ojeada al indice analitico pondrd de manifiesto que este libro de texto
trata temas de andlisis a nivel de «Cdlculo superior». La pretension ha sido
proporcionar un desarrollo de la materia que sea honesto, eficaz, puesto al dia
¥, al mismo tiempo, que no resulte pedante. El libro constituye una transicion
del Cdlculo elemental a cursos mds avanzados de la teoria de las funciones
real y compleja e introduce al lector un poco en el pensamiento abstracto que
ocupa el andlisis moderno.

La segunda edicion difiere de la primera en muchos aspectos. La topologia
en conjuntos de puntos se explica al establecer los espacios métricos generales,
asi como el espacio euclideo n-dimensional, 'y se han afiadido dos nuevos ca-
pitulos sobre la integracién de Lebesgue. Se ha suprimido lo referente a inte-
grales lineales, andlisis vectorial e integrales de superficie. Se ha cambiado el
orden de algunos capitulos, se han escrito totalmente nuevos algunos apartados
y se han afiadido ejercicios nuevos.

El desarrollo de la integracion de Lebesgue se deduce de la propuesta de
Riesz-Nagy que se enfoca directamente a las funciones y sus integrales y no
depende de la teoria de la medida. El tratamiento aqui estd simplificado, puesto
a la vista y un tanto reordenado para estudiantes de cursos inferiores.

La primera edicion se ha seguido en cursos de matemdticas de distintos
niveles, desde el primer curso de estudiantes no graduados al primero de gra-
duados, tanto como libro de texto, como de referencia suplementaria. La se-
gunda edicion conserva esa flexibilidad: por ejemplo, los capitulos 1 al 5, 12
y 13 son un curso de cdlculo diferencial de funciones con una o mds variables;
los capitulos 6 al 11, 14 y 15, un curso de teoria-de la integracién. Son posibles
muchas otras combinaciones: cada profesor puede elegir los temas que se aco-
moden a sus necesidades consultando el diagrama de la pdgina siguiente, que
expone la interdependencia l6gica de los capitulos.

Quisiera expresar mi gratitud a muchas personas que se tomaron la molestia
de escribirme sobre la primera edicion. Sus comentarios y sugerencias influ-
yeron en la preparacion de la segunda. Debo dar las gracias especialmente al
doctor Charalambos Aliprantis, que leyé detenidamente todo el manuscrito
de la obra e hizo numerosas observaciones oportunas, ademds de proporcio-
narme algunos de los nuevos ejercicios. Por ultimo, quisiera hacer patente i
agradecimiento a los estudiantes de Cajtech, cuyo entusiasmo por las matemd-
ticas fue el primer incentivo para esta obra.

T. M. A.
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CAPITULO 1

El sistema de los niimeros

reales y el de los complejos

1.1 INTRODUCCION

El Anélisis matemdtico estudia conceptos relacionados de alguna manera con
los nimeros reales; por ello empezaremos nuestro estudio del Andlisis con una
discusién del sistema de los ntimeros reales.

Existen diversos métodos para introducir los nimeros reales. Uno de ellos
parte de los enteros positivos 1, 2, 3, ..., que considera conceptos no defini-
dos, utilizdndolos para construir un sistema mds amplio, los nimeros racio-
nales positivos (cocientes de enteros positivos), los negativos y el cero. Los
nimeros racionales son utilizados, a su vez, para construir los nimeros irracio-
nales, nimeros reales como 4/2 y =, que no son racionales. El sistema de los
mimeros reales lo constituye la reunién de los nimeros racionales e irracionales.

A pesar de que estas cuestiones constituyen una parte importante de los
fundamentos de la Matemadtica, no las describiremos aqui con detalle. Es un
hecho que, en la mayor parte del Andlisis, nos interesardn solamente las pro-
piedades de los nimeros reales antes que los métodos utilizados para construir-
los. Por lo tanto, consideraremos los nimeros reales mismos como objetos no
definidos, sometidos a ciertos axiomas de los que extraeremos ulteriores pro-
piedades. Dado que el lector estd, probablemente, familiarizado con la mayoria
de las propiedades de los niimeros reales que consideraremos en las piginas que
siguen, la exposicion serd mds bien breve. Su propdsito es examinar las carac-
teristicas mds importantes y persuadir al lector de que, de ser necesario, todas
las propiedades se podrian deducir a partir de los axiomas. Tratamientos mads
detallados podrén hallarse en las referencias del final de este capitulo.

