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Preface

While concepts related to domination in graphs can be traced back to the mid-
1800s in connection to various chessboard problems, domination was first defined
as a graph theoretical concept in 1958. Domination in graphs has experienced rapid
growth from its introduction, resulting in over 1200 papers published on domination
in graphs by the late 1990s.

Noting the need for a comprehensive survey of the literature on domination in
graphs, in 1998 Haynes, Hedetniemi, and Slater published the first two books on
domination, Fundamentals of Domination in Graphs and Domination in Graphs:
Advanced Topics. We refer to these books as Books I and II.

The explosive growth of this field since 1998 has continued, and today more
than 4,000 papers have been published on domination in graphs, and the material in
Books I and II is now more than 20 years old. Thus, the authors feel it is time for an
update on the developments in domination theory since 1998. We also want to give
a comprehensive treatment of only the major topics in domination. This coverage
of domination, including the major results and updates, will be in the form of three
books, which we call Books III, IV, and V.

Book III, Domination in Graphs: Core Concepts, is written by the authors
and concentrates, as the title suggests, on the three main types of domination
in graphs: domination, independent domination, and total domination. It contains
major results on these basic domination numbers, including proofs of selected
results that illustrate many of the proof techniques used in domination theory.

For the companion books, Books IV and V, we invited leading researchers in
domination to contribute chapters.

Book IV concentrates on the most-studied types of domination that are not
covered in Book III. Although well over 70 types of domination have been
defined, Book IV focuses on those that have received the most attention in the
literature, and contains chapters on paired domination, connected domination,
restrained domination, multiple domination, distance domination, dominating func-
tions, fractional dominating parameters, Roman domination, rainbow domination,
locating-domination, eternal and secure domination, global domination, stratified
domination, and power domination.

v



vi Preface

The present volume, Book V, is divided into three parts. The first part focuses
on several domination-related concepts: broadcast domination, alliances, domatic
numbers, dominator colorings, irredundance in graphs, private neighbor concepts,
game domination, varieties of Roman domination, and spectral graph theory. The
second part covers domination in (i) hypergraphs, (ii) chessboards, and (iii) digraphs
and tournaments. The third part focuses on the development of algorithms and
complexity of (i) signed, minus, and majority domination, (ii) power domination,
and (iii) alliances in graphs. The third part also includes a chapter on self-stabilizing
domination algorithms.

The authors of the chapters in Book V provide a survey of known results with
a sampling of proof techniques in their areas of expertise. To avoid excessive
repetition of definitions and notation, Chapter 1 provides a glossary of commonly
used terms.

This book is intended as a reference resource for researchers and is written
to reach the following audiences: first, established researchers in the field of
domination who want an updated, comprehensive coverage of domination theory;
second, researchers in graph theory who wish to become acquainted with newer
topics in domination, along with major developments in the field and some of
the proof techniques used; and third, graduate students with interests in graph
theory, who might find the theory and many real-world applications of domination
of interest for master’s and doctoral theses topics. We also believe that Book
V provides a good focus for use in a seminar on either domination theory or
domination algorithms and complexity, including the new algorithm paradigm of
self-stabilizing domination algorithms.

We wish to thank the authors who contributed chapters to this book as well as the
reviewers of the chapters.

Johnson City, TN, USA Teresa W. Haynes
Clemson, SC, USA Stephen T. Hedetniemi
Johannesburg, South Africa Michael A. Henning
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Glossary of Common Terms

Teresa W. Haynes, Stephen T. Hedetniemi, and Michael A. Henning

1 Introduction

It is difficult to say when the study of domination in graphs began, but for the sake
of this glossary let us say that it began in 1962 with the publication of Oystein Ore’s
book Theory of Graphs [15]. In Chapter 13 Dominating Sets, Covering Sets and
Independent Sets of [15], we see for the first time the name dominating set, defined
as follows: “A subset D of V is a dominating set for G when every vertex not in D
is the endpoint of some edge from a vertex in D.” Ore then defines the domination
number, denoted δ(G), of a graph G, as “the smallest number of vertices in any
minimal dominating set.” So, at this point, and for the first time, domination has a
“name” and a “number.”

Of course, prior to this Claude Berge [3], in his book Theory of Graphs and
its Applications, which was first published in France in 1958 by Dunod, Paris,
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2 T. W. Haynes et al.

had previously defined the same concept, but had, in Chapter 4 The Fundamental
Numbers of the Theory of Graphs of [3], given it the name “the coefficient of
external stability.”

Before Berge, Dénes König, in his 1936 book Theorie der Endlichen und
Unendlichen Graphen [13], had defined essentially the same concept, but in VII
Kapitel, Basisproblem für gerichtete Graphen, König gave it the name “punktbasis,”
which we would today say is an independent dominating set.

And even before König, in the books by Dudeney in 1908 [8] and W. W. Rouse
Ball in 1905 [2], one can find the concepts of domination, independent domination,
and total domination discussed in connection with various chessboard problems.
And it was Ball who, in turn, credited such people as W. Ahrens in 1910 [1], C. F.
de Jaenisch in 1862 [7], Franz Nauck in 1850 [14], and Max Bezzel in 1848 [4] for
their contributions to these types of chessboard problems involving dominating sets
of chess pieces.

But it was Ore who gave the name domination and this name took root. Not long
thereafter, Cockayne and Hedetniemi [6] gave the notation γ (G) for the domination
number of a graph, and this also took root and is the notation adopted here.

Since the subsequent chapters in this book will deal with domination parameters,
there will be much overlap in the terminology and notation used. One purpose of
this chapter is to present definitions common to many of the chapters in order to
prevent terms being defined repeatedly and to avoid other redundancy. Also, since
graph theory terminology and notation sometimes vary, in this glossary we clarify
the terminology that will be adopted in subsequent chapters.

We proceed as follows. In Section 2.1, we present basic graph theory defi-
nitions. We discuss common types of graphs in Section 2.2. Some fundamental
graph constructions are given in Section 2.3. In Section 3.1 and Section 3.2, we
present parameters related to connectivity and distance in graphs, respectively. The
covering, packing, independence, and matching numbers are defined in Section
3.3. Finally in Section 3.4, we define selected domination-type parameters that will
occur frequently throughout the book.

For more details and terminology, the reader is referred to the two books
Fundamentals of Domination in Graphs [10] and Domination in Graphs, Advanced
Topics [11], written and edited by Haynes, Hedetniemi, and Slater and the book
Total Domination in Graphs by Henning and Yeo [12]. An annotated glossary, from
which many of the definitions in this chapter are taken, was produced by Gera,
Haynes, Hedetniemi, and Henning in 2018 [9].

