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Preface

In the 5 years since the 2011 edition of this book, the
molecular diagnostics landscape has changed dramati-
cally. In the 1990s, molecular diagnostics was the do-
main of only a few reference laboratories; it took almost
20 years for these techniques to make their way into
about half of the CLIA high-complexity laboratories in
the United States. The full potential of this technology
was slow to be realized largely because the methods used
by these laboratories were not capable of delivering on-
demand results or being conducted at the point of care.
Over the past year, with the advent of CLIA-waived
molecular testing spurred on by the inexorable force of
innovation, molecular diagnostics have become increas-
ingly democratized to the extent that physician office
laboratories and sexual health clinics are now perform-
ing molecular testing on the premises, often delivering
results in minutes or a few hours.

Laboratory professionals may at times find themselves
a bit bewildered in this rapidly evolving landscape.
Adding to this, enter next-generation sequencing
(NGS) technology, as described in several chapters in
this book (chapters 2, 3, 5, 6, 10–14, and 53). NGS-
based analysis of microbial genomes and populations is
in some ways similar to where PCR was in 1987: full of
opportunities and challenges. For the first time, identifi-
cation of the full range of pathogens—viruses, bacteria,
fungi, and protozoa—can be addressed by using the
same core technology. Microbial population analysis can
be carried out at unprecedented depth, opening up the
field of metagenomics (chapters 10–14). Whole-genome
analysis goes beyond organism identification to predict
drug resistance and detect pathogenic determinants. As
diagnosticians, it seems likely that as this field evolves,
so will our job descriptions. Still, much progress remains
to be made before NGS can move beyond its current
status as a research tool. NGS systems need to become
more automated and less expensive to operate. The
analysis of complex data sets provided by these systems
needs to be simplified; the interpretation of results can-
not require a PhD in bioinformatics for delivery of rou-
tine results. However, as complex as it is now, NGS too
will eventually become democratized by the integration

of workflow automation, improvements in sequencing
technology, and information technology (IT).

Speaking of which, IT itself is about to play an in-
creasing role in how and to whom our results are deliv-
ered (section X). A rapid molecular result is only as
good as the downstream action taken in the treatment
and management of patients. As we speak, patients in
London, along with providers, are getting “push notifi-
cations” of results from their sexual health tests, result-
ing in a dramatically shortened time to therapy. Cloud-
based aggregation of molecular test data is providing
snapshots of emerging pathogens and drug resistance in
real time by collecting de-identified test data directly
from testing platforms. From the respiratory cloud to
the digital cloud, we are watching the emergence of a
new generation of global surveillance capabilities which
will be of enormous public health benefit. Rapid detec-
tion technologies are also likely to evolve in the direc-
tion of on-demand multiplexing for simultaneous
detection of treatment-informing targets. The conver-
gence of rapid molecular assays with improvements in
IT to deliver actionable information to health care pro-
viders is becoming a reality.

In 2015, the White House announced a $20 million
prize for innovative diagnostic tests that will lead to
more precise antimicrobial therapeutic decisions. In ad-
dition, the United Kingdom has announced the Longi-
tude Prize, a challenge with a £10 million award for
developing a point-of-care diagnostic test that also will
identify when antibiotics are needed and which one to
use. Thus, it seems that the importance of molecular di-
agnostic testing is finally being appreciated at the high-
est levels, especially to address the global problem of
antimicrobial resistance. Let’s not disappoint them.

David H. Persing, MD, PhD
Executive Vice President
Chief Medical and Technology Officer
Cepheid, Sunnyvale, California
Fred C. Tenover, PhD
Vice President, Scientific Affairs
Cepheid, Sunnyvale, California
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Nucleic Acid Amplification Methods Overview
FREDERICK S. NOLTE AND CARLT. WITTWER 1

The development of the polymerase chain reaction, or
PCR, by Saiki et al. (1) was a milestone in biotechnology
and heralded the beginning of the modern era of molecu-
lar diagnostics. Although PCR is the most widely used nu-
cleic acid amplification strategy, other strategies have been
developed, and several have clinical utility. These strate-
gies are based on either signal or target amplification. Ex-
amples of each category will be discussed in the sections
that follow. These techniques have sensitivity unparalleled
in laboratory medicine, have created new opportunities for
the clinical laboratory to impact patient care, and have be-
come the new “gold standards” for laboratory diagnosis of
many infectious diseases.

