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xxi

Nowhere do the cooperative powers of DNA sequencing, high-resolution pro-
tein structure, biochemistry and molecular genetics shine more intensely than 
on Mobile DNAs. In Mobile DNA II, we knew that almost half of the human 
genome is comprised of retroelements. What discoveries since Mobile DNA II 
could surpass that claim? Very simply: everywhere DNA is dynamic, and we now 
meet the elegant protein machines, co-evolved DNA partners, and diverse RNA 
choreographers. These pages hold something for every reader, beginning with 
the introductory overview of mechanisms. Novices will find some of the most 
lucid reviews of these complex topics available anywhere. Specialists will be able 
to pick and choose advanced reviews of specific elements, but will be drawn in 
by unexpected parallels and contrasts among the elements in diverse organisms. 
Biomedical researchers will find documentation of recent advances in understand-
ing immune-antigen conflict between host and pathogen. Biotechnicians will be 
introduced to amazing tools for in vivo control of designer DNAs. And long-time 
aficionados will simply fall in love all over again.

Questions still abound about the Transposable Elements (TE) described in this 
volume. Perhaps none is more profound than the basis and consequences of TE 
diversity even among related genomes. Active DNA TE show perhaps the most 
disparate distribution among organisms, being dominant in prokaryotes, and in 
some animals, including some insects and fish, but with the exception of cer-
tain bats, virtually absent in mammals. Plants illustrate expansion of genomes, 
mediated not only by increasing ploidy, but also by expansion of DNA-based 
TE and Long Terminal Repeat (LTR) retrotransposons. Although reverse tran-
scriptases are found throughout all kingdoms, autonomous retroelements simply 
explode together with their non-autonomous partners in mammals with remark-
ably  species-specific types. These differences in mobile DNAs define self and mate, 
sister species, host and pathogen.

Preface



xxii Preface

The most striking impression from these pages must be the raw power of ge-
netic material to refashion itself to any purpose. DNA exchange between bacte-
ria and their environment blurs the boundaries between host, transposon, and 
phage, as organisms secrete and take up DNA, stash genetic material in inte-
grons for future use, conjugate, are attacked by phage and fight back. Delving 
into mechanisms, we see single-stranded hairpin structures and G quartets that 
 anchor rearrangements in multiple ways; chemically diverse nucleophilic centers– 
hydroxyls couched in pentose, tyrosine or serine moieties–that covalently bond or 
attack directly in strand-transfer reactions. Proteins act as clamps to topologically 
constrain DNA or act as mechanical swivels, linking and unlinking mobilizing 
strands. Resolution of transposition intermediates might also involve host rep-
lication or recombination machinery. More recently discovered helitrons offer 
unexpected opportunities for expansion of DNA-based elements by rolling-circle 
replication.

RNA, the primal, catalytic nucleic acid, is in evidence everywhere. In retro-
elements, RNA partners with reverse transcriptase to deliver on transcriptional 
 expansion of autonomous and non-autonomous TE sequences. Group II introns in 
bacteria likely gave rise to eukaryotic organelle group II self-splicing,  retro-homing 
introns, Long INterspersed Elements (LINEs), telomerase reverse transcriptases 
and in addition, spliceosomal introns. Phylogenetic analysis of bacterial ge-
nomes previously revealed group II introns, diversity-generating retroelements 
Diversity-Generating Retroelements (DGR), and retrons, but next generation se-
quencing now identifies a multitude of novel reverse transcriptases of unknown  
function. 

In ciliates, Paramecium, Tetrahymena and Oxytrichia, RNA directs massive 
genome reduction between germ-line and somatic nuclei, mediated by ancient 
transposase-like enzymes. LINEs containing restriction-enzyme like- or AP-
endonucleases dominate in some eukaryotic cells. Others are dominated by LTR 
retrotransposons and their offspring, the retroviruses; stripped down Penelope-
like elements with GIY-YIG endonucleases; DIRS elements with tyrosine recom-
binases: and attendant non-autonomous elements. 

Exceptional elements provide evidence for the interaction of domains over evo-
lutionary time, including LTR retrotransposons encoding envelope proteins, ret-
roviruses replicating intracellularly, and DIRS elements in which retroelement RT/
RNaseH is associated with a Crypton-type DNA element tyrosine recombinase.