2 Basic Terminology

In this section, we give basic definitions, common types of graphs, and fundamental
graph constructions.
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2.1 Basic Graph Theory Definitions

Before we proceed with our glossary of parameters, we need to define a few
basic terms, which are used in the definitions in the following subsections.
For an integer k≥ 1, we use the standard notation [k]={1, . . . , k} and
[k]0 = [k]∪{0}= {0, 1, . . . , k}.

A (finite, undirected) graph G= (V, E) consists of a finite nonempty set of
vertices V =V (G) together with a set E=E(G) of unordered pairs of distinct
vertices called edges. Each edge e={u, v} in E is denoted with any of e, uv, vu,
and {u, v}. We say that a graph G has order n= |V | and size m= |E|.

Two vertices u and v in G are adjacent if they are joined by an edge e, that is,
u and v are adjacent if e= uv∈E(G). In this case, we say that each of u and v is
incident with the edge e. Further, we say that the edge e joins the vertices u and v.
Two edges are adjacent if they have a vertex in common. Two vertices in a graph G
are independent if they are not adjacent. A set of pairwise independent vertices in
G is an independent set of G. Similarly, two edges are independent if they are not
adjacent.

A neighbor of a vertex v in G is a vertex u that is adjacent to v. The
open neighborhood of a vertex v in G is the set of neighbors of v, denoted
NG(v). Thus, NG(v)={u∈V : uv∈E}. The closed neighborhood of v is the set
NG[v]={v}∪NG(v). For a set of vertices S⊆V , the open neighborhood of S is the
set NG(S)=⋃

v ∈ SNG(v) and its closed neighborhood is the set NG[S]=NG(S)∪ S.
If the graph G is clear from the context, we omit it in the above expressions. For
example, we write N(v), N[v], N(S), and N[S] rather than NG(v), NG[v], NG(S), and
NG[S], respectively.

For a set of vertices S⊆V and a vertex v belonging to the set S, the S-private
neighborhood of v is defined by pn[v, S]={w∈V : NG[w]∩ S={v}}, while its
open S-private neighborhood is defined by pn(v, S)={w∈V : NG(w)∩ S={v}}. As
remarked in [12], the sets pn[v, S]� S and pn(v, S)� S are equivalent and we define
the S-external private neighborhood of v to be this set, abbreviated epn[v, S] or
epn(v, S). The S-internal private neighborhood of v is defined by ipn[v, S]= pn[v,
S]∩ S and its open S-internal private neighborhood is defined by ipn(v, S)= pn(v,
S)∩ S. We define an S-external private neighbor of v to be a vertex in epn(v, S) and
an S-internal private neighbor of v to be a vertex in ipn(v, S).

The degree dG(v) of a vertex v is the number of neighbors v has in G, that is,
dG(v)= |NG(v)|. Again if the graph G is clear from the context, we use d(v) rather
than dG(v). We remark that some books use deg(v) and deg v to denote the degree
of v. We leave it to the authors to choose which of these notations to adopt in their
chapters. For a subset of vertices S⊆V , the degree of v in S, denoted dS(v), is
the number of vertices in S adjacent to the vertex v; that is, dS(v)= |NG(v)∩ S|.
In particular, if S=V , then dS(v)= dG(v). The degree sequence of a graph G with
vertex set V ={v1, v2, . . . , vn} is the sequence d1, d2, . . . , dn, where di = d(vi) for
i∈ [n]. Often the degree sequence, d1, d2, . . . , dn is written in non-increasing order,
and so d1 ≥ d2 ≥· · · ≥ dn.
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An isolated vertex is a vertex of degree 0 in G. A graph is isolate-free if it does
not contain an isolated vertex. The minimum degree among the vertices of G is
denoted by δ(G) and the maximum degree by �(G). A leaf is a vertex of degree 1,
while its neighbor is a support vertex. A strong support vertex is a (support) vertex
with at least two leaf neighbors.

For subsets X and Y of vertices of G, we denote the set of edges that join a vertex
of X and a vertex of Y in G by [X, Y ].

Two graphs G and H are isomorphic, denoted G∼=H, if there exists a bijection
φ: V (G)→V (H) such that two vertices u and v are adjacent in G if and only if
the two vertices φ(u) and φ(v) are adjacent in H. A parameter of a graph G is
a numerical value (usually a non-negative integer) that can be associated with a
graph such that whenever two graphs are isomorphic, they have the same associated
parameter value.

By a partition of the vertex set V of a graph G, we mean a family π ={V1, V2,
. . . , Vk} of nonempty pairwise disjoint sets whose union equals V , that is, for all
1≤ i < j≤ k, Vi ∩Vj =∅ and

k⋃

i=1

Vi = V.

For such a partition π , we will say that π has order k.
A walk in a graph G from a vertex u to a vertex v is a finite, alternating sequence

of vertices and edges, starting with the vertex u and ending with the vertex v, in
which each edge of the sequence joins the vertex that precedes it in the sequence to
the vertex that follows it in the sequence. A trail is a walk containing no repeated
edges, and a path is a walk containing no repeated vertices. We will mainly be
concerned with paths. A path between two vertices u and v is called a (u, v)-path or
a u-v path or a u, v-path in the literature. The length of a walk equals the number of
edges in the walk. A graph G is connected if for any two vertices u and v in G, there
is a (u, v)-path.

A cycle is a path in which the first and last vertices are the same and all other
vertices are distinct. A chord of a cycle C is an edge between two nonconsecutive
vertices of C.

The distance d(u, v) between two vertices u and v, in a connected graph G,
equals the minimum length of a (u, v)-path in G. A shortest, or minimum length,
path between two vertices u and v is called a (u, v)-geodesic; a v-geodesic is any
shortest path from v to another vertex; a geodesic is any shortest path in a graph.
The diameter of G is the maximum length of a geodesic in G.

A graph G′ = (V ′, E′) is a subgraph of a graph G= (V, E) if V ′⊆V and E′⊆E.
A subgraph G′ of a graph G is called a spanning subgraph of G if V ′ =V . If G= (V,
E) and S⊆V , then the subgraph of G induced by S is the graph G[S], whose vertex
set is S and whose edges are all the edges in E both of whose vertices are in S.

Let F be an arbitrary graph. A graph G is said to be F-free if G does not contain
F as an induced subgraph.
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If G= (V, E) and S⊆V , the subgraph obtained from G by deleting all vertices
in S and all edges incident with one or two vertices in S is denoted by G− S; that is,
G− S=G[V � S]. If S={v}, we simply denote G−{v} by G− v. The contraction
of an edge e= xy in a graph G is the graph obtained from G by deleting the vertices
x and y and all edges incident to x or y and adding a new vertex and edges joining
this new vertex to all vertices that were adjacent to x or y in G.

