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xv

Preface

Snyder and Champness Molecular Ge ne tics of Bacteria is a new edition of a 
classic text updated to address the massive advances in the field of bacterial 
molecular ge ne tics. We renamed the book as a tribute to the original authors, 
Larry Snyder and Wendy Champness, who welcomed us as coauthors for the 
4th edition and trusted us to continue to build on the strong foundation of 
their multiple editions in carry ing this impor tant text forward. As with the 
previous editions, we have endeavored to keep the page length approximately 
the same. This meant making many hard choices of what to remove to make 
room for exciting new and impor tant material. We are very happy that  every 
illustration is now in full color, which offered us the opportunity to rethink 
each drawing and clarify and standardize features, which we believe  will im-
prove their use by instructors in classroom lectures.

Perhaps the most significant force in molecular ge ne tics research since the 
last edition has been the plummeting cost of DNA sequencing. This  factor has 
created an explosion of new sequence information of both in de pen dent ge-
nomes and microbial communities in the form of metagenomics, where DNA 
is extracted directly from all of the organisms in an environment. This infor-
mation has vastly expanded our picture of the tree of life and the massive 
contribution of uncultured species. The broader availability of DNA sequenc-
ing at a reasonable price has also left its mark on genomic techniques.  These 
new techniques and new information have had a considerable impact in  every 
chapter and provided the impetus for a new chapter, “Genomes and Genomic 
Analy sis” (chapter 13).

We expanded chapter 1, on DNA structure, DNA replication, and chromo-
some segregation, to include many advances in our understanding of how 
chromosomes are managed and the molecular machines that carry out  these 
pro cesses. Our understanding of the nature of FtsK and related DNA- pumping 
enzymes, the evolving role of SeqA, the mechanism of chromosome partition-
ing, and the domain structure of the chromosomes also benefited from multi-
ple technological innovations. Chapter  2 focuses on mechanisms of gene 
expression, from transcription through mRNA turnover, translation, and post-
translational effects, including protein targeting, which was moved into this 
chapter. We reduced the historical aspects of chapter  3, retaining key land-
marks such as the impor tant role of the F plasmid discovered by Esther Leder-
berg, so the chapter now focuses more on practical aspects of ge ne tic analy sis. 
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 xvi Preface

Newer molecular techniques that have replaced some of the classic approaches 
(e.g., for generation of targeted chromosomal mutations) are now discussed in 
the new chapter 13.

Chapter 4 pre sents a concise understanding of bacterial plasmids as impor-
tant contributors to the genomic content in bacteria as well as essential tools in 
molecular biology. Significant additions to the chapter include an expanded 
discussion of the two major mechanisms of segregation and the ever- broadening 
view of toxin- antitoxin systems. Toxin- antitoxin systems  were first discovered 
for their role in plasmid stabilization, but while the diversity of molecular 
mechanisms has expanded, impor tant questions remain concerning the real 
function of  these systems when situated in bacterial chromosomes. Chapter 5, 
which focuses on conjugation, continues to set its roots in the original conjugal 
plasmid, the fertility plasmid. We included considerable new information that 
relates to our recognition that conjugal systems appear to be as common in the 
form of integrating conjugative ele ments (ICEs) as they are in stand- alone plas-
mids. The diversity of ICEs is remarkable, and this chapter strives to provide a 
foundation for  these dynamic ele ments, which are responsible for the largest 
known genomic islands transmitted between bacteria.

In chapter 6, we expanded the discussion of natu ral transformation and its 
regulation to include additional comparative information about how  these sys-
tems vary in dif fer ent groups of organisms. We consolidated the discussion of 
lytic and lysogenic bacteriophages and their roles in transduction of bacterial 
DNA as chapter 7. We or ga nized the information on phage biology based on 
the dif fer ent functions required for phage infection and replication, and fol-
lowed this with a discussion of phage ge ne tics, their use in bacterial ge ne tic 
transfer, and their roles as tools for molecular biology.