Nowhere is the sharp focus of structural biology and biochemistry more appar-
ent than in studies of key retroelement enzymes reverse transcriptase and integrase 
motivated by the quest for inhibitors of human immunodeficiency virus (HIV) 
replication. Reverse transcriptase structures for multiple retroviruses, as well as 
now one retrotransposon, demonstrate the robustness of the palm, thumb, fingers 
model. However, as a caution against too much generalization, subdomains are 
re-arranged in monomeric, homodimeric, and heterodimeric forms in different 
enzymes, and catalytic activities operate in cis or trans within the complex, de-
pending on the enzyme. The structure of full length retrovirus integrase notori-
ously resisted high resolution structural analysis, but now has rewarded efforts 
of many labs with key insights (cover of this volume). These include a surprising 
dimer-dimer interface where active sites are juxtaposed to a trapped, and dra-
matically bent and widened, major groove target. Whereas LTR retrotransposons 
target integration to transcriptionally-repressed regions through interactions with 
heterochromatic protein domains or Pol III-transcribed genes thought to repress 
Pol II transcription, next generation sequencing has surfaced less dramatic, but 
significant, retrovirus integration bias, favoring transcriptionally-active regions. 
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This distribution has been shown now in two cases to be mediated by interactions 
between integrase and epigenetic mark-associated proteins. 

While it has been argued that mobile elements are “selfish DNAs”, these pages 
are replete with examples of the positive contributions of mobile elements to host 
genome function. Bacterial transposons encode and mobilize selectable markers 
including antibiotic resistance, detoxifying enzymes, and conjugation and viru-
lence functions. In eukaryotic cells, mobile elements contribute to chromosome 
structure: constituting centromeres or telomeres in some organisms and seeding 
heterochromatin in others. TE constitute a large fraction of transcription factor 
binding sites and provide an ongoing source of novel combinations which are 
responsive to stress signaling, MAP kinase activation and other developmental 
signals. Insertions of LINEs and Alu elements affect RNA processing because 
they encode cryptic splice sites, termination signals, and can target RNA editing.

 Exapted mobile DNA coding sequences appear in novel contexts: transpo-
sases have evolved into the RAG endonuclease for V(D)J immunoglobulin gene 
diversification and into heterochromatic factor CENP-B; a reverse transcriptase 
evolved into telomerase; retrovirus envelope proteins became the trophoblast fu-
sion protein syncytin. There are other examples of TE Open Reading Frames 
(ORFs) under selection, but with, as yet, unknown functions. Endogenous ret-
roviruses forego prior allegiances and join strategies to resist new infections. For 
example, Fv–1, a retroviral Gag relic, thwarts incoming retroviruses of similar 
type. Repeated TE sequences are susceptible to DNA rearrangements via non-  
allelic recombination, aborted transposition, and generation of pseudo-genes–all 
of which might ultimately contribute to the resiliency of host genomes. 

TE exploit their hosts as well. The bacterial XerCD tyrosine recombinases 
which function in bacteria to unlink multimeric chromosomes are exploited to in-
tegrate phage genomes or mediate invasion of the host chromosome on behalf of 
certain plasmid-borne mobile elements. Transposases, resolvases and integrases in 
vivo likely associate with host factors as they are joined with host genomes. TE 
are generally tightly controlled by host regulation so that some display opportun-
istic bursts of activity during specific windows of development. This is exempli-
fied by yeast Ty transcription in response to MAP kinase signaling and activation 
of reverse transcription by DNA checkpoints. A common theme more generally is 
TE activation during stress. Diverse retroelements are derepressed during periods 
of germ cell development ensuring their vertical spreading in populations. 

Despite these examples of cooperation, mobile DNAs are also in conflict with 
their hosts. RNA interference likely arose in part to combat mobilization of ret-
roelements. Invaders of one sort or another engage in a dizzying unscored dance 
with their hosts. One result of this conflict is rapid evolution of genes encoding 
host innate immunity restriction factors, which for retroviruses include ones that 
prematurely uncoat incoming viruses, starve reverse transcriptases for nucleo-
tides, and deaminate cytidines in replicating cDNA. Some of these same factors 
also suppress movement of endogenous retroelements. 

Programmed variation is used by invaders and hosts alike for purposes of im-
mune evasion or resistance, respectively. Examples include Salmonella Hin in-
vertase flipping a promoter sequence to switch between expression of different 
antigenic flagellar proteins and DGR directing mutagenic reverse transcription 
of a template transcript coupled with directed conversion of a target expres-
sion site. Neisseria gonorrhea, Borrelia burgdorferi, Trypanosoma brucei; and 
Plasmodium falciparum, agents of gonorrhea, Lyme disease, sleeping sickness, 
and malaria, respectively, use amazingly diverse mechanisms to program varia-
tion of their antigenic surfaces for immune evasion. To counter this assault, there 
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is programmed variation of host immune proteins. In human immunoglobulin 
production, a DDE TE-derived RAG site-specific endonuclease initiates V(D)J  
switching, followed by transcription-activated somatic hyper-mutation (activation- 
induced cytidine deaminase), nuclease introduction of DSB, and final joint forma-
tion by redundant NHEJ pathways. 