Por conveniencia usaremos la notacién y la terminologia de la teoria de con-
juntos elemental. Supongamos que S designa un conjunto (una coleccién de ob-
jetos). La notacién x € S significa que x estd en el conjunto S, escribiendo x & S
para indicar que x no estd en S. '

Un conjunto S es un subconjunto de T si cada elemento de S estd también
en T. Lo indicaremos escribiendo S < 7. Un conjunto es no vacio si contiene,
por lo menos, un elemento.
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Suponemos que existe un conjunto no vacio R de elementos, llamados nime-
ros reales, que satisfacen los diez axiomas enumerados a continuacién. Los axio-
mas se clasifican de manera natural en tres grupos a los que nos referiremos
como axiomas de cuerpo, axiomas de orden y axioma de completitud (lamado
también axioma del supremo o axioma de continuidad).

1.2 LOS AXIOMAS DE CUERPO

Junto con el conjunto R de los nimeros reales admitimos la existencia de dos
operaciones, llamadas suma y multiplicacion, tales que, para cada par de ni-
meros reales x e y, la suma x + y y el producto xy son nimeros reales deter-
minados univocamente por x e y, satisfaciendo los siguientes axiomas. (En los

axiomas que a continuacién se exponen, x, y, z representan nimeros reales arbi-
trarios en tanto no se precise lo contrario.)

Axioma 1. x +y =y + Xx, xy = yx (leyes conmutativas).
Axioma 2. x + (y +2) = (x + y) + z, x(yz) = (X)) (leyes asociativas).
Axioma 3. x(y + z) = xy + xz (ley distributiva).

Axioma 4. Dados dos niimeros reales cualesquiera x e y, existe un niimero
real z tal que x + z =y. Dicho niimero z se designard por y —x; el nimero
x—x se designard por 0. (Se puede demostrar que 0 es independiente de x.)
Escribiremos — x en vez de 0 — x y al nimero — x lo llamaremos opuesto de x.

Axioma 5. Existe, por lo menos, un niimero real x2%0. Si x e y son dos
niimeros reales con x 70, entonces existe un nimero z tal que xz =y. Dicho
niimero z se desginard por y[x; el nimero x[x se designard por 1 y puede de-
mostrarse que es independiente de x. Escribiremos x™* en vez de 1[x si x50
y a x7' lo llamaremos reciproco o inverso de x.

De estos axiomas pueden deducirse todas las leyes usuales de la Aritmé-

tica; por ejemplo, —(—x)=x, xH)'t=x, —@x—y)=y—x, XxX—y=
x + (—y), etc. (Para un desarrollo mds detallado, ver Referencia 1.1.)

1.3 LOS AXIOMAS DE ORDEN

Suponemos también la existencia de una relacién < que establece una orde-
nacién entre los niimeros reales y que satisface los axiomas siguientes:
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Axioma 6. Se verifica una y sélo una de las relaciones x =y, x <y, x > .
NOTA. x > y significa lo mismo que y < x.

Axioma 7. Si x <y, entonces, para cada z, es x + z <<y + z.
Axioma 8. Si x >0 e y > 0, entonces xy > 0.
Axioma 9. Si x>y e y > z, entonces x> 7.

NoTA. Un nidmero real x se llama positivo si x > 0 y negativo si x << 0. Desig-
naremos por R+ el conjunto de todos los niimeros reales positivos y por R~ el
conjunto de todos los mimeros reales negativos.

De estos axiomas pueden deducirse las reglas usuales que rigen las opera-
ciones con desigualdades. Por ejemplo, si tenemos que x < y, entonces xz << yzZ
si z es positivo, mientras que xz > yz si z es negativo. Ademds, si x >y y
Z > wconyy w positivos, entonces xz > yw. (Para una discusién més detallada
de estas reglas ver Referencia 1.1.)

NoTA. El simbolismo x <y se utiliza para abreviar la afirmacién:
“x<y o x =y

Resulta, pues, que 2<<3 ya que 2 <<3; y 2<2 ya que 2 = 2. El simbolo =
se utiliza de forma andloga. Un nimero real x se llama no negativo si x = 0.
Un par simultineo de desigualdades tales como x <<y, y < z se abrevia por
medio de la expresion x < y < z.