We streamlined chapter 8, “Transposition, Site- Specific Recombination, and 
Families of Recombinases,” to make room for additional families of ele ments 
including the exciting and still somewhat enigmatic HUH transposons, as well 
as group II mobile introns, and an advanced appreciation of the interrelation-
ship between mobile ele ments and host DNA replication. Transposons con-
tinue to provide an impor tant tool in genomics, and mobile ge ne tic ele ments 
in general provide the most significant mechanisms for the transfer of antibiotic 
re sis tance. As the spread of antibiotic re sis tance is slowly nullifying the effective-
ness of antibiotics worldwide, understanding the mechanisms of this spread 
is more impor tant than ever. Chapter 9, “Molecular Mechanisms of Homolo-
gous Recombination,” continues to be grounded in the central role that ho-
mologous recombination plays in the repair of DNA double- strand breaks. 
We expanded the chapter to include a better appreciation of the multiple 
pathways used to load the RecA recombinase onto dif fer ent types of DNA 
substrates.

We broadly updated chapter 10, “DNA Repair and Mutagenesis,” to reflect 
our increased mechanistic understanding across many DNA repair systems, as 
well as information on how mechanisms established in bacterial systems con-
tinue to contribute to our understanding of disease in  humans. We extensively 
updated chapter 11, which focuses on mechanisms of gene regulation of indi-
vidual genes and operons, to include new information as the field continues to 
advance. In chapter 12, we then applied the princi ples learned in chapter 11 to 
global regulatory systems that regulate multiple sets of genes and operons, of-
ten in response to multiple regulatory inputs. Bacillus subtilis sporulation, a 
complex developmental system, is presented in depth as a final example that 
integrates many of the dif fer ent mechanisms that are introduced in chapters 11 
and 12.

260-84782_ch00_6P.indd   16 14-07-2020   19:02:02



 Preface xvii 

Chapter 13, “Genomes and Genomic Analy sis,” is a new chapter that con-
solidates relevant topics previously found elsewhere in the book and provides 
considerable new information on this topic. We provide background on the 
multiple mechanisms used for DNA sequencing, including the newest genera-
tions of high- throughput sequencing strategies. Having hundreds of thousands 
of bacterial genomes has allowed us to gain a better understanding of how 
genomes are or ga nized as well as the relationship between core genes and 
genes acquired by horizontal gene transfer. The chapter also provides basic in-
formation on genome annotation and comparative genomics. Chapter 13 fur-
ther pre sents an expanded picture of numerous systems that bacteria use to 
guard against horizontal gene transfer. Although horizontal gene transfer is by 
far the most impor tant mechanism for evolution in bacteria and archaea, it 
also provides the greatest vulnerability, with the relentless onslaught of bacte-
riophages and mobile ele ments that can sap cellular resources or inactivate 
impor tant or essential host genes. Significantly, host defense systems also pro-
vide the most impor tant tools ever developed for molecular biology. The new 
chapter provides expanded background on diverse restriction endonucleases 
and the impor tant roles they play in molecular biology. We cover the variety of 
tools that are available for cloning and gene assembly, as well as the advan-
tages and disadvantages of  these techniques to help guide the investigator. 
 These techniques allow never- imagined possibilities for quickly and accurately 
constructing synthetic DNA fragments for testing ideas or allowing advances 
in engineering, including assembling entire bacterial genomes. We greatly ex-
panded the section on CRISPR/Cas systems and chose the Cas9 system, impor-
tant in many applications in a multitude of model systems and  human genome 
engineering, to illustrate on the book’s cover. CRISPR/Cas systems are very 
diverse, falling into six distinct types and tens of subtypes. We provide the 
reader with the background needed to understand how  these fascinating sys-
tems evolved, the role they play in the natu ral environment, and the massive 
promise they hold in genome engineering.
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Introduction