Next generation sequencing and development of methods for rapid TE map-
ping have greatly improved understanding of the distribution of TE as well as the 
utility of transposons for functional genomics. The bacterial Tn5 system has been 
exploited in particular for in vitro mutagenesis and next generation sequencing 
libraries by collapsing fragmentation and adapter ligation into a single step. P, 
Hermes, piggyBac, and Sleeping Beauty transposons have wide activity in eukary-
otic systems and have been harnessed for genome-wide profiling, gene disruption 
and tagging, and genome modification. Retroviruses are additionally used in line-
age tracing. The controlled, high-frequency mobilization of Mutator has made it 
indispensable for gene discovery in maize. 

In medical research, understanding the impact of DNA mobilization is critical. 
In addition to individual TE, other mobile DNAs such as plasmids, Integrative 
Conjugative Elements (ICE) and both transposon-borne and chromosomal inte-
grons are bacterial reservoirs of mobilizable antibiotic resistance. HIV, malaria, 
and sleeping sickness, and other pathogens, too numerous to mention here, re-
main threats to global health. Mobile element vectors transposons piggyBac, 
Sleeping Beauty, lenti-retroviruses and adenoviruses are being used as vectors to 
introduce exogenous DNAs in research, and in clinical trials. They differ with 
respect to targeting, excision footprints, payload size, and host activity profiles. 
Their mechanisms of DNA breakage and joining were among the systems first 
analyzed, now enabling them to be harnessed and used extensively for genome 
engineering including with developmentally-regulated expression, inactivation, 
and self-deletion strategies to enable probing essential or tissue- specific functions. 

What challenges remain? One goal is to connect key findings from basic re-
search, to clinical developments in drug resistance and genetic engineering. This 
volume is based on the considerable increase in understanding of molecular mech-
anisms of mobilization in the last decade. However, we have likely seen only the 
tip of the iceberg of how mobile DNAs affect the day to day biology of their hosts. 

In the human genome alone, retroelements provide promoters for long 
non-coding and other RNAs of completely unknown function; Alu elements redi-
rect RNA processing and delivery, and mobilization is occurring during neuronal 
development and in cancer with unknown consequences, just to mention a few. 
Finally, endogenization of a gamma retrovirus in Australian koalas is ongoing 
and those studies should provide insights into retroelement-host interaction. How 
have transposition events after separation from other great apes contributed to 
traits that make us human? What transposition events will provide key substrates 
for future evolution? And of course, perhaps the ultimate question, could we sur-
vive as a species were there no transposition?

We give our heartfelt thanks to all the authors who contributed diverse and fas-
cinating chapters to Mobile DNA III. We express special thanks to Patti Kodeck, 
Administrative Assistant to Editor in Chief N. Craig, who mediated recruitment 
of and communications with authors and interactions between them and the pub-
lisher. Finally, our most sincere thanks to all of our supporters at ASM Press 
for their dedication in producing this volume, but especially to: Gregory Payne, 
Senior Editor; Larry Klein, Production Editor; Christine Charlip, Director of 
Administration; and Cathy Balogh, Administrative Assistant for Production.
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INTRODUCTION

DNA has two critical functions: to provide the cell with
the information necessary for macromolecular synthesis
and to transmit that information to progeny cells. Ge-
nome sequence stability is important for both these
functions. Indeed, cells devote significant resources to
various DNA repair processes that maintain genome
structure and repair alterations that can arise from
DNA synthesis errors and assaults from both endoge-
nous and exogenous sources. DNA sequence variation,
however, provides the substrate for adaptation, selec-
tion, and evolution.

Genomes are, however, highly dynamic. Notably,
they vary not only at the single or several base pair
level (although such changes can be transformative and
even deadly), but they also change by DNA rearrange-
ments, that is, the movement of DNA segments that
may be many kb (or even longer) in length. Such rear-
rangements can have enormous impacts on genome
structure, function, and evolution.

The DNA rearrangements discussed here generally in-
volve specific DNA sequences, or in some cases RNA se-
quences, that are recognized and acted on by specialized
recombination proteins or recombinases that promote
DNA breakage followed by joining of the broken DNAs
to new sites. The involvement of a sequence-specific

recombinase is what distinguishes site-specific recombi-
nation from homologous recombination, which can
occur between any two DNA segments as long as they
are homologous to each other, as in RecA- and Rad51-
dependent recombination. In some cases, the specialized
recombinase is a sequence-specific nuclease that targets
homologous recombination to a specific DNA site.