El teorema que sigue, que no es mds que una consecuencia inmediata de
los axiomas precedentes, se utiliza a menudo en las demostraciones del Ani-
lisis.

Teorema 1.1. Sean a y b niimeros reales tales que
a < b+ ¢ para cada ¢ > 0. €))
Entonces a < b.

Demostracion. Si b < a, entonces la desigualdad (1) no se satisface para ¢ =
(a— b)/2 puesto que '
b a+b a+a

b+£=b+a_ = < = a.
2 2 2
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Por lo tanto, por el axioma 6, resulta que a << b.
El axioma 10, axioma de completitud, serd enunciado en la seccién 1.11.

1.4. REPRESENTACION GEOMETRICA
DE LOS NUMEROS REALES '

Los nimeros reales son, a menudo, representados geométricamente como pun-
tos de una recta (denominada recta real o eje real). Se elige un punto
para que represente el 0 y otro a la derecha del 0 para que represente el 1,
como muestra la Fig. 1.1. Esta eleccién determina la escala. Con un conjunto
apropiado de axiomas para la Geometria euclidea a cada punto de la recta
real corresponde un numero real y uno sélo y, reciprocamente, cada nimero
real estd representado por un punto de la recta real y uno solo. Es usual refe-
rirse al punto x en vez de referirse al punto correspondiente al nimero real x.

[ [ .
(.) i N ;— Figura 1.1
La relacién de orden admite una interpretacién geométrica simple. Si x < y,
el punto x estd a la izquierda del punto y, como muestra la figura 1.1. Los nu-
meros positivos estdn a la derecha del 0 y los nimeros negativos estdn a la
izquierda del 0. Si a < b, un punto x satisface las desigualdades a < x < b si,
y s6lo si, 'x estd entre a 'y b.

1.5 INTERVALOS

El conjunto de todos los puntos comprendidos entre @ y b se denomina inter-
valo. A menudo es importante distinguir entre los intervalos que incluyen sus
extremos y los intervalos que no los incluyen.

NOTACION. La notacién {x:x verifica P} designa el conjunto de todos los ni-
meros reales x tales que satisfacen la propiedad P.

Definicién 1.2. Supongamos a <b. El intervalo abierto (a, b) se define por

(a,b) = {x:a < x < b}.

El intervalo cerrado [a, b] es el conjunto {x:a <x<b}. Los intervalos semi-
abiertos (a, b] y [a, b) se definen andlogamente utilizando, respectivamente, las
desigualdades a <x<b y a<<x < b. Los intervalos infinitos se definen como
sigue:

(a, +©) = {x:x > a}, [a, +0) = {x:x > a},
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(—0,a) ={x:x<a}, (—w,d]={x:x<a}.

Se utiliza a veces el intervalo (—oo, + o) para designar la recta real R.
Un solo punto es considerado como un intervalo cerrado «degenerado».

NOTA. Los simbolos 4+ oo y — oo se utilizan aqui tan sélo por conveniencias
de notacién y no deben ser considerados como nimeros reales. Més adelante
extenderemos el sistema de los nimeros reales incluyendo estos dos simbolos,
pero, mientras no lo hagamos, el lector deberd entender que todos los mimeros
reales son «finitos».

1.6 LOS ENTEROS

En esta seccion se describen los enteros como un subconjunto especial de R.
Antes de definir los enteros conviene introducir la nocién de conjunto induc-
tivo.

Definicién 1.3. Un conjunto de nimeros reales se denomina conjunto in-
ductivo si tiene las dos propiedades siguientes:

a) El niimero 1 estd en el conjunto.
b) Para cada x del conjunto, el nimero x + 1 estd también en el conjunto.

Por ejemplo, R es un conjunto inductivo. También lo es R*. Definiremos
los enteros positivos como aquellos niimeros reales que pertenecen a todos los
conjuntos inductivos.

Definicién 1.4. Un niimero real se denomina entero positivo si pertenece a
cada uno de los conjuntos inductivos. El conjunto de los enteros positivos se
designa por Z*.

El conjunto Z* es, a su vez, inductivo. Contiene al ndmero 1, al nime-
ro 1 + 1 (designado por 2), al mimero 2 4 1 (designado por 3), y asi sucesi-
vamente. Como Z* es subconjunto de cada uno de los conjuntos inductivos
consideraremos a Z* como el menor conjunto inductivo. Esta propiedad de Z*
se denomina, a menudo, principio de induccion. Suponemos al lector fami-
liarizado con las demostraciones por induccién que se basan en este principio.
(Ver Referencia 1.1.) Ejemplos de tales demostraciones se dan en la seccién si-
guiente.