The goal of this text book is to in tro duce the stu dent to the field of bac
te rial mo lec u lar ge net ics. From the point of view of ge net ics and ge netic ma
nip u la tion, bac te ria are rel a tively sim ple or gan isms. There also ex ist model 
bac te rial or gan isms that are easy to grow and easy to ma nip u late in the lab o
ra tory. For these rea sons, most meth ods in mo lec u lar bi  ol ogy and re com bi nant 
DNA tech nol ogy that are es sen tial for the study of all  forms of life have been 
de vel oped around bac te ria. Bacteria also fre quently serve as model sys tems for 
un der stand ing cel lu lar func tions and de vel op men tal pro cesses in more com
plex or gan isms. Much of what we know about the ba sic mo lec u lar mech a nisms 
in cells, such as tran scrip tion, trans la tion, and DNA rep li ca tion, has orig i nated 
with stud ies of bac te ria. This is be cause such cen tral cel lu lar func tions have re
mained largely un changed through out  evo lu tion. Core parts of RNA po ly mer
ase and many of the trans la tion fac tors are con served in all  cells, and ri bo somes 
have sim i lar struc tures in all  or gan isms. The DNA rep li ca tion ap pa ra tuses of 
all  or gan isms con tain fea tures in com mon, such as slid ing clamps and ed it ing 
func tions, which were first de scribed in bac te ria and their vi ruses, called bac te
rio phages. Chaperones that help other pro teins fold and topo isom er ases that 
change the to pol ogy of DNA were first dis cov ered in bac te ria and their bac te
rio phages. Studies of re pair of DNA dam age and mu ta gen e sis in bac te ria have 
also led the way to an un der stand ing of such path ways in eu kary otes. Excision 
re pair sys tems, mu ta genic po ly mer ases, and mis match re pair sys tems are re
mark ably sim i lar in all  or gan isms, and de fects in these sys tems are re spon si ble 
for mul ti ple types of hu man can cers.

In ad di tion, as our un der stand ing of the mo lec u lar bi  ol ogy of bac te ria ad
vances, we are find ing a level of com plex ity that was not ap pre ci ated pre vi
ously. Because of the small size of the vast ma jor ity of bac te ria, it was 
im pos si ble ini tially to rec og nize the high level of or ga ni za tion that ex ists in bac
te ria, lead ing to the mis con cep tion that bac te ria were merely “bags of en
zymes,” where small size al lowed pas sive dif fu sion to move cel lu lar con stit u ents 
around. However, it is now clear that move ment and po si tion ing within the 
bac te rial cell are highly con trolled pro cesses. For ex am ple, de spite the lack of a 
spe cial ized mem brane struc ture called the nu cleus (the early de fin ing fea ture of 
the “pro kary ote” [see be low]), the ge nome of bac te ria is ex qui sitely or ga nized 
to fa cil i tate its re pair and ex pres sion dur ing DNA rep li ca tion. In ad di tion, ad
vances fa cil i tated by mo lec u lar ge net ics and mi cros copy have made it clear that 
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many cel lu lar pro cesses oc cur in highly or ga nized sub re
gions within the cell. Once it was ap pre ci ated that bac te
ria evolved in the same ba sic way as all  other liv ing 
or gan isms, the rel a tive sim plic ity of bac te ria pa ved the 
way for some of the most im por tant sci en tific ad vances 
in any field, ever. It is safe to say that a bright fu ture 
awaits the fledg ling bac te rial ge net i cist, where stud ies of 
rel a tively sim ple bac te ria, with their mal lea ble ge netic 
sys tems, prom ise to un cover ba sic prin ci ples of cell bi  ol
ogy that are com mon to all  or gan isms and that we can 
now only imag ine.

However, bac te ria are not just im por tant as lab o ra tory 
tools to un der stand other or gan isms; they also are im por
tant and in ter est ing in their own right. For in stance, they 
play es sen tial roles in the ecol ogy of Earth. They are the 
only or gan isms that can “fix” at mo spheric ni tro gen, that 
is, con vert N2 to am mo nia, which can be used to make 
ni tro gencontaining cel lu lar con stit u ents, such as pro
teins and nu cleic ac ids. Without bac te ria, the nat u ral ni
tro gen cy cle would be bro ken. Bacteria are also cen tral 
to the car bon cy cle be cause of their abil ity to de grade re
cal ci trant nat u ral po ly mers, such as cel lu lose and lig nin. 
Bacteria and some types of fungi thus pre vent Earth from 
be ing bur ied in plant de bris and other car boncontaining 
ma te rial. Toxic com pounds, in clud ing pe tro leum, many 
of the chlo ri nated hy dro car bons, and other prod ucts of 
the chem i cal in dus try can also be de graded by bac te ria. 
For this rea son, these or gan isms are es sen tial in wa ter pu
ri fi ca tion and toxic waste cleanup. Moreover, bac te ria 
pro duce most of the nat u rally oc cur ring socalled green
house gases, such as meth ane and car bon di ox ide, which 
are in turn used by other types of bac te ria. This cy cle 
helps main tain cli mate equi lib rium. Bacteria have even 
had a pro found ef fect on the ge ol ogy of Earth, be ing re
spon si ble for some of the ma jor iron ore and other min
eral de pos its in Earth’s crust.