A component of a graph is a maximal connected subgraph. An odd (even)
component is a component of odd (even) order. Let oc(G) equal the number of
odd components of G. A vertex v∈V is a cutvertex if the graph G− v has more
components than G. An edge e= uv is a bridge if the graph G− e obtained by
deleting e from G has more components than G.

2.2 Common Types of Graphs

A graph of order n= 1 is called a trivial graph, while a graph with at least two
vertices is called a nontrivial graph. A graph of size m= 0 is an empty graph, while
a graph with at least one edge is a nonempty graph. Recall that a connected graph
is a graph for which there is a path between every pair of its vertices.

A k-regular graph is a graph in which every vertex has degree k for some k≥ 0.
A regular graph is a graph that is k-regular. A 3-regular graph is also called a cubic
graph.

A graph of order n that is itself a cycle is denoted by Cn, and a graph that is itself
a path is denoted by Pn. Note that a cycle is a 2-regular graph.

A forest is an acyclic graph, that is, a graph with no cycles. A tree is a connected
acyclic graph. Equivalently, a tree is a connected graph having size one less than
its order. Hence, if T is a tree of order n and size m, then T is connected and
m= n− 1. Note that every component of a forest is a tree, and a forest in which
every component is a path is called a linear forest.

If G is a vertex disjoint union of k copies of a graph F, we write G= kF.
A complete graph is a graph in which every two vertices are adjacent. A complete

graph of order n is denoted by Kn. A triangle is a subgraph isomorphic to K3 or C3,
since K3∼=C3.

A graph G is bipartite if its vertex set can be partitioned into two independent
sets X and Y . The sets X and Y are called the partite sets of G. A complete bipartite
graph, denoted Kr,s, is a bipartite graph with partite sets X and Y , where |X| = r,
|Y | = s, and every vertex in X is adjacent to every vertex in Y . The graph Kr,s has
order r+ s, size rs, δ(Kr,s) = min{r, s} and �(Kr,s) = max{r, s}.

A star is a nontrivial tree with at most one vertex that is not a leaf. Thus, a star
is a complete bipartite graph K1,k for some k≥ 1. A claw is an induced copy of the
graph K1,3. Thus, a claw-free graph is a K1,3-free graph.

For r, s≥ 1, a double star S(r, s) is a tree with exactly two (adjacent) vertices
that are not leaves, one of which has r leaf neighbors and the other s leaf neighbors.
Equivalently, a double star is a tree having diameter equal to 3.
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A diamond is an induced copy of the graph K4 − e, which is obtained from a
copy of the complete graph of order 4 by deleting any edge e.

A graph G can be embedded on a surface S if its vertices can be placed on S and
all of its edges can be drawn between the vertices on S in such a way that no two
edges intersect. A graph G is planar if it can be embedded in the plane; a plane
graph is a graph that has been embedded in the plane.

A rooted tree T is a tree having a distinguished vertex labeled r, called the root.
Let T be a rooted tree with root r. For each vertex v, let P(v) be the unique (r, v)-path
in T. The parent of a vertex v is its neighbor on P(v), while the other neighbors of v
are called its children. The set of children of v is denoted by C(v). Note that the root
r is the only vertex of T with no parent. A descendant of v is any vertex u�=v such
that P(u) contains v, while an ancestor of v is a vertex u�=v that belongs to P(v) in T.
In particular, every child of v is a descendant of v, while the parent of v is an ancestor
of v. A grandchild of v is a descendant of v at distance 2 from v. We let D(v) denote
the set of descendants of v, and we define D[v]=D(v)∪{v}. The maximal subtree
at v, denoted Tv, is the subtree of T induced by D[v]. The depth of a vertex v in T
equals d(r, v), and the height of v, denoted ht(v), is the maximum distance from v to
a descendant of v. Thus, ht(v) = max{d(v,w) : w is a descendant of v}.

For classes of graphs not defined here, we refer the reader to the definitive
encyclopedia on graph classes, Graph Classes: A Survey [5] by Brandstädt, Le, and
Spinrad.

2.3 Graph Constructions

Given a graph G= (V, E), the complement of G is the graph G = (V ,E), where
uv ∈ E if and only if uv�∈E. Thus, the complement G of G is formed by taking the
vertex set of G and joining two vertices by an edge whenever they are not joined in
G.

By a graph product G⊗H on graphs G and H, we mean a graph whose
vertex set is the Cartesian product of the vertex sets of G and H (that is,
V (G⊗H)=V (G)×V (H)) and whose edge set is determined entirely by the
adjacency relations of G and H. Exactly how it is determined depends on what kind
of graph product we are considering.

The Cartesian product G�H of two graphs G and H is the graph with vertex
set V (G)×V (H), where two vertices (u1, v1) and (u2, v2) are adjacent if and only
if either u1 = u2 and v1v2 ∈E(H) or v1 = v2 and u1u2 ∈E(G).

The direct product (also known as the cross product, tensor product, categorical
product, and conjunction) G×H of two graphs G and H is the graph with vertex set
V (G)×V (H), where two vertices (u1, v1) and (u2, v2) are adjacent in G×H if and
only if u1u2 ∈E(G) and v1v2 ∈E(H).

Given a graph G= (V, E) and an edge uv∈E, the subdivision of edge uv consists
of (i) deleting the edge uv from E, (ii) adding a new vertex w to V , and (iii) adding
the new edges uw and wv to E. In this case, we say that the edge uv has been
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subdivided. The subdivision graph S(G) is the graph obtained from G by subdividing
every edge of G exactly once.

Given a graph G= (V, E), the line graph L(G)= (E, E(L(G))) is the graph whose
vertices correspond 1-to-1 with the edges in E, and two vertices are adjacent in L(G)
if and only if the corresponding edges in G have a vertex in common, that is, if and
only if the corresponding two edges are adjacent.

The corona G ◦K1 of a graph G, also denoted cor(G) in the literature, is the graph
obtained from G by adding, for each vertex v∈V , a new vertex v′ and the edge vv′.
The edge vv′ is called a pendant edge. The k-corona G ◦Pk of G is the graph of
order (k+ 1)|V (G)| obtained from G by attaching a path of length k to each vertex
of G so that the resulting paths are vertex-disjoint. In particular, the 2-corona G ◦P2
of G is the graph of order 3|V (G)| obtained from G by attaching a path of length 2
to each vertex of G so that the resulting paths are vertex-disjoint. The generalized
corona G ◦H is the graph obtained by adding a copy of H for each vertex v of G
and joining v to every vertex of H. Thus, a generalized corona G ◦H, where H =K1,
is the ordinary corona G ◦K1. We note that whether G ◦Pk is intended to denote a
k-corona or a generalized corona will be clear from context or specifically stated by
the author.