SIGNAL AMPLIFICATION TECHNIQUES
In signal amplification methods, the concentration of the
probe or target does not increase. The increased analytical
sensitivity comes from increasing the concentration of la-
beled molecules attached to the target nucleic acid. Multi-
ple enzymes, multiple probes, multiple layers of probes, and
reduction of background noise have all been used to en-
hance target detection (2). Target amplification systems
generally have greater analytical sensitivity than signal am-
plification methods, but technological developments, par-
ticularly in branched DNA (bDNA) assays, lowered the
limits of detection to levels that rivaled those of some ear-
lier target amplification assays (3).

Signal amplification assays have several advantages over
target amplification assays. In signal amplification systems,
the number of target molecules is not altered, and as a re-
sult, the signal is directly proportional to the amount of
the target sequence present in the clinical specimen. This
reduces concerns about false-positive results due to cross-
contamination and simplifies the development of quan-
titative assays. Since signal amplification systems are not
dependent on enzymatic processes to amplify the target
sequence, they are not affected by the presence of enzyme
inhibitors in clinical specimens. Consequently, less cumber-
some nucleic acid extraction methods may be used. Typi-
cally, signal amplification systems use either larger probes or
more probes than target amplification systems and, conse-
quently, are less susceptible to errors resulting from target se-

quence heterogeneity. Finally, RNA levels can be measured
directly without the synthesis of a cDNA intermediate.

bDNA
The bDNA signal amplification system is a solid-phase,
sandwich hybridization assay incorporating multiple sets of
synthetic oligonucleotide probes (4). The key to this tech-
nology is the amplifier molecule, a bDNA molecule with
15 identical branches, each of which can bind to three la-
beled probes.

The bDNA signal amplification system is illustrated in
Fig. 1. Multiple target-specific probes are used to capture
the target nucleic acid onto the surface of a microtiter well.
A second set of target-specific probes also binds to the tar-
get and to preamplifier molecules, which in turn bind to up
to eight bDNA amplifiers. Three alkaline phosphatase-
labeled probes hybridize to each branch of the amplifier.
Detection of bound labeled probes is achieved by incubat-
ing the complex with dioxetane, an enzyme-triggerable sub-
strate, and measuring the light emission in a luminometer.
The resulting signal is directly proportional to the quantity
of the target in the sample. The quantity of the target in
the sample is determined from an external standard curve.

Nonspecific hybridization of any of the amplification
probes and nontarget nucleic acids leads to amplification
of the background signal. To reduce potential hybridiza-
tion to nontarget nucleic acids, isocytidine (isoC) and iso-
guanosine (isoG) were incorporated into the preamplifier,
and labeled probes were used in the third-generation
bDNA assays (5). IsoC and isoG form base pairs with each
other but not with any of the four naturally occurring
bases (6).

The use of isoC- and isoG-containing probes in bDNA
assays increases target-specific signal amplification without
a concomitant increase in the background signal, thereby
greatly enhancing the detection limits without loss of spec-
ificity. The detection limit of the third-generation bDNA
assay for human immunodeficiency virus type 1 (HIV-1)
RNA is 75 copies/ml. bDNA assays for the quantification
of hepatitis B virus DNA, hepatitis C virus (HCV) RNA,
and HIV-1 RNA are commercially available (Siemens
Healthcare Diagnostics, Deerfield, IL). The SiemensVersant
440 analyzer for bDNA assays automates the incubation,
washing, reading, and data-processing steps.