Another un usual fea ture of bac te ria and ar chaea (see 
be low) is their abil ity to live in ex tremely in hos pi ta ble en
vi ron ments, many of which are de void of life ex cept for 
mi crobes. These are the only or gan isms liv ing in the Dead 
Sea, where the salt con cen tra tion in the wa ter is very 
high. Some types of bac te ria and ar chaea live in hot 
springs at tem per a tures close to the boil ing point of wa
ter (or above in the case of ar chaea), and oth ers sur vive 
in at mo spheres de void of ox y gen, such as eu tro phic lakes 
and swamps.

Bacteria that live in in hos pi ta ble en vi ron ments some
times en able other or gan isms to sur vive in those en vi ron
ments through sym bi otic re la tion ships. For ex am ple, 
sym bi otic bac te ria make life pos si ble for Riftia tubeworms 
next to hy dro ther mal vents on the ocean floor, where liv
ing sys tems must use hy dro gen sul fide in place of or ganic 
car bon and en ergy sources. In this sym bi o sis, the bac te
ria ob tain en ergy and fix car bon di ox ide by us ing the 

re duc ing power of the hy dro gen sul fide given off by the 
hy dro ther mal vents, thereby fur nish ing food in the form 
of highenergy car bon com pounds for the worms, which 
lack a di ges tive tract. Symbiotic cy a no bac te ria al low 
fungi to live in the Arctic tun dra in the form of li chens. 
The bac te rial part ners in the li chens fix at mo spheric ni
tro gen and make car boncontaining mol e cules through 
pho to syn the sis to al low their fun gal part ners to grow on 
the tun dra in the ab sence of nu tri entcontaining soil. 
Symbiotic ni tro genfixing Rhizobium and Azorhizobium 
spp. in the nod ules on the roots of le gumes and some 
other types of higher plants al low the plants to grow in 
ni tro gendeficient soils. Other types of sym bi otic bac te
ria di gest cel lu lose to al low cows and other ru mi nant an
i mals to live on a diet of grass. Bioluminescent bac te ria 
even gen er ate light for squid and other ma rine an i mals, 
al low ing il lu mi na tion, cam ou flage, and sig nal ing in the 
dark ness of the deep ocean.

Bacteria are also im por tant to study be cause of their 
role in dis ease. They cause many hu man, plant, and an i
mal dis eases, and new dis eases are con tin u ously ap pear
ing. Knowledge gained from the mo lec u lar ge net ics of 
bac te ria helps in the de vel op ment of new ways to treat 
or oth er wise con trol old dis eases that can be re sis tant to 
older forms of treat ment, as well as emerg ing dis eas es.

Some bac te ria that live in and on our bod ies also ben
e fit us di rectly. The role of our com men sal bac te ria in hu
man health is only be gin ning to be ap pre ci ated. It has 
been es ti mated that of the 1014 cells in a hu man body, 
only half are hu man! Of course, bac te rial cells are much 
smaller than our cells, but this shows how our bod ies are 
adapted to live with an ex ten sive bac te rial microbiome, 
which helps us di gest food and avoid dis ease, among other 
roles, many of which are yet to be un cov ered.

Bacteria have also long been used to make many use
ful com pounds, such as an ti bi ot ics, and chem i cals, such 
as ben zene and cit ric acid. Bacteria and their bac te rio
phages are also the source of many of the use ful en zymes 
used in mo lec u lar bi  ol o gy.