3 Graph Parameters

In this section, we present common graph parameters that may appear in this book.

3.1 Connectivity and Subgraph Numbers

In this subsection, we present parameters related to connectivity in graphs.

(a) blocks bl(G), number of blocks in G. A block of a graph G is a maximal
nonseparable subgraph of G, that is, a maximal subgraph having no cutvertices.

(b) bridges br(G), number of bridges in G.
(c) circumference cir(G), maximum length or order of a cycle in G.
(d) clique number ω(G), maximum order of a complete subgraph of G.
(e) components c(G), number of maximal connected subgraphs of G.
(f) A vertex cut of a connected graph G is a subset S of the vertex set of G with the

property that G− S is disconnected (has more than one component). A vertex
cut S is a k-vertex cut if |S| = k.

(g) vertex connectivity κ(G), minimum cardinality of a vertex cut of G if G is not
the complete graph, and κ(Kn)= n− 1. A graph G is k-vertex-connected (or k-
connected) if κ(G)≥ k for some integer k≥ 0. Thus, κ(G) is the smallest number
of vertices whose deletion from G produces a disconnected graph or the trivial
graph K1. A nontrivial graph has connectivity 0 if and only if it is disconnected.
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(h) An edge cut of a nontrivial connected graph G is a nonempty subset F of the
edge set of G with the property that G−F is disconnected (has more than
one component). Thus, the deletion of an edge cut from the connected graph
G results in a disconnected graph. An edge cut F is a k-edge cut if |F| = k.

(i) edge connectivity λ(G), minimum cardinality of an edge cut of G if G is
nontrivial, while λ(K1)= 0. A graph G is k-edge-connected if λ(G)≥ k for some
integer k≥ 0. Thus, λ(G) is the smallest number of edges whose deletion from
G produces a disconnected graph or the trivial graph K1. Hence, λ(G)= 0 if and
only if G is disconnected or trivial.

(j) girth of G, denoted girth(G) or g(G) in the literature, the length of a shortest
cycle in G.

3.2 Distance Numbers

This subsection contains the definitions of parameters, which are defined in terms
of the distances d(u, v) between vertices u and v in a graph.

(a) eccentricity ecc(v) = max{d(v,w) : w ∈ V (G)}.
(b) diameter diam(G), maximum distance among all pairs of vertices of G.

Equivalently, the diameter of G is the maximum length of a geodesic in G.
Thus, the diameter of G is the maximum eccentricity taken over all vertices of
G. Two vertices u and v in G for which d(u, v)= diam(G) are called antipodal
or peripheral vertices of G. A diametral path in G is a geodesic whose length
equals the diameter of G.

(c) The periphery of a graph G is the subgraph of G induced by its peripheral
vertices.

(d) radius rad(G) = min{ecc(v) : v ∈ V (G)}.
(e) The center of a graph G, denoted C(G), is the subgraph of G induced by the

vertices in G whose eccentricity equals the radius of G. A vertex v∈C(G) is
called a central vertex of G.

3.3 Covering, Packing, Independence, and Matching Numbers

As previously defined, a set S is independent if no two vertices of S are adjacent.
A set M of edges is called a matching if no two edges of M are adjacent, and a

matching of maximum cardinality is a maximum matching. Given a matching M, we
denote by V [M] the set of vertices in G incident with an edge in M. A matching M
of G is a perfect matching if V [M]=V (G). Thus, if G has a perfect matching M,
then G has even order n= 2k for some k≥ 1 and |M| = k.

A vertex and an edge are said to cover each other in a graph G if they are incident
in G. A vertex cover in G is a set of vertices that covers all the edges of G, while
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an edge cover in G is a set of edges that covers all the vertices of G. Thus, a vertex
cover in G is a set of vertices that contains at least one vertex of every edge in G.

A subset S of vertices in G is a packing if the closed neighborhoods of vertices
in S are pairwise disjoint. Equivalently, S is a packing in G if for every u, v∈ S, d(u,
v) > 2. Thus, if S is a packing in G, then |NG[v]∩ S|≤ 1 for every vertex v∈V (G). A
packing is also called a 2-packing in the literature. More generally, for k≥ 2, a set S
is a k-packing in G if for u, v∈ S, d(u, v) > k.

A subset S of vertices in G is an open packing if the open neighborhoods
of vertices in S are pairwise disjoint. Thus, if S is an open packing in G, then
|NG(v)∩ S|≤ 1 for every vertex v∈V (G).

All of the parameters in this subsection have to do with sets that are independent
or cover other sets. These include some of the most basic of all parameters in graph
theory.

(a) vertex independence numbers i(G) and α(G), minimum and maximum cardinal-
ities of a maximal independent set in G. The lower vertex independence number,
i(G), is also called the independent domination number of G, while the upper
vertex independence number, α(G), is also called the independence number of
G. (While the notation i(G) is fairly standard for the independent domination
number, we remark that the independence number is also denoted by β0(G) in
the literature.)

(b) vertex covering numbers β(G) and β+(G), minimum and maximum cardinalities
of a minimal vertex cover in G. (We remark that the vertex covering number is
also denoted by τ (G) or by α(G) in the literature.)

(c) edge covering numbers β ′(G) and β
′+(G), minimum and maximum cardinalities

of a minimal edge cover in G.
(d) k-packing numbers ρk(G), maximum cardinality of a k-packing in G for k≥ 2.

When k= 2, the k-packing number ρk(G) is called the packing number of G,
denoted by ρ(G). Thus, ρ(G) is the maximum cardinality of a packing in G.

(e) open packing numbers ρo(G), maximum cardinality of an open packing in G.
(f) matching numbers α

′−(G) and α′(G), minimum and maximum cardinalities of
a maximal matching in G. The upper matching number, α′(G), is also called the
matching number of G. Recall that a perfect matching is a matching in which
every vertex is incident with an edge of the matching. Thus, if a graph G of
order n has a perfect matching, then α′(G) = 1

2n. It should be noted that by a
well-known theorem of Gallai, that if G is a graph of order n with no isolated
vertices, then α(G)+β(G)= n=α′(G)+β ′(G). (We remark that the matching
number is also denoted by β1(G) in the literature.)

3.4 Domination Numbers

A dominating set in a graph G= (V, E) is a set S of vertices of G such that every
vertex in S = V \ S has a neighbor in S. Thus, if S is a dominating set of G, then
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NG[S]=V and every vertex in S is therefore adjacent to at least one vertex in S. For
subsets X and Y of vertices of G, if Y ⊆NG[X], then the set X dominates the set Y
in G. In particular, if X dominates V (G), then X is a dominating set of G.