Hybrid Capture
The hybrid capture system is a solution hybridization-
antibody capture method that uses chemiluminescence

Frederick S. Nolte, Department of Pathology and Laboratory Medi-
cine, Medical University of South Carolina, Charleston, SC 29425.
Carl T. Wittwer, Department of Pathology, University of Utah Medi-
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detection of hybrid DNA-RNA duplexes (Fig. 2). The tar-
get DNA in the specimen is denatured and then hybrid-
ized with a specific RNA probe. The DNA-RNA hybrids
are captured by antihybrid antibodies that are used to coat
the surface of a tube. Alkaline phosphatase-conjugated anti-
hybrid antibodies bind to the immobilized hybrids. The
bound antibody conjugate is detected with a chemilumines-
cent substrate, and the light emitted is measured in a lu-
minometer. Multiple alkaline phosphatase conjugates bind
to each hybrid molecule, amplifying the signal. The inten-
sity of the emitted light is proportional to the amount of
target DNA in the specimen. Hybrid capture assays for de-
tection of Neisseria gonorrhoeae, Chlamydia trachomatis, and
human papillomavirus in clinical specimens are available
from Qiagen, Germantown, MD (7). There are manual and
automated (rapid capture system) versions of these assays.

Cleavase-Invader Technology
Invader assays (Hologic/Gen-Probe, San Diego, CA) are
based on a signal amplification method that relies upon
the specific recognition and cleavage of particular DNA
structures by cleavase, a member of the FEN-1 family of
DNA polymerases. These polymerases will cleave the 5¢
single-stranded flap of a branched base-paired duplex. This
enzymatic activity likely plays an essential role in the elim-
ination of the complex nucleic acid structures that arise
during DNA replication and repair. Since these structures
may occur anywhere in a replicating genome, the enzyme
recognizes the molecular structure of the substrate without
regard to the sequence of the nucleic acids making up the
DNA complex (8, 9).

In the invader assays, two probes are designed which
hybridize to the target sequence in an overlapping fashion
(Fig. 3). Under the proper annealing conditions, the probe
oligonucleotide binds to the target sequence. The invader
oligonucleotide probe is designed such that it hybridizes

upstream of the probe with a region of overlap between
the 3¢ end of the invader and the 5¢ end of the probe.
Cleavase cleaves the 5¢ end of the probe and releases it. It
is in this way that the target sequence acts as a scaffold
upon which the proper DNA structure can form. Since the
DNA structure necessary to serve as a cleavase substrate
will occur only in the presence of the target sequence, the
generation of cleavage products indicates the presence of
the target. Use of a thermostable cleavase enzyme allows
reactions to be run at temperatures high enough for a pri-
mer exchange equilibrium to exist. This allows multiple
cleavase products to form off of a single target molecule.
FRET probes and a second invasive cleavage reaction are
used to detect the target-specific products. FDA-cleared as-
says for detection of pools of high-risk genotypes and types
16 and 18 of human papillomavirus in cervical samples are
available from Hologic/Gen-Probe (10, 11).

TARGET AMPLIFICATION TECHNIQUES
All of the target amplification systems share certain funda-
mental characteristics. They use enzyme-mediated pro-
cesses, in which a single enzyme or multiple enzymes
synthesize copies of a target nucleic acid. In all of these
techniques, amplification is initiated by two oligonucleo-
tide primers that bind to complementary sequences on op-
posite strands of double-stranded targets. These techniques
result in the production of millions to billions of copies of
the targeted sequence in a matter of minutes to hours, and
in each case, the amplification products can serve as tem-
plates for subsequent rounds of amplification. Because of
this, these techniques are sensitive to contamination with
product molecules that can lead to false-positive reactions.
The potential for contamination should be adequately ad-
dressed before these techniques are used in the clinical lab-
oratory. However, the occurrence of false-positive reactions

FIGURE 1 Branched DNA signal amplification. Reprinted with permission from reference 70.
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can be reduced through special laboratory design, prac-
tices, and workflow (12). In addition, amplification prod-
ucts can be modified by UV light or enzymes into forms
that cannot be replicated. For example, if T is replaced
with U during the PCR, it can be treated later by an en-
zyme that degrades U containing carryover products to
prevent false-positive reactions (13). The growing use of
closed systems where products are not exposed to the envi-
ronment also helps to greatly reduce the threat of carry-
over contamination.

PCR
PCR was the first target amplification technique and re-
mains the most popular today, for both research and clini-
cal applications. It deserves such recognition and use
because of its simplicity. Kary Mullis received the Nobel
Prize in 1993 for its invention. The evolution and devel-
opment of PCR is covered nicely by many books dedicated
to the subject (14–16).