Los opuestos de los enteros positivos se llaman enteros negativos. Los en-
teros positivos junto con los enteros megativos y el 0 (cero), forman un con-
junto Z que llamaremos, simplemente, conjunto de los enteros.
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1.7 TEOREMA DE DESCOMPOSICION UNICA
PARA ENTEROS

Si n 'y d son enteros y si n = cd para algin entero ¢, diremos que d es un divi-
sor de n, o que n es un miultiplo de d, y escribiremos d|r (se lee: d divide a n).
Un entero n es primo si n > 1y si los tinicos divisores positivos de n son 1 y n.
Sin> 1y nno es primo, entonces n es compuesto. El entero 1 no es ni primo
ni compuesto. :

Esta seccién expone algunos resultados elementales acerca de la descom-
posicién de enteros, culminando con el teorema de descomposicion unica, lla-
mado también el teorema fundamental de la Aritmética.

El teorema fundamental establece que (1) cada entero » > 1 puede ser re-
presentado como producto de factores primos y que (2) esta descomposicién
es tnica, salvo en el orden de los factores. Es facil probar la parte (1).

Teorema 1.5. Cada entero n>>1 es primo o producto de primos.

Demostracion. Utilizaremos la induccién sobre n. El teorema se verifica tri-
vialmente para n = 2. Supongamos que es cierto para cada entero k con
1 < k < n. Si n no es primo, admite un divisor d con 1 < d < n. Por lo tanto,
n=cd, con 1 <c < n. Puesto que tanto ¢ como d son < n, cada uno es
primo o es producto de primos; luego n es un producto de primos.

Antes de probar la parte (2), la unicidad de la descomposicién, introducire-
mos otros conceptos. '

Si dja y d|b, diremos que d es un divisor comin de a y b. El teorema que

sigue demuestra que cada par de enteros @ y b posee un divisor comin que
es combinacién lineal de a y de b.

Teorema 1.6. Cada par de enteros a 'y b admite un divisor comiin d de la
forma

d = ax + by
donde x e y son enteros. Ademds, cada divisor comiin de a'y b divide a d.

Demostracién. Supongamos primeramente que ¢ =0y b= 0 y procedamos por
induccién sobre n =a + b. Si n =0, entonces a=b =0 y podemos tomar
d =0 con x =y = 0. Supongamos entonces que el teorema ha sido probado
para 0, 1, 2, ..., n— 1. Por simetria podemos suponer a=b. Si b =0, en-
tonces d =a, x=1, y=0. Si b=>1 podemos aplicar la hipétesis de induc-
cibn aa—b ya b, ya que su suma es a =n—b <n— 1. Por lo tanto existe
un divisor comiin d de a— b y b de la forma d = (a — b)x + by. Este entero d
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divide también a (@a—b) + b = a, luego d es un divisor comiin de @ y de b
y tenemos que d = ax + (y-—x)b, es combinacién lineal de a y 4. Para com-
pletar la demostracién debemos probar que cada divisor comin divide a d.
Como un divisor comin divide a a y a b, dividird también a la combinacién
lineal ax + (y —x)b = d. Esto completa la demostracién si a=0y b=>0. Si
uno de ellos o ambos fuesen negativos, aplicariamos el resultado que acabamos
de demostrar a |a| y |b|.

NOTA. Si d es un divisor comin de a y b de la forma d = ax 4 by, entonces
—d es también un divisor comin de la misma forma, — d = a(— x) + b(—y).
De estos dos divisores comunes sélo el no negativo se denomina el mdximo
comiin divisor de a'y de b y se designa por mcd(a, b) o, simplemente, por (a, b).
Si (a, b) =1, se dice que a y b son primos entre si.

Teorema 1.7 (Lema de Euclides). Si albc y (a, b) =1, entonces ajc.

Demostracion. Como (a, b) = 1, podemos escribir 1 = ax + by. Por lo tanto,
¢ = acx + bcy. Pero alacx y albcy, luego djc.

Teorema 1.8. Si un mimero primo p divide a ab, entonces pla o p|b. En ge-
neral, si un niimero primo p divide al producto a, ... ax, entonces p divide a
uno de los factores por lo menos.