The many variations of dominating sets in a graph G are based on (i) conditions
that are placed on the subgraph G[S] induced by a dominating set S, (ii) conditions
that are placed on the vertices in S, or (iii) conditions that are placed on the edges
between vertices in S and vertices in S. We mention only the major domination
numbers here.

A total dominating set, abbreviated TD-set, in a graph G with no isolated vertex is
a set S of vertices of G such that every vertex in V is adjacent to at least one vertex in
S. Thus, a subset S⊆V is a TD-set in G if NG(S)=V . Every graph without isolated
vertices has a TD-set, since S=V is such a set. If X and Y are subsets of vertices
in G, then the set X totally dominates the set Y in G if Y ⊆NG(X). In particular, if X
totally dominates V (G), then X is a TD-set in G.

A paired dominating set, abbreviated PD-set, of G is a set S of vertices of G such
that every vertex is adjacent to some vertex in S and the subgraph G[S] induced by
S contains a perfect matching M. Two vertices joined by an edge of M are said to be
paired and are also called partners in S.

A connected dominating set, abbreviated CD-set, in a graph G is a dominating
set S of vertices of G such that G[S] is connected.

(a) domination numbers γ (G) and �(G), minimum and maximum cardinalities of
a minimal dominating set in G. The parameters γ (G) and �(G) are referred to
as the domination number and upper domination number of G, respectively. A
dominating set of G of cardinality γ (G) is called a γ -set of G, while a minimal
dominating set of cardinality �(G) is called a �-set of G.

(b) independent domination number i(G), minimum cardinality of a dominating set
in G that is also independent. An independent dominating set of G of cardinality
i(G) is called an i-set of G. We note that the maximum order of a minimal
independent dominating set equals the vertex independence number α(G).

(c) total domination numbers γ t(G) and �t(G), minimum and maximum cardinali-
ties of a minimal total dominating set of G. The parameters γ t(G) and �t(G) are
referred to as the total domination number and upper total domination number
of G, respectively. A TD-set of G of cardinality γ t(G) is called a γ t-set of G,
while a minimal TD-set of cardinality �t(G) is called a �t-set of G.

(d) paired domination numbers γ pr(G) and �pr(G), minimum and maximum
cardinalities of a minimal PD-set of G. The parameters γ pr(G) and �pr(G)
are referred to as the paired domination number and upper paired domination
number of G, respectively. A PD-set of G of cardinality γ pr(G) is called a γ pr-
set of G, while a minimal PD-set of cardinality �pr(G) is called a �pr-set of G.

(e) connected domination numbers γ c(G) and �c(G), minimum and maximum
cardinalities of a minimal CD-set of G. The parameters γ c(G) and �c(G)
are referred to as the connected domination number and upper connected
domination number of G, respectively. A CD-set of G of cardinality γ c(G) is
called a γ c-set of G, while a minimal CD-set of cardinality �c(G) is called a
�c-set of G.
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1 Introduction

The concept of broadcast domination was birthed by combining the concepts of
distance and domination in graphs and applying them to modeling the problem
of positioning broadcasting radio transmitters, where each transmitter may have
a different effective radiated power. To formally define broadcast domination, we

The research of the author Michael A. Henning supported in part by the University of Johan-
nesburg. The research of the author Gary MacGillivray supported by the Natural Sciences and
Engineering Research Council of Canada.

M. A. Henning
Department of Mathematics and Applied Mathematics, University of Johannesburg,
Johannesburg, South Africa
e-mail: mahenning@uj.ac.za

G. MacGillivray (�)
Department of Mathematics and Statistics, University of Victoria, V8W 2Y2, P.O. Box 1700 STN
CSC, Victoria, BC, Canada
e-mail: gmacgill@math.uvic.ca

F. Yang
Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland
Park, 2006 South Africa

Department of Mathematics and Statistics, University of Victoria, V8W 2Y2, P.O. Box 1700 STN
CSC, Victoria, BC, Canada
e-mail: fyang@uvic.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
T. W. Haynes et al. (eds.), Structures of Domination in Graphs, Developments
in Mathematics 66, https://doi.org/10.1007/978-3-030-58892-2_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58892-2_2&domain=pdf
mailto:mahenning@uj.ac.za
mailto:gmacgill@math.uvic.ca
mailto:fyang@uvic.ca
https://doi.org/10.1007/978-3-030-58892-2_2


16 M. A. Henning et al.

recall the fundamental concepts of distance and domination in graph theory. The
distance between two vertices u and v in a graph G, denoted by dG(u, v), or simply
d(u, v) if the graph G is clear from context, is the length of a shortest (u, v)-path in G.
The eccentricity eccG(v) of a vertex v in G is the maximum distance of a vertex from
v in G. The maximum eccentricity among the vertices of G is the diameter of G,
denoted by diam(G), while the minimum eccentricity among the vertices of G is the
radius of G, denoted by rad(G). A central vertex of G is a vertex whose eccentricity
equals rad(G). A tree is either central or bicentral, depending on whether it has one
or two central vertices. A diametrical path in G is a shortest path whose length is
equal to diam(G). We note that the two vertices at the end of a diametrical path have
maximum eccentricity in G.

A dominating set in a graph G is a set S of vertices of G such that every vertex
outside S is adjacent to at least one vertex in S. The domination number of G,
denoted by γ (G), is the minimum cardinality of a dominating set in G.

A neighbor of a vertex v in G is a vertex adjacent to v. The open neighborhood
of a vertex v in G, denoted by NG(v), is the set of all neighbors of v in G, while the
closed neighborhood of v is the set NG[v]=NG(v)∪{v}. We denote the degree of a
vertex v in G by dG(v)= |NG(v)|. The minimum and maximum degrees among all
vertices of G are denoted by δ(G) and �(G), respectively.

For an integer k≥ 1, the closed k-neighborhood of v in G, denoted by Nk[v;G], is
the set of all vertices within distance k from v, that is, Nk[v;G]={u : dG(u, v)≤ k}.
The open k-neighborhood of v, denoted by Nk(v;G), is the set of all vertices different
from v and at distance at most k from v in G, that is, Nk(v;G)=Nk[v;G]�{v}.

If the graph G is clear from context, we omit the subscript G. For example, we
simply write N(v), N[v], Nk(v), and Nk[v] rather than NG(v), NG[v], Nk(v;G), and
Nk[v;G], respectively. When k= 1, the set Nk[v]=N[v] and the set Nk(v)=N(v). In
what follows, for an integer k≥ 1, we use the standard notation [k]={1, . . . , k} and
[k]0 = [k]∪{0}= {0, 1, . . . , k}.