PCR requires a thermostable polymerase, two oligonu-
cleotide primers to select the region to be amplified, a mix-
ture of deoxynucleotide monomers (dNTPs), and template
DNA. The polymerase is typically from Thermus aquaticus,
originally obtained from Yellowstone National Park and la-
ter cloned into expression vectors for production. The two
primers anneal to opposite DNA strands, typically placed
50 to 1,000 bases apart to select the region to be amplified.
Typical reactant concentrations for PCR are shown in
Table 1.

PCR is driven by temperature changes. The initial tem-
plate is denatured or separated by heat (typically 90 to
95°C), lowering the temperature is required for primer an-
nealing (55 to 65°C), and enzyme extension is typically
performed at 65 to 75°C. Three-step cycling is performed
if all three temperatures are different, although two-step
cycling with a combined annealing/extension step is also
common in diagnostics. Repeated temperature cycling
through denaturation, annealing, and extension accumu-
lates many identical products of defined length (Fig. 4).
The products are most commonly detected by agarose gel
electrophoresis, hybridization to complementary nucleic
acids on solid supports, or probe interaction in solution.
For example, if products are sampled during one cycle of
PCR and separated on a gel, the process within each cycle
can be observed visually (Fig. 5).

The advantages of PCR include simplicity, speed (17),
and cost. Basic PCR is off-patent, and most forms of real-
time PCR will be off-patent by the time this chapter goes
to print. PCR as a process is very similar to bacterial
growth. Both processes begin with exponential growth that
eventually plateaus (Fig. 6). Growth curves follow a famil-
iar S-curve shape tracking the logistic model of population
growth. Although the endpoints of bacterial growth in
media and amplification of DNA in vitro by PCR are dif-
ferent, they follow the same curve shape. Accurate quanti-
fication of the initial template is enabled by controlling
denaturation, annealing, and extension by temperature
cycling so that each amplification cycle can be measured
and overall efficiency calculated.

PCR is clinically used in most laboratory-developed
tests and in vitro diagnostic tests for infectious diseases. A
complete list of all FDA-cleared or -approved nucleic acid
amplification tests for detection, quantification, and geno-
typing of microorganisms can be found at http://www.fda.
gov/MedicalDevices/ProductsandMedicalProcedures/InVitro
Diagnostics/ucm330711.htm.

Reverse Transcriptase-PCR
When the initial template is RNA instead of DNA, an
initial conversion of RNA into DNA is necessary for PCR.
This conversion is performed by an RNA-dependent DNA
polymerase, and the combined process is called reverse
transcriptase PCR or RT-PCR. It can be performed in one
or two steps. Two-step RT-PCR is typical of most research
studies with two different enzymes and conditions opti-
mized for each. One-step RT-PCR is more common for
clinical assays where both the reverse transcription and the
PCR are performed in a single tube. RT-PCR enables PCR
to amplify common RNA targets, including HIV-1, HCV,
enterovirus, and many respiratory viruses. The added com-
plexity does require greater care, especially for viral load
and other quantification assays. The MIQE guidelines
(Minimum Information for Quantitative PCR Experi-
ments) ensure the integrity of the scientific literature, pro-
mote consistency between laboratories, and increase

FIGURE 2 Hybrid capture signal amplification. Reprinted with
permission from reference 70.
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experimental transparency (18). Although written for the
research community, these guidelines remain relevant for
clinical assays.

Nested PCR
If PCR is followed by a second round of PCR on the prod-
ucts of the first, it is called nested PCR. Typically, both
primers in the second PCR are internal to the first, so suc-
cessful amplification depends on four primers rather than
two. However, if one of the primers in the second PCR is
the same as the first, it is called “hemi-nested” PCR. The
advantage of nested or hemi-nested PCR is a further in-
crease in sensitivity and specificity. The main disadvantage
is an increased risk of carryover contamination, and the
only nested tests that are FDA-approved are closed-tube
real-time systems. The Cepheid MTB/RIF test is hemi-

nested and detects Mycobacterium tuberculosis and rifampin
resistance in <2 h (19). Nested, multiplex panels for respi-
ratory agents (20), positive blood culture bottles (21), and
gastrointestinal microbes are also FDA-approved with
sample-to-answer results in about an hour and were devel-
oped by BioFire Diagnostics, Salt Lake City, UT/bioMér-
ieux, Durham, NC.

Multiplex PCