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xv

Preface

Snyder and Champness Molecular Genetics of Bacteria is a new edition of a 
classic text updated to address the massive advances in the field of bacterial 
molecular genetics. We renamed the book as a tribute to the original authors, 
Larry Snyder and Wendy Champness, who welcomed us as coauthors for the 
4th edition and trusted us to continue to build on the strong foundation of 
their multiple editions in carrying this important text forward. As with the 
previous editions, we have endeavored to keep the page length approximately 
the same. This meant making many hard choices of what to remove to make 
room for exciting new and important material. We are very happy that every 
illustration is now in full color, which offered us the opportunity to rethink 
each drawing and clarify and standardize features, which we believe will im-
prove their use by instructors in classroom lectures.

Perhaps the most significant force in molecular genetics research since the 
last edition has been the plummeting cost of DNA sequencing. This factor has 
created an explosion of new sequence information of both independent ge-
nomes and microbial communities in the form of metagenomics, where DNA 
is extracted directly from all of the organisms in an environment. This infor-
mation has vastly expanded our picture of the tree of life and the massive 
contribution of uncultured species. The broader availability of DNA sequenc-
ing at a reasonable price has also left its mark on genomic techniques. These 
new techniques and new information have had a considerable impact in every 
chapter and provided the impetus for a new chapter, “Genomes and Genomic 
Analysis” (chapter 13).

We expanded chapter 1, on DNA structure, DNA replication, and chromo-
some segregation, to include many advances in our understanding of how 
chromosomes are managed and the molecular machines that carry out these 
processes. Our understanding of the nature of FtsK and related DNA-pumping 
enzymes, the evolving role of SeqA, the mechanism of chromosome partition-
ing, and the domain structure of the chromosomes also benefited from multi-
ple technological innovations. Chapter  2 focuses on mechanisms of gene 
expression, from transcription through mRNA turnover, translation, and post-
translational effects, including protein targeting, which was moved into this 
chapter. We reduced the historical aspects of chapter  3, retaining key land-
marks such as the important role of the F plasmid discovered by Esther Leder-
berg, so the chapter now focuses more on practical aspects of genetic analysis. 
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	 xvi	 Preface

Newer molecular techniques that have replaced some of the classic approaches 
(e.g., for generation of targeted chromosomal mutations) are now discussed in 
the new chapter 13.

Chapter 4 presents a concise understanding of bacterial plasmids as impor
tant contributors to the genomic content in bacteria as well as essential tools in 
molecular biology. Significant additions to the chapter include an expanded 
discussion of the two major mechanisms of segregation and the ever-broadening 
view of toxin-antitoxin systems. Toxin-antitoxin systems were first discovered 
for their role in plasmid stabilization, but while the diversity of molecular 
mechanisms has expanded, important questions remain concerning the real 
function of these systems when situated in bacterial chromosomes. Chapter 5, 
which focuses on conjugation, continues to set its roots in the original conjugal 
plasmid, the fertility plasmid. We included considerable new information that 
relates to our recognition that conjugal systems appear to be as common in the 
form of integrating conjugative elements (ICEs) as they are in stand-alone plas-
mids. The diversity of ICEs is remarkable, and this chapter strives to provide a 
foundation for these dynamic elements, which are responsible for the largest 
known genomic islands transmitted between bacteria.

In chapter 6, we expanded the discussion of natural transformation and its 
regulation to include additional comparative information about how these sys-
tems vary in different groups of organisms. We consolidated the discussion of 
lytic and lysogenic bacteriophages and their roles in transduction of bacterial 
DNA as chapter 7. We organized the information on phage biology based on 
the different functions required for phage infection and replication, and fol-
lowed this with a discussion of phage genetics, their use in bacterial genetic 
transfer, and their roles as tools for molecular biology.