In spite of sub stan tial prog ress, we have only be gun to 
un der stand the bac te rial world around us. Bacteria are 
the most phys i o log i cally di verse or gan isms on Earth, and 
the im por tance of bac te ria to life on Earth and the po ten
tial uses to which bac te ria can be put can only be guessed. 
Thousands of dif fer ent types of bac te ria are known, and 
new in sights into their cel lu lar mech a nisms and their ap
pli ca tions con stantly emerge from re search with bac te
ria. Moreover, it is es ti mated that less than 1% of the types 
of bac te ria liv ing in the soil and other en vi ron ments have 
ever been iso lated. Recent cul tureindependent mech a
nisms in di cate that bac te rial di ver sity is much greater than 
we ever imag ined (see Hug et al., Suggested Reading). In 
this new pic ture, it seems that less than half of the ma jor 
lin e ages of bac te ria have rep re sen ta tives that have been 
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cul tured. Organisms in these uncharacterized groups of 
bac te ria may have all  man ner of in ter est ing and use ful 
func tions. Clearly, stud ies of bac te ria will con tinue to be 
es sen tial to our fu ture ef forts to un der stand, con trol, and 
ben e fit from the bi o log i cal world around us, and bac te
rial mo lec u lar ge net ics will be an es sen tial tool in these 
ef forts. However, be fore dis cuss ing this field, we must 
first briefly dis cuss the evo lu tion ary re la tion ship of bac te
ria to other or gan isms.

The Biological Universe
The Bacteria
This text book comes at a very ex cit ing time in our un
der stand ing of the in ter re la tion ship of all  liv ing things on 
the planet. After the land mark work of Carl Woese, all  
or gan isms on Earth were as signed to three ma jor groups 
called do mains: the bac te ria (for merly eubacteria), the ar
chaea (for merly archaebacteria), and the eu kary otes (see 
Woese and Fox, Suggested Reading). However, it is now 
clear that two ma jor di vi sions ac count for these three 
groups. Bacteria form one of these di vi sions, while eu
kary otes are now be lieved to have di verged out  of the 
ar chaea. Figure 1 shows the mi cro bi ol o gists’ view of the 
liv ing world, where mi crobes pro vide most of the di ver
sity and eu kary otes oc cupy a rel a tively small niche. This 
is not a farfetched con cept. Sequence data show that we 
dif fer from chim pan zees by only 2% of our DNA se
quence, while 25 to 50% of the genes in a typ i cal bac te
rium are unique to the spe cies. Furthermore, while 
mam mals di verged from each other on the or der of mil
li ons of years ago, the main bac te rial lin e ages di verged 
bil li ons of years ago.

Bacteria can dif fer greatly in their phys i cal ap pear ance 
un der the mi cro scope. Although most are sin gle celled and 
rod shaped or spher i cal, some are mul ti cel lu lar and un
dergo com pli cated de vel op men tal cy cles. The cy a no bac
te ria (for merly called bluegreen al gae) are bac te ria, but 
they have chlo ro phyll and can be fil a men tous, which is 
why they were orig i nally mis taken for al gae. The an ti
bi ot icproducing ac ti no my cetes, which in clude Strepto
myces spp., are also bac te ria, but they form hy phae and 
stalks of spores, mak ing them re sem ble fungi. Another 
bac te rial group, the Caulobacter spp., have both free
swim ming and ses sile forms that at tach to sur faces 
through a hold fast struc ture. Some of the most dra mat ic
appearing bac te ria of all  be long to the ge nus Myxococ
cus, mem bers of which can ex ist as freeliv ing sin glecelled 
or gan isms but can also ag gre gate to form fruit ing bod ies, 
much like slime molds. As men tioned above, bac te rial 
cells are usu ally much smaller than the cells of higher or
gan isms, but one very large bac te rium, Epulopiscium, can 
be over half a mil li me ter long, lon ger than even most eu
kary otic cells (see Angert, Suggested Reading). In ad di

tion, un like most bac te ria that mul ti ply by sim ple 
di vi sion, Epulopiscium gives birth to mul ti ple live prog
eny. Despite the fact that some bac te ria are found in dra
mat i cally dif fer ent shapes and sizes, they can not be 
dis tin guished sim ply by their phys i cal ap pear ance; in
stead, it is nec es sary to use bio chem i cal cri te ria, such as 
the se quences of their ri bo somal pro teins or RNAs 
(rRNAs), whose se quences are char ac ter is tic of the three 
do mains of life.