In some rearrangements, the recombinase alone
breaks, exchanges, and joins DNA by using covalent
protein-DNA intermediates. In other cases, DNA syn-
thesis is also essential in these rearrangements. Notably,
this DNA synthesis can involve not only conventional
DNA synthesis in which a DNA polymerase uses DNA
as a template, but also reverse transcription in which a
novel DNA polymerase, reverse transcriptase, uses an
RNA template to generate new DNA. A very wide num-
ber of other cellular processes can influence or be
required for DNA rearrangements, including transcrip-
tional activation of particular sites, DNA bending by
bending proteins, DNA supercoiling, and many varia-
tions in chromatin structure, as well as DNA repair
reactions including DNA end joining. Although a puri-
fied recombinase may execute DNA breakage and join-
ing in vitro, it is critical to remember that this reaction
and its consequences will be enormously influenced by
its cellular environment.

1Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore,
MD 21205.
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Although DNA rearrangements can provide very use-
ful rapid and focused changes in genetic information,
they are also very hazardous. Unrepaired DNA breaks
can result in DNA mis-segregation and are often lethal.
Not surprisingly then, DNA rearrangements often oc-
cur in elaborate nucleoprotein complexes that organize
and juxtapose the participating DNAs and promote
breakage and joining in carefully choreographed steps.
The frequency of DNA rearrangements is usually highly
regulated, often by restricting to low levels the recombi-
nase that initiates or mediates the rearrangements.

Mobile DNAs also include a diverse variety of dis-
crete mobile genetic elements, such as transposable
elements, that move themselves or copies of themselves
from place to place within and between genomes. Thus,
in some cases, a copy of the element remains at its orig-
inal site and there is a new copy at the new insertion
site. This type of replicative mechanism leads to an
enormously high element copy number, especially in
some eukaryotic genomes. The majority of the maize
genome, for example, is derived from a particular kind
of transposon. High copy numbers of repetitive se-
quences result in increased susceptibility to nonallelic
homologous recombination events that can lead to de-
letions, inversions, translocations, and other chromo-
somal rearrangements.

The movement of a transposable element within a
single genome can have substantial genotypic and phe-
notypic consequences. The insertion of a transposable
element into a gene can lead to gene disruption but
even nearby insertions can effect gene expression as
many elements carry regulatory signals, such as en-
hancers and promoters, as well as splice sites and tran-
scription termination signals. Excision of an element
also changes the donor site. Thus, the intracellular
translocation of a mobile element results in genetic vari-
ation. The range of target sites used by the elements
ranges from insertion into specific sites or regions that
provide a “safe harbor” for the element with reduced
negative consequence on the host, to preferences for ac-
tively transcribed regions to facilitate element expres-
sion to virtually random insertion, which can thus result
in genetic variation anywhere within the host genome.

DNA rearrangements also play a crucial role in the
interactions between viral chromosomes and their
hosts, as well as the proper replication and segregation
of host chromosomes. Many viruses integrate into and
excise from host genomes, although in some cases inte-
gration is irreversible, such as with HIV-1. All of these
reactions involve at least specific sites on the viral ge-
nome that are acted upon by site-specific recombinases
and which sometimes involve specific sites on the host

genome. Recombination between specific sites to pro-
mote chromosome monomerization plays a key role in
chromosome transmission in bacteria.

The translocation of mobile elements encoding a
wide variety of determinants including genes encoding
antibiotic resistances, virulence determinants, and di-
verse metabolic pathways from plasmids to chromo-
somes and from viruses and DNA fragments that are
transduced or transformed into a cell, can also result
in permanent chromosomal acquisition of these deter-
minants. This sort of horizontal gene transfer involving
mobile elements is rampant in bacteria and contributes
greatly to genetic variation. There are also an increas-
ing number of examples of horizontal gene transfer in-
volving mobile elements in eukaryotes.

Perhaps the most profound example of the effect of
mobile elements on eukaryotic genome evolution is
the nuclear invasion of mobile group II introns into
the nuclear genome from bacterial symbionts to form
spliceosomal introns.