For a graph G= (V, E) with a vertex set V and an edge set E, a function
f : V →{0, 1, 2, . . . , diam(G)} is called a broadcast on G. For each vertex v in G,
the value f (v) is called the strength (or the weight) of the broadcast from v. For each
vertex u∈V , if there exists a vertex v in G (possibly, u= v) such that f (v) > 0 and
d(u, v)≤ f (v), then f is called a dominating broadcast on G. A vertex v with f (v) > 0
can be thought of as the site from which the broadcast is transmitted with strength
f (v), and such a vertex is called an f-broadcast vertex or simply a broadcast vertex
if the function f is clear from context. The ball of radius r around v is defined as
Nr[v]={u∈V : d(u, v)≤ r}. Thus, the ball Nf (v)[v] is the set of vertices that hear the
broadcast from v. Vertices u with f (u)= 0 do not broadcast. For X ⊆V , we define

f (X) =
∑

v∈X
f (v).

The cost of the dominating broadcast f is the quantity f (V ), which is the sum
of the strengths of the broadcasts over all vertices in G. The minimum cost of a
dominating broadcast is the broadcast domination number of G, denoted by γ b(G).
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Fig. 1 Three broadcast dominating functions of a graph G

An optimal broadcast is a broadcast with cost equal to γ b(G). For the graph G
shown in Figure 1, three broadcast dominating functions are illustrated in Figure
1(a), 1(b) and 1(c). The cost of f1, f2, and f3 is 4, 3, and 3, respectively. For this
graph G, we have γ b(G)= 3 and both f2 and f3 are optimal broadcasts.

Broadcast domination in graphs was first introduced and studied in 2001 by
Erwin [21, 22]. Erwin observed that if a dominating broadcast f satisfies f (v)∈{0,
1} for all v∈V , then f is the characteristic function of a dominating set and hence
has cost at most γ (G). Furthermore, he observed that a broadcast f : V →{0, 1,
. . . , diam(G)} that assigns the strength rad(G) to a central vertex of a connected
graph G and the strength 0 to all remaining vertices of G has cost f (V )= rad(G).
If G=K1, then γ b(G)= 1= γ (G), while rad(G)= 0. Hence, we assume that G�=K1
and therefore has order at least 2. Thus, the broadcast domination number of a graph
G is at most its domination number and at most its radius. We state this formally as
follows.

Observation 1. ([21, 22]) If G is a connected graph of order at least 2, then

γb(G) ≤ min{γ (G), rad(G)}.

Graphs for which the broadcast domination number is equal to the radius are
called radial. In view of Observation 1, we can replace diam(G) by rad(G) in the
definition of a dominating broadcast in a graph G. Erwin [21, 22] showed that if
the domination number or the radius of a graph is at most 3, then the broadcast
domination number is determined.

Proposition 2. ([21, 22]) If G is a connected graph of order at least 2 and k =
min{γ (G), rad(G)} where k∈ [3], then γ b(G)= k.

In 2006, Dunbar, Erwin, Haynes, Hedetniemi, and Hedetniemi [20] defined a key
concept called efficient broadcast. A dominating broadcast is efficient if no vertex
hears a broadcast from two different vertices. If f is not an efficient dominating
broadcast in a graph G= (V, E), then there exists a vertex v such that d(v, x)≤ f (x)
and d(v, y)≤ f (y), where x and y are broadcasting vertices in G. In this case, we can
reassign the value 0 to both x and y, assign the value f (w)+ f (x)+ f (y) to a vertex w
that is within distance f (y) from x and also within distance f (x) from y, and leave the
value of all other vertices unchanged under f. The cost of the new broadcast is equal
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to the cost of the original broadcast. This process can be repeated until an efficient
broadcast is found. This yields the following result.

Theorem 3. ([20]) Every graph G has an optimal dominating broadcast that is
efficient.

As first observed by Herke [31], the broadcast domination number of a connected
graph is equal to the minimum broadcast domination number among its spanning
trees.

Observation 4. ([31]) If G is a connected graph, then

γb(G) = min{γb(T ) | T is a spanning tree of G}.

2 The Dual of Broadcast Domination

Graph theoretic minimization (respectively, maximization) problems expressed as
linear programming problems have dual maximization (respectively, minimization)
problems. Much of the early work on linear programming duality problems for
domination type parameters is done by Slater. A survey of these results can be found
in the 1998 survey paper of Slater [44]. The dual concept of coverings and packings
is also well studied in graph theory. For a survey on the combinatorics underlying
set packing and set covering problems, we refer the reader to the 2001 monograph
by Cornuéjols [17].

In this section, we discuss the dual (in the sense of linear programming) of broad-
cast domination, namely multipacking. The term multipacking was first introduced
in the Master’s thesis of Teshima [47] in 2012. Here, broadcast domination was
considered as a linear programming problem, and the linear programming dual was
used to give the definition of a multipacking. A multipacking is a set S⊆V in a
graph G= (V, E) such that for every vertex v∈V and for every integer r≥ 1, the
ball of radius r around v contains at most r vertices of S, that is, there are at most
r vertices in S at distance at most r from v in G. We note that in this definition
of a multipacking, we may restrict our attention to r ∈ [diam(G)]. By our earlier
observations, we can in fact restrict the integer r to belong to the set [rad(G)]. The
multipacking number of G is the maximum cardinality of a multipacking of G and
is denoted by mp(G). We define next the multipacking number in terms of the dual
of the linear programming problem for broadcast domination.

Let G= (V, E) be a graph with V ={v1, v2, . . . , vn}. The definition of γ b(G)
leads to a 0–1 integer program, which we now describe. For each vertex vi and
integer k∈ [rad(G)], let xik be an indicator variable giving the truth value of the
statement “the strength of the broadcast f at vertex vi equals k,” that is,

xik =
{

1 if f (vi) = k

0 otherwise.
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The formulation of the primal integer program for broadcast domination is given by

Broadcast Domination γ b

Minimize
rad(G)∑

k=1

n∑

i=1
kxik ,

subject to∑

d(vi ,vj )≤k

xik ≥ 1 for all vertices vi and vj,

xik ∈{0, 1} for each vertex vi and integer k∈ [rad(G)].

Multipacking Number mp(G)

Maximize
n∑

k=1
yj ,

subject to∑

d(vi ,vj )≤k

yj ≤ k for all vertices vi and vj and integer k∈ [rad(G)],

yk ∈{0, 1} for each k∈ [n].

Since broadcast domination and multipacking are dual problems, we have the
following observation.