GRAM-NEGATIVE AND GRAM-POSITIVE 
BACTERIA
Bacteria have his tor i cally been di vided into two ma jor 
sub groups, the Gram-negative and Gram-positive bac
te ria. This di vi sion was based on the re sponse to a test 
called the Gram stain. “Gramnegative” bac te ria re tain 
lit tle of the dye and are pink af ter this stain ing pro ce dure, 
whereas “Grampositive” bac te ria re tain more of the dye 
and turn deep blue. The dif fer ence in stain ing typ i cally 
re flects the fact that Gramnegative bac te ria are sur
rounded by a thin ner struc ture com posed of both an 
in ner and an outer mem brane, while the struc ture sur
round ing Grampositive bac te ria is much thicker, con
sist ing of a sin gle mem brane sur rounded by a thicker 
wall. However, this older form of clas si fi ca tion is be ing 
re placed by talk ing about the phyla of bac te ria as de ter
mined by the DNA se quence. The Firmicutes are a broad 
group con tain ing Bacillus, clos tridia, lac tic acid bac te ria, 
and the Tenericutes, in clud ing the my co plas mas. Fir
micutes have been re ferred to as low G+C Grampositive 
bac te ria based on the low per cent age of gua nine and cy
to sine (low G+C) com pared to ad e nine and thy mine of
ten found in the ge nome se quence of mem bers of this 
group (see chap ter 1). However, hav ing a low G+C ge
nome is not a uni ver sal fea ture of the Firmicutes, which 
lim its the util ity of the des ig na tion. Another group of 
bac te ria that were clas si cally de scribed as high G+C 
and Gram pos i tive be cause they typ i cally pos sess a 
higher per cent age of gua nine and cy to sine in cludes the 
Actinobacteria (ac ti no my cetes), such as Streptomyces 
and Mycobacterium.

The Gram des ig na tion sys tem of clas si fy ing bac te ria is 
par tic u larly weak for cap tur ing the di ver sity of the nu
mer ous phyla that stain Gram neg a tive. While many bac
te ria his tor i cally re ferred to as Gram negative, such as 
Escherichia coli, Pseudomonas, and Rhizobium, fall 
within a broad group known as the Proteobacteria, many 
other char ac ter ized and uncharacterized groups also ex
ist. It is also worth point ing out  that re ly ing on a stain ing 
form of clas si fi ca tion is par tic u larly con trived when talk
ing about un cul tured bac te ria or those that are only ca
pa ble of growth as sym bi onts in other or gan isms. Given 
all  of these con sid er ations, in stead of us ing the Gram
positive and Gramnegative des ig na tions as a tool for 
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Figure 1 A mo lec u lar tree of life cap tur ing di ver sity us ing ri bo somal pro teins from se quenced ge nomes (see Hug 
et al., Suggested Reading). Selected ma jor lin ages within bac te ria are in di cated, in clud ing the Proteobacteria and the 
sub groups Alpha, Beta, Delta, Epsilon, Gamma, and Zeta, the Firmicutes, and the Candidate Phyla Radiation, which 
is al most com pletely de void of cul tured rep re sen ta tives. For the Archaea, two superphyla, TACK and DPANN, are 
in di cated and de scribed in the text. The po si tion of the ar chaeal Lokiarchaeota lin e age is in di cated. Genome 
se quences from mem bers of the Lokiarchaeota lin e age in di cate that they pos sess mo lec u lar sys tems pre vi ously 
be lieved to be found only in Eukaryotes. Red dots in di cate lin e ages that have no cul tured rep re sen ta tives. Adapted 
with permission from Hug L, et al, Nat Microbiol 1:16048 (2016), https://doi.org/10.1038/nmicrobiol.2016.48.
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