Cell type can also have substantial impact on DNA
rearrangements. The elaborate DNA breakage and join-
ing reactions that underlie immunoglobulin diversifica-
tion are actually terminal differentiation events restricted
to particular somatic cells. There is increasing interest in
the somatic movement of transposable elements, which
can also have profound organismal impact. The move-
ment of human transposable elements in somatic tissue
is associated with a variety of cancers, although it re-
mains to be determined if such events can cause onco-
genic transformation or are rather a consequence of
transformation. The movement of transposable elements
in neuronal tissue in several organisms raises the inter-
esting possibility that such rearrangements are a deliber-
ate strategy for neural plasticity.

Such terminal differentiation events involving DNA
rearrangements are incompatible with the bacterial life-
style, except in a few known cases such as spore forma-
tion by a subset of cells. By contrast, reversible DNA
inversions that vary promoter or ORF orientation are
well known in bacteria.

Thus, DNA rearrangements can contribute substan-
tially to genetic variation. The frequency and potential
advantage of the resulting variation must be carefully
balanced with genome stability to avoid its potential
for population-wide genomic catastrophe.

Although not exclusively so, the focus of this work is
on the mechanism and regulation of DNA rearrange-
ments. How do specific DNA (and sometimes RNA)
sequences recognize each other and how do they assem-
ble to form the machines in which DNA rearrange-
ments occur? What are the mechanisms for DNA
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strand breakage and joining? What processes determine
when and where these reactions occur? How are ac-
tions at multiple DNA sites, for example, the two ends
of a transposable element and its target DNA, coordi-
nated? Importantly, how are nonproductive breakage
and joining events avoided and how is intact duplex
DNA regenerated?

Mobile DNAs are “natural” genome engineers.
Although not a focus of this work, many of the mobile
elements discussed here have been harnessed to facili-
tate researcher-directed rearrangements both in vitro
and in vivo. Mobile elements are used for “random”
insertional genome mutagenesis both in vivo and
in vitro, as well as for “targeted mutagenesis.” Many
mobile elements are used as vectors in both homolo-
gous and heterologous systems.

TARGETED DNA BREAKS LEAD
TO GENE REPLACEMENT

DNA Double Strand Breaks Stimulate
Homology-Dependent DNA Repair
Homologous recombination occurs without require-
ment for any particular sequence, depending only on
base pairing between the participating DNA strands.
However, the frequency of homologous recombination
is stimulated by the presence of broken DNA, in par-
ticular double strand breaks. These breaks stimulate
recombination because the action of nucleases and
helicases at these breaks leads to the generation of
DNA with single stranded 3´ trails that are the pre-
ferred substrate for DNA pairing mediated by RecA-
and Rad51-like proteins. By interacting with a donor
site, this pairing of 3´-OH ends can initiate homology-
dependent DNA repair, which copies DNA sequence
information from the donor site into the broken DNA
target site. This repair leads to the replacement, or
modification, of an existing gene or insertion of a new
gene. The insertion of many mobile DNAs into a new
site is targeted by double strand breaks by highly site-
specific endonucleases.

There’s No Place Like Home:
Homing Endonucleases
Homing endonucleases (HENs) are highly site-specific
endonucleases (1). Although often associated with other
genetic elements (see below), freestanding HEN genes
can themselves be mobile DNA elements. If a HEN
cleavage site lies within an “empty allele” of DNA that
flanks the HEN ORF, cleavage of that target site can
initiate homology-dependent DNA synthesis that will

transfer a copy of the HEN gene to that double strand
break at the nuclease target site (Fig. 1).

HEN genes are also often found in other genetic ele-
ments such as self-splicing RNA introns, that is, group
I introns, and self-splicing proteins, that is, inteins.
Thus, if the HEN introduces a double strand break into
the “empty” allele of a site occupied by the intron or
intein, targeted DNA repair introduces a copy of the
DNA encoding the intron or intein into that target site.
Because the RNA intron can splice out of the RNA
containing it and the protein intein can splice out of the
protein containing it, the insertion of these elements is
generally phenotypically silent.

Alternative Life Styles: Switching Mating
Type in Saccharomyces cerevisiae
These yeasts have two different haploid cell types, mat-
ing type a and mating type α, which can mate to form
diploids. During sporulation, meiotic recombination
shuffles the two parental genomes, generating diverse
haploid progeny. To facilitate diploid formation, hap-
loids can switch mating type from mating type a

Figure 1 A targeted DNA double strand break can lead
to gene insertion. Introduction of a site-specific double
strand break by a homing endonuclease (HEN) in a homolo-
gous DNA duplex lacking the HEN gene targets homology-
dependent DNA synthesis (green) that introduces a copy of
the HEN gene to the broken DNA.
doi:10.1128/microbiolspec.MDNA3-0062-2014.f1
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