We streamlined chapter 8, “Transposition, Site-Specific Recombination, and 
Families of Recombinases,” to make room for additional families of elements 
including the exciting and still somewhat enigmatic HUH transposons, as well 
as group II mobile introns, and an advanced appreciation of the interrelation-
ship between mobile elements and host DNA replication. Transposons con-
tinue to provide an important tool in genomics, and mobile genetic elements 
in general provide the most significant mechanisms for the transfer of antibiotic 
resistance. As the spread of antibiotic resistance is slowly nullifying the effective-
ness of antibiotics worldwide, understanding the mechanisms of this spread 
is more important than ever. Chapter 9, “Molecular Mechanisms of Homolo-
gous Recombination,” continues to be grounded in the central role that ho-
mologous recombination plays in the repair of DNA double-strand breaks. 
We expanded the chapter to include a better appreciation of the multiple 
pathways used to load the RecA recombinase onto different types of DNA 
substrates.

We broadly updated chapter 10, “DNA Repair and Mutagenesis,” to reflect 
our increased mechanistic understanding across many DNA repair systems, as 
well as information on how mechanisms established in bacterial systems con-
tinue to contribute to our understanding of disease in humans. We extensively 
updated chapter 11, which focuses on mechanisms of gene regulation of indi-
vidual genes and operons, to include new information as the field continues to 
advance. In chapter 12, we then applied the principles learned in chapter 11 to 
global regulatory systems that regulate multiple sets of genes and operons, of-
ten in response to multiple regulatory inputs. Bacillus subtilis sporulation, a 
complex developmental system, is presented in depth as a final example that 
integrates many of the different mechanisms that are introduced in chapters 11 
and 12.
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	 Preface	 xvii	

Chapter 13, “Genomes and Genomic Analysis,” is a new chapter that con-
solidates relevant topics previously found elsewhere in the book and provides 
considerable new information on this topic. We provide background on the 
multiple mechanisms used for DNA sequencing, including the newest genera-
tions of high-throughput sequencing strategies. Having hundreds of thousands 
of bacterial genomes has allowed us to gain a better understanding of how 
genomes are organized as well as the relationship between core genes and 
genes acquired by horizontal gene transfer. The chapter also provides basic in-
formation on genome annotation and comparative genomics. Chapter 13 fur-
ther presents an expanded picture of numerous systems that bacteria use to 
guard against horizontal gene transfer. Although horizontal gene transfer is by 
far the most important mechanism for evolution in bacteria and archaea, it 
also provides the greatest vulnerability, with the relentless onslaught of bacte-
riophages and mobile elements that can sap cellular resources or inactivate 
important or essential host genes. Significantly, host defense systems also pro-
vide the most important tools ever developed for molecular biology. The new 
chapter provides expanded background on diverse restriction endonucleases 
and the important roles they play in molecular biology. We cover the variety of 
tools that are available for cloning and gene assembly, as well as the advan-
tages and disadvantages of these techniques to help guide the investigator. 
These techniques allow never-imagined possibilities for quickly and accurately 
constructing synthetic DNA fragments for testing ideas or allowing advances 
in engineering, including assembling entire bacterial genomes. We greatly ex-
panded the section on CRISPR/Cas systems and chose the Cas9 system, impor
tant in many applications in a multitude of model systems and human genome 
engineering, to illustrate on the book’s cover. CRISPR/Cas systems are very 
diverse, falling into six distinct types and tens of subtypes. We provide the 
reader with the background needed to understand how these fascinating sys-
tems evolved, the role they play in the natural environment, and the massive 
promise they hold in genome engineering.
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3

Introduction

The goal of this textbook is to introduce the student to the field of bac­
terial molecular genetics. From the point of view of genetics and genetic ma­
nipulation, bacteria are relatively simple organisms. There also exist model 
bacterial organisms that are easy to grow and easy to manipulate in the labo­
ratory. For these reasons, most methods in molecular biology and recombinant 
DNA technology that are essential for the study of all forms of life have been 
developed around bacteria. Bacteria also frequently serve as model systems for 
understanding cellular functions and developmental processes in more com­
plex organisms. Much of what we know about the basic molecular mechanisms 
in cells, such as transcription, translation, and DNA replication, has originated 
with studies of bacteria. This is because such central cellular functions have re­
mained largely unchanged throughout evolution. Core parts of RNA polymer­
ase and many of the translation factors are conserved in all cells, and ribosomes 
have similar structures in all organisms. The DNA replication apparatuses of 
all organisms contain features in common, such as sliding clamps and editing 
functions, which were first described in bacteria and their viruses, called bacte­
riophages. Chaperones that help other proteins fold and topoisomerases that 
change the topology of DNA were first discovered in bacteria and their bacte­
riophages. Studies of repair of DNA damage and mutagenesis in bacteria have 
also led the way to an understanding of such pathways in eukaryotes. Excision 
repair systems, mutagenic polymerases, and mismatch repair systems are re­
markably similar in all organisms, and defects in these systems are responsible 
for multiple types of human cancers.