Demostracién. Supongamos que plab y que p no divida a a. Si probamos que
(p, @ =1, el lema de Euclides implica que p|b. Sea d = (p, a). Entonces d|p,
luego d = 1 0 d = p. No puede ser que d = p ya que d|a, pero p no divide a a.
Por lo tanto, d = 1. Para demostrar la afirmacién mds general se procede por
induccién sobre el nimero k de factores. Los detalles se dejan al lector.

Teorema 1.9 (Teorema de descomposicién unica). Cada entero n>1
puede ser representado como producto de factores primos, y si se prescinde del
orden de los factores la representacion es unica.

Demostracién. Procederemos por induccién sobre n. El teorema es cierto para
n = 2. Supongamos, entonces, que es cierto para todos los enteros mayores
que 1 y menores que n. Si n es primo, no hay nada que demostrar. Suponga-
mos, por lo tanto, que n es compuesto y que admite dos descomposiciones en
factores primos; a saber

n=piprPs=4q1qs"" " q, @

Deseamos probar que s = ¢y que cada p es igual a algin g. Dado que p, di-
vide a ¢,-g: ... g:, divide por lo menos a uno de los factores. Cambiando los



8 El sistema de los niimeros reales y el de los complejos

indices de las g, si es necesario, se puede suponer p,/q,. Por lo tanto, p, = q,
ya que tanto p, como g, son primos. En (2) simplificamos p, en ambos miem-
bros y obtenemos

n
— =D P =424,

Py

Como n es compuesto, 1 <n/p, < n; luego por la hipéStesis de induccién las
dos descomposiciones de n/p, son idénticas, si se prescinde del orden de los

factores. Por lo tanto, lo mismo es cierto para (2) y la demostracién estd ter-
minada.

1.8 LOS NUMEROS RACIONALES

Los cocientes de enteros a/b (donde b=40) se llamardn niimeros racionales.
Por ejemplo, 1/2, —7/5, y 6 son ndimeros racionales. El conjunto de los ni-
meros racionales, que designaremos por Q, contiene a Z como subconjunto.
Observe el lector que todos los axiomas de cuerpo y todos los axiomas de
orden se verifican en Q.

Suponemos que el lector estd familiarizado con ciertas propiedades elemen-
tales de los mimeros racionales. Por ejemplo, si @ y b son racionales, su me-
dia (@ + b)/2 también lo es y estd comprendida entre a y b. Asi pues, entre
dos nimeros racionales hay una infinidad de nimeros racionales, lo cual im-
plica que, dado un niimero racional cualquiera, no sea posible hablar del
nimero racional «inmediato superior».

1.9 LOS NUMEROS IRRACIONALES

Los nimeros reales que no son racionales se denominan irracionales. Por ejem-
plo, los nimeros V2, e,m y e son irracionales.

En general no es ficil probar que un cierto nimero particular es irracional.
No existe ninguna demostracién simple de la irracionalidad de e-, por ejemplo.
Sin embargo, la irracionalidad de nuimeros tales como /2, +/3 no es excesi-
vamente dificil de establecer y, de hecho, probaremos facilmente el siguiente:

Teorema 1.10. Si n es un entero positivo que no sea un cuadrado perfecto,
entonces \/ n es irracional.

Demostracién. Suponemos en primer lugar que » no admite ningin divisor
> 1 que sea cuadrado perfecto. Si_admitimos que +/» es racional, llegamos a
contradiccién. Supongamos que \/ﬁ = a/b, donde a y b son enteros sin divi-
sores comunes. Entonces nb?> = a* y, dado que el primer miembro de esta
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igualdad es un mdltiplo de n, también lo serd 4. Sin embargo, si a? es multi-
plo de n, a deberd serlo ya que n no admite divisores > 1 que sean cuadrados
perfectos. (Esto se ve ficilmente examinando la descomposicién de a en facto-
res primos.) Todo ello significa que a = cn, donde c¢ es un entero. Entonces
la ecuaci6n nb®> = a2 se transforma en nb* = ¢?n?, o b* = nc®. El mismo argu-
mento prueba que b debe ser asimismo multiplo de n. Entonces a y b serfan
ambos miiltiplos de n, lo cual contradice el hecho de que a y b carecen de di-
visores comunes. Esto finaliza la demostracién en el caso de que » no admita
un divisor > 1 que sea cuadrado perfecto.