Observation 5. For every graph G, we have mp(G)≤ γ b(G).

The graph G shown in Figure 2 satisfies mp(G)= 3, where the darkened vertices
form a multipacking of maximum cardinality in G. As observed earlier, γ b(G)= 3,
and so for this example, we have mp(G)= γ b(G).

In 2014, Hartnell and Mynhardt [26] provided the following lower bound on the
multipacking number of a graph.

Theorem 6. ([26]) If G is a connected graph, then mp(G) ≥
⌈

1
3 (diam(G)+ 1)

⌉
.

Proof.. Let P : v0, v1, . . . , vd be a diametrical path of G, where d = diam(G). Let
Vi ={v∈V : d(v, v0)= i} for all i∈ [d], and let M ={vi : i≡ 0 (mod 3)}. We note that
|M| = � 1

3 (d + 1)�. By our choice of the set M, every vertex v∈V (P) satisfies
|Nr[v]∩M|≤ r for all integers r≥ 1. We now consider an arbitrary vertex w∈V .
We note that w∈Vj for some j∈ [d]0. Since vj ∈Vj and M ⊆V (P), we note that
Nr[w]∩M ⊆Nr[vj]∩M, implying that |Nr[w]∩M|≤ r for all integers r≥ 1. Since
w∈V is arbitrary, this implies that the set M is a multipacking in G. Thus, mp(G) ≥
|M| = � 1

3 (d + 1)� = � 1
3 (diam(G)+ 1)�. �

Fig. 2 A graph G with mp(G)= 3
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As an immediate consequence of Observation 5 and Theorem 6, we have the
following lower bound on the broadcast domination number first observed by Erwin
[21, 22].

Corollary 7. ([21, 22]) If G is a connected graph, then γb(G) ≥
⌈

1
3 (diam(G)+ 1)

⌉
.

We note that if G is a path Pn on n≥ 2 vertices, then γ (G) = � 1
3n� =

� 1
3 (diam(G) + 1)�. Hence, by Observations 1 and 5 and Theorem 6, we have that

the lower bound of Theorem 6 is tight. Furthermore, we have the following result.

Proposition 8. For every integer n≥ 2,

mp(Pn) = γb(Pn) = γ (Pn) =
⌈n

3

⌉
.

By Observation 4, for n≥ 3, we have γ b(Cn)= γ b(Pn), and so by Proposition 8,
γb(Cn) = �n

3 �. However, mp(Cn) = �n
3 � for all n≥ 3. Thus, for cycles, we have the

following result.

Proposition 9. ([47]) For every integer n≥ 3, mp(Cn)= γ b(Cn) if and only if n≡ 0
(mod 3). For n (mod 3)∈{1, 2}, we have mp(Cn)= γ b(Cn)− 1.

By Theorem 6, if G is a connected graph, then 3mp(G)≥diam(G)+ 1.
By definition, diam(G)≥rad(G). By Observation 1, rad(G)≥ γ b(G). Hence,
3mp(G)≥diam(G)+ 1≥rad(G)+ 1≥ γ b(G)+ 1, or, equivalently, γ b(G)≤
3mp(G)− 1. Hence, as a consequence of our earlier results, we have the following
upper bound on the broadcast domination number in terms of its multipacking
number.

Corollary 10. ([26]) If G is a connected graph, then γ b(G)≤ 3mp(G)− 1.

If the multipacking number of a graph G is at least 2, then Hartnell and Mynhardt
[26] improved the upper bound in Corollary 10 slightly.

Theorem 11. ([26]) If G is a connected graph with mp(G)≥ 2, then γ b(G)≤
3mp(G)− 2.

As a consequence of Corollary 10, we have the following upper bound on the
ratio γ b(G)/mp(G).

Corollary 12. ([26]) If G is a connected graph, then
γb(G)

mp(G)
< 3.

In 2012, Teshima [47] proved that the graph G shown in Figure 3 satisfies
γ b(G)= 4 and mp(G)= 2. Assigning a strength 2 to each of the two vertices of
degree 2 in G as illustrated in Figure 3, and a strength of 0 to the remaining
vertices of G produces an optimal broadcast of G. An example of a multipacking
of maximum cardinality in G is given by the set of two darkened vertices of G
illustrated in Figure 3. This example serves to show the existence of a graph G for
which the ratio γ b(G)/mp(G)= 2.
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2 2

Fig. 3 A graph G with γ b(G)= 4 and mp(G)= 2

(a) G1 (b) G2

Fig. 4 Two graphs satisfying γ b(G)= 4 and mp(G)= 2

To date, no graph G has been found satisfying γ b(G)/mp(G) > 2. Beaudou,
Brewster, and Foucaud [4] posed the following conjecture.

Conjecture 1. ([4]) If G is a connected graph, then γ b(G)≤ 2mp(G).

There are a few known examples of connected graphs G which achieve the
conjectured bound, that is, γ b(G)= 2mp(G). For example, if G is a cycle C4
or C5, then γ b(G)= 2 and mp(G)= 1, and so γ b(G)= 2mp(G). As observed
earlier, if G is the graph shown in Figure 3, then γ b(G)= 4 and mp(G)= 2, and
so γ b(G)= 2mp(G). Two additional examples of graphs G with γ b(G)= 4 and
mp(G)= 2 are the graphs G=G1 and G=G2 shown in Figure 4(a) and 4(b),
respectively. Graph G1 is attributed to C. R. Dougherty in [4, Figure 3(c)] as private
communication, while graph G2 is given in [4].

In 2014, Hartnell and Mynhardt [26] gave a construction of a graph Gk such
that γ b(Gk)−mp(Gk)= k for any given integer k≥ 1, showing that the difference
γ b −mp can be arbitrarily large. In order to explain their construction, let H be the
graph obtained from three vertex-disjoint copies F1, F2, and F3 of K2,4 as follows.
Let ui be a vertex of degree 2 in Fi for i∈ [2], and let v1 and v2 be two vertices
of degree 2 in F3. Let H be obtained from the disjoint union of F1, F2, and F3 by
joining vi to ui for i∈ [2]. Let x be a vertex of degree 2 in F1 different from u1, and
let y be a vertex of degree 2 in F2 different from u2. The graph H is illustrated in
Figure 5.

Let M be a multipacking of maximum cardinality in H. Each induced subgraph Fi

of H contains at most one vertex of M, implying that mp(H)= |M|≤ 3. By Theorem

6, mp(H) ≥
⌈

1
3 (diam(H)+ 1)

⌉
=

⌈
1
3 (8 + 1)

⌉
= 3. Consequently, mp(H)= 3.