In addition, as our understanding of the molecular biology of bacteria ad­
vances, we are finding a level of complexity that was not appreciated previ­
ously. Because of the small size of the vast majority of bacteria, it was 
impossible initially to recognize the high level of organization that exists in bac­
teria, leading to the misconception that bacteria were merely “bags of en­
zymes,” where small size allowed passive diffusion to move cellular constituents 
around. However, it is now clear that movement and positioning within the 
bacterial cell are highly controlled processes. For example, despite the lack of a 
specialized membrane structure called the nucleus (the early defining feature of 
the “prokaryote” [see below]), the genome of bacteria is exquisitely organized 
to facilitate its repair and expression during DNA replication. In addition, ad­
vances facilitated by molecular genetics and microscopy have made it clear that 
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many cellular processes occur in highly organized subre­
gions within the cell. Once it was appreciated that bacte­
ria evolved in the same basic way as all other living 
organisms, the relative simplicity of bacteria paved the 
way for some of the most important scientific advances 
in any field, ever. It is safe to say that a bright future 
awaits the fledgling bacterial geneticist, where studies of 
relatively simple bacteria, with their malleable genetic 
systems, promise to uncover basic principles of cell biol­
ogy that are common to all organisms and that we can 
now only imagine.

However, bacteria are not just important as laboratory 
tools to understand other organisms; they also are impor­
tant and interesting in their own right. For instance, they 
play essential roles in the ecology of Earth. They are the 
only organisms that can “fix” atmospheric nitrogen, that 
is, convert N2 to ammonia, which can be used to make 
nitrogen-containing cellular constituents, such as pro­
teins and nucleic acids. Without bacteria, the natural ni­
trogen cycle would be broken. Bacteria are also central 
to the carbon cycle because of their ability to degrade re­
calcitrant natural polymers, such as cellulose and lignin. 
Bacteria and some types of fungi thus prevent Earth from 
being buried in plant debris and other carbon-containing 
material. Toxic compounds, including petroleum, many 
of the chlorinated hydrocarbons, and other products of 
the chemical industry can also be degraded by bacteria. 
For this reason, these organisms are essential in water pu­
rification and toxic waste clean-up. Moreover, bacteria 
produce most of the naturally occurring so-called green­
house gases, such as methane and carbon dioxide, which 
are in turn used by other types of bacteria. This cycle 
helps maintain climate equilibrium. Bacteria have even 
had a profound effect on the geology of Earth, being re­
sponsible for some of the major iron ore and other min­
eral deposits in Earth’s crust.

Another unusual feature of bacteria and archaea (see 
below) is their ability to live in extremely inhospitable en­
vironments, many of which are devoid of life except for 
microbes. These are the only organisms living in the Dead 
Sea, where the salt concentration in the water is very 
high. Some types of bacteria and archaea live in hot 
springs at temperatures close to the boiling point of wa­
ter (or above in the case of archaea), and others survive 
in atmospheres devoid of oxygen, such as eutrophic lakes 
and swamps.

Bacteria that live in inhospitable environments some­
times enable other organisms to survive in those environ­
ments through symbiotic relationships. For example, 
symbiotic bacteria make life possible for Riftia tubeworms 
next to hydrothermal vents on the ocean floor, where liv­
ing systems must use hydrogen sulfide in place of organic 
carbon and energy sources. In this symbiosis, the bacte­
ria obtain energy and fix carbon dioxide by using the 

reducing power of the hydrogen sulfide given off by the 
hydrothermal vents, thereby furnishing food in the form 
of high-energy carbon compounds for the worms, which 
lack a digestive tract. Symbiotic cyanobacteria allow 
fungi to live in the Arctic tundra in the form of lichens. 
The bacterial partners in the lichens fix atmospheric ni­
trogen and make carbon-containing molecules through 
photosynthesis to allow their fungal partners to grow on 
the tundra in the absence of nutrient-containing soil. 
Symbiotic nitrogen-fixing Rhizobium and Azorhizobium 
spp. in the nodules on the roots of legumes and some 
other types of higher plants allow the plants to grow in 
nitrogen-deficient soils. Other types of symbiotic bacte­
ria digest cellulose to allow cows and other ruminant an­
imals to live on a diet of grass. Bioluminescent bacteria 
even generate light for squid and other marine animals, 
allowing illumination, camouflage, and signaling in the 
darkness of the deep ocean.