Si n admite un factor que sea cuadrado perfecto, podremos escribir n = m?k,
donde k > 1 y k no admite divisores > 1 que sean cuadrados perfectos. Por lo
tanto vn = mVk; y si /n fuese racional, el nimero +/k seria también ra-
cional, contradiciendo lo que acabamos de demostrar.

Un tipo distinto de argumentacién es preciso para probar que el nimero e
es irracional. (Suponemos cierta familiaridad con la exponencial e® del Célculo
elemental y su representacién como serie infinita.)

Teorema 1.11. Si =14 x4+ x*2! + x*/3! 4+ ... + x*/n! + ..., entonces
el niimero e es irracional.

Demostracién. Probaremos que e~ es irracional. La serie e™* es una serie al-
ternada con términos que decrecen constantemente en valor absoluto. En tales
series el error cometido al cortar la serie por el n-ésimo término tiene el signo
algebraico del primer término que se desprecia y, en valor absoluto, es menor que

el del primer término que se desprecia. Por lo tanto, si s, = Jr_, (— D¥/k!,
tenemos la desigualdad

- 1
O<ed —sy 4 < —\
2k—1 k!
de la que se obtiene q i
0<@k—Dl(e! —sy_)<—<2, 3
< § ) (e S2k-1) % =2 3

para todo entero k= 1. Ahora bien (2k — 1)!s,;_, es siempre un entero. Si e™*
fuese racional, entonces podriamos elegir k suficientemente grande para que
(2k — 1)1 et fuese también un entero. A causa de (3) la diferencia entre am-
bos enteros deberia ser un nimero comprendido entre 0 y %, lo cual es impo-
sible. Luego e™* no es racional y, por tanto, e tampoco lo es.

NOTA. Para una demostracién de la irracionalidad de =, ver Ejercicio 7.33.

Los antiguos griegos sabian de la existencia de los mimeros irracionales
alld por el afio 500 a.C. Sin embargo, una teoria satisfactoria de tales niimeros
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no seria desarrollada hasta finales del siglo diecinueve en que tres teorias dis-
tintas son introducidas al mismo tiempo por Cantor, Dedekind y Weierstrass.
En la Referencia 1.6 puede hallarse informacién acerca de las teorias de De-
dekind y Cantor y sus equivalencias.

1.10 COTAS SUPERIORES; ELEMENTO MAXIMO,
COTA SUPERIOR MiNIMA (SUPREMO)

Los nimeros irracionales aparecen en Algebra cuando se pretenden resolver
ciertas ecuaciones cuadréticas. Por ejemplo, se desea un nimero real x tal que
x? = 2. De los nueve axiomas enumerados anteriormente no puede deducirse
si en R existe 0 no un nimero x, puesto que Q satisface también estos nueve
axiomas y hemos probado que no existe ningiin nimero racional cuyo cua-
drado sea 2. Fl axioma de completitud nos permitird introducir los nimeros
irracionales en el sistema de los mimeros reales y proporcionar al sistema de
los niimeros reales una propiedad de continuidad que es fundamental en mu-
chos de los teoremas de Andlisis.

Antes de describir el axioma de completitud, es conveniente introducir una
terminologia y una notacién adicionales.

Definicién 1.12. Sea S un conjunto de niimeros reales. Si existe un niimero
real b tal que x < b para todo x de S, diremos que b es una cota superior de S
y que S estd acotado superiormente por b.

Decimos una cota superior ya que cada nimero mayor que b también es
una cota superior. Si una cota superior b es, ademds, un elemento de S, b se
denomina #ltimo elemento o elemento mdximo de S. A lo sumo habrd uno.
de tales b. Si existe tal nimero b, escribiremos

b = max S.
Un conjunto carente de cotas superiores se denomina no acotado superior-
mente.
Las definiciones de los términos cota inferior, acotado inferiormente, primer
elemento (0 elemento minimo) pueden formularse andlogamente. Si S tiene un
elemento minimo, designaremos a dicho minimo por min S.

Ejemplos.

1. El conjunto R* = (0, + oo) es un conjunto no acotado superiormente. No po-
see ni cotas superiores ni elemento mdximo. Estd acotado inferiormente por 0,
pero no -posee elemento minimo.

2. El intervalo cerrado S = [0, 1] estd acotado superiormente por 1 e inferiormen-
te por 0. De hecho, mdx S =1y min S =0.