An example of a multipacking of maximum cardinality in H is given by the set
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v1 v2u1 u2

4

x y

Fig. 5 A graph H with γ b(H)= 4 and mp(H)= 3

of three darkened vertices of H illustrated in Figure 5. By Observation 5, we have
γ b(H)≥mp(H)= 3. If γ b(H)= 3, then since rad(H)= 4, every optimal broadcast in
H must contain at least two broadcast vertices (of positive strength), one of which
therefore has strength 1 and the other strength 2. But then at least one of the vertices
x and y hears no broadcast, a contradiction. Hence, γ b(H)≥ 4. Since rad(H)= 4 and
γ (H)= 6, by Observation 1, we have γ b(H)≤ 4. Consequently, γ b(H)= 4.

We now return to the general construction given by Hartnell and Mynhardt [26].
For k= 1, let Gk =H. For k≥ 2, let H1, H2, . . . , Hk be k vertex-disjoint copies of
the graph H, where xi and yi are the vertices in Hi named x and y in H. Let Gk be
constructed from the disjoint union of the graphs H1, H2, . . . , Hk by adding the
edges yixi+1 for i∈ [k− 1]. As shown in [26], γ b(Gk)= 4k and mp(Gk)= 3k. This
yields the following result.

Theorem 13. ([26]) For every integer k≥ 1, there exists a connected graph Gk such
that γ b(Gk)= 4k and mp(Gk)= 3k. Thus, the following hold in the graph Gk.

(a) γ b(Gk)−mp(Gk)= k.
(b) γb(Gk)/mp(Gk) = 4

3 .

Recall that in Theorem 11, if G is a connected graph with mp(G)≥ 2, then
γ b(G)≤ 3mp(G)− 2. Hartnell and Mynhardt [26] asked whether the factor 3 in this
bound can be improved. In 2019, Beaudou, Brewster, and Foucaud [4] answered
their question in the affirmative, resulting in a significant improvement of this upper
bound on the broadcast domination number in terms of its multipacking number.

Theorem 14. ([4]) If G is a connected graph, then γ b(G)≤ 2mp(G)+ 3.

Hartnell and Mynhardt [26] were the first to observe that Conjecture 1 is true
when mp(G)≤ 2. The conjecture is shown in [4] to hold for all graphs with
multipacking number at most 4.

Theorem 15. ([4]) If G is a connected graph and mp(G)≤ 4, then γ b(G)≤ 2mp(G).

By Observation 5, for every graph G, we have mp(G)≤ γ b(G). In 2017,
Mynhardt and Teshima [47] proved that equality holds here for the class of trees,
thereby extending a classic result due to Meir and Moon [37] that the domination
number equals the 2-packing number for trees.

Theorem 16. ([47]) For every tree T, we have γ b(T)=mp(T).

For any integer programming problem, a natural variation of the problem
can be obtained by considering the LP relaxation. Since broadcast domination
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Fig. 6 A graph H with mpf (H)= 4 and mp(H)= 3

and multipacking can be regarded as integer programming problems, Brewster,
Mynhardt, and Teshima [11] used this idea to study fractional broadcast domination
and fractional multipacking. Here, the broadcast strength of a vertex can be a
fraction, and a vertex can be considered to be fractionally in a multipacking. For
example, we can assign 1/3 strength to all vertices in C4, for a total cost of 4/3,
resulting in a fractional dominating broadcast where each vertex hears a total
strength at least one. On the other hand, we can pack 1/3 for each vertex in C4 and it
will give a multipacking of size 4/3. We denote the fractional broadcast domination
number as γ b,f (G) and the fractional multipacking number as mpf (G). The duality
theorem of linear programming yields the result below.

Theorem 17. ([11]) If G is a connected graph, then

mp(G) ≤ mpf (G) = γb,f (G) ≤ γb(G).

The difference mpf (G)−mp(G) can be arbitrarily large. The graph H shown in
Figure 5 has fractional multipacking number at least 4 since we can pack 1/3 on
the degree 2 and 4 vertices with the exception of x and y, which are not packed.
The resulting fractional multipacking is shown in Figure 6. Thus, mpf (H)≥ 4.
As observed earlier, γ b(G)= 4, implying by Theorem 17 that mpf (H)≤ 4. Con-
sequently, mpf (H)= 4.

Using the previous construction Gk given by Hartnell and Mynhardt [26], we can
readily deduce the following result.

Theorem 18. For every integer k≥ 1, there exists a connected graph Gk such that
mpf (Gk)= 4k and mp(Gk)= 3k.

3 Broadcast Domination in Trees

Broadcasts in trees have a special structure, which was exploited in the thesis by
Herke [31] in 2007 and in the papers by Herke and Mynhardt [32] in 2009 and
Cockayne, Herke, and Mynhardt [16] in 2011. In order to determine the broadcast
domination number of a tree, the above authors introduced the concept of a shadow
tree of a tree, defined as follows.



24 M. A. Henning et al.

Suppose P : v0v1v2 . . . vd is a diametrical path in a tree T. The shadow tree is
constructed in two steps. First, consider the forest F =T −E(P) obtained from T by
deleting all edges on the path P. For each vertex vk of P, let Qk be a longest path in
F emanating from vk. Let Qk start at vk and end at the vertex bk (possibly, vk = bk).
We note, for example, that Q0 is the trivial path consisting of the vertex v0 = b0,
and Qd is the trivial path consisting of the vertex vd = bk. For example, consider the
tree T in Figure 7, where the vertices of the diametrical path P : v0v1v2 . . . vd and the
vertices b1, b4, and b5 are labeled as shown. We note that in this example, vi = bi

for i∈{0, 2, 3, 6, 7}.
In the first step of the construction of a shadow tree, we reduce the tree T to the

subtree, Treduced, of T induced by the vertices belonging to the set

V (P ) ∪ (

d−1⋃

k=1

V (Qk)).

For the tree T in Figure 7, the resulting reduced tree Treduced is shown in Figure 8.
In the second step of the construction of a shadow tree, if d(vk, bk)≥ d(vk, bi)

for some k∈ [d] and i∈ [d]�{k}, then we remove the vertices in V (Qi)�{vi} from
the tree Treduced. We repeat this process until no such indices k and i exist. The
resulting tree is a shadow tree of T, denoted by Tshadow. The shadow of vertex bk

is the set of vertices {v∈V (Tshadow) : d(vk, bk)≥ d(vk, v)}. In our example, in the

v1v0 v2 v3 v4 v5 v6 v7

b1 b4

b5

Fig. 7 A tree T

v0 v1 v2 v3 v4 v5 v6 v7

b1 b4

b5

Fig. 8 A reduced tree Treduced of T