Bacteria are also important to study because of their 
role in disease. They cause many human, plant, and ani­
mal diseases, and new diseases are continuously appear­
ing. Knowledge gained from the molecular genetics of 
bacteria helps in the development of new ways to treat 
or otherwise control old diseases that can be resistant to 
older forms of treatment, as well as emerging diseases.

Some bacteria that live in and on our bodies also ben­
efit us directly. The role of our commensal bacteria in hu­
man health is only beginning to be appreciated. It has 
been estimated that of the 1014 cells in a human body, 
only half are human! Of course, bacterial cells are much 
smaller than our cells, but this shows how our bodies are 
adapted to live with an extensive bacterial microbiome, 
which helps us digest food and avoid disease, among other 
roles, many of which are yet to be uncovered.

Bacteria have also long been used to make many use­
ful compounds, such as antibiotics, and chemicals, such 
as benzene and citric acid. Bacteria and their bacterio­
phages are also the source of many of the useful enzymes 
used in molecular biology.

In spite of substantial progress, we have only begun to 
understand the bacterial world around us. Bacteria are 
the most physiologically diverse organisms on Earth, and 
the importance of bacteria to life on Earth and the poten­
tial uses to which bacteria can be put can only be guessed. 
Thousands of different types of bacteria are known, and 
new insights into their cellular mechanisms and their ap­
plications constantly emerge from research with bacte­
ria. Moreover, it is estimated that less than 1% of the types 
of bacteria living in the soil and other environments have 
ever been isolated. Recent culture-independent mecha­
nisms indicate that bacterial diversity is much greater than 
we ever imagined (see Hug et al., Suggested Reading). In 
this new picture, it seems that less than half of the major 
lineages of bacteria have representatives that have been 
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cultured. Organisms in these uncharacterized groups of 
bacteria may have all manner of interesting and useful 
functions. Clearly, studies of bacteria will continue to be 
essential to our future efforts to understand, control, and 
benefit from the biological world around us, and bacte­
rial molecular genetics will be an essential tool in these 
efforts. However, before discussing this field, we must 
first briefly discuss the evolutionary relationship of bacte­
ria to other organisms.

The Biological Universe
The Bacteria
This textbook comes at a very exciting time in our un­
derstanding of the interrelationship of all living things on 
the planet. After the landmark work of Carl Woese, all 
organisms on Earth were assigned to three major groups 
called domains: the bacteria (formerly eubacteria), the ar­
chaea (formerly archaebacteria), and the eukaryotes (see 
Woese and Fox, Suggested Reading). However, it is now 
clear that two major divisions account for these three 
groups. Bacteria form one of these divisions, while eu­
karyotes are now believed to have diverged out of the 
archaea. Figure 1 shows the microbiologists’ view of the 
living world, where microbes provide most of the diver­
sity and eukaryotes occupy a relatively small niche. This 
is not a far-fetched concept. Sequence data show that we 
differ from chimpanzees by only 2% of our DNA se­
quence, while 25 to 50% of the genes in a typical bacte­
rium are unique to the species. Furthermore, while 
mammals diverged from each other on the order of mil­
lions of years ago, the main bacterial lineages diverged 
billions of years ago.

Bacteria can differ greatly in their physical appearance 
under the microscope. Although most are single celled and 
rod shaped or spherical, some are multicellular and un­
dergo complicated developmental cycles. The cyanobac­
teria (formerly called blue-green algae) are bacteria, but 
they have chlorophyll and can be filamentous, which is 
why they were originally mistaken for algae. The anti­
biotic-producing actinomycetes, which include Strepto­
myces spp., are also bacteria, but they form hyphae and 
stalks of spores, making them resemble fungi. Another 
bacterial group, the Caulobacter spp., have both free-
swimming and sessile forms that attach to surfaces 
through a holdfast structure. Some of the most dramatic-
appearing bacteria of all belong to the genus Myxococ­
cus, members of which can exist as free-living single-celled 
organisms but can also aggregate to form fruiting bodies, 
much like slime molds. As mentioned above, bacterial 
cells are usually much smaller than the cells of higher or­
ganisms, but one very large bacterium, Epulopiscium, can 
be over half a millimeter long, longer than even most eu­
karyotic cells (see Angert, Suggested Reading). In addi­

tion, unlike most bacteria that multiply by simple 
division, Epulopiscium gives birth to multiple live prog­
eny. Despite the fact that some bacteria are found in dra­
matically different shapes and sizes, they cannot be 
distinguished simply by their physical appearance; in­
stead, it is necessary to use biochemical criteria, such as 
the sequences of their ribosomal proteins or RNAs 
(rRNAs), whose sequences are characteristic of the three 
domains of life.

GRAM-NEGATIVE AND GRAM-POSITIVE 
BACTERIA
Bacteria have historically been divided into two major 
subgroups, the Gram-negative and Gram-positive bac­
teria. This division was based on the response to a test 
called the Gram stain. “Gram-negative” bacteria retain 
little of the dye and are pink after this staining procedure, 
whereas “Gram-positive” bacteria retain more of the dye 
and turn deep blue. The difference in staining typically 
reflects the fact that Gram-negative bacteria are sur­
rounded by a thinner structure composed of both an 
inner and an outer membrane, while the structure sur­
rounding Gram-positive bacteria is much thicker, con­
sisting of a single membrane surrounded by a thicker 
wall. However, this older form of classification is being 
replaced by talking about the phyla of bacteria as deter­
mined by the DNA sequence. The Firmicutes are a broad 
group containing Bacillus, clostridia, lactic acid bacteria, 
and the Tenericutes, including the mycoplasmas. Fir­
micutes have been referred to as low G+C Gram-positive 
bacteria based on the low percentage of guanine and cy­
tosine (low G+C) compared to adenine and thymine of­
ten found in the genome sequence of members of this 
group (see chapter 1). However, having a low G+C ge­
nome is not a universal feature of the Firmicutes, which 
limits the utility of the designation. Another group of 
bacteria that were classically described as high G+C 
and Gram positive because they typically possess a 
higher percentage of guanine and cytosine includes the 
Actinobacteria (actinomycetes), such as Streptomyces 
and Mycobacterium.

The Gram designation system of classifying bacteria is 
particularly weak for capturing the diversity of the nu­
merous phyla that stain Gram negative. While many bac­
teria historically referred to as Gram negative, such as 
Escherichia coli, Pseudomonas, and Rhizobium, fall 
within a broad group known as the Proteobacteria, many 
other characterized and uncharacterized groups also ex­
ist. It is also worth pointing out that relying on a staining 
form of classification is particularly contrived when talk­
ing about uncultured bacteria or those that are only ca­
pable of growth as symbionts in other organisms. Given 
all of these considerations, instead of using the Gram-
positive and Gram-negative designations as a tool for 
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Figure 1  A molecular tree of life capturing diversity using ribosomal proteins from sequenced genomes (see Hug 
et al., Suggested Reading). Selected major linages within bacteria are indicated, including the Proteobacteria and the 
subgroups Alpha, Beta, Delta, Epsilon, Gamma, and Zeta, the Firmicutes, and the Candidate Phyla Radiation, which 
is almost completely devoid of cultured representatives. For the Archaea, two superphyla, TACK and DPANN, are 
indicated and described in the text. The position of the archaeal Lokiarchaeota lineage is indicated. Genome 
sequences from members of the Lokiarchaeota lineage indicate that they possess molecular systems previously 
believed to be found only in Eukaryotes. Red dots indicate lineages that have no cultured representatives. Adapted 
with permission from Hug L, et al, Nat Microbiol 1:16048 (2016), https://doi.org/10.1038/nmicrobiol.2016.48.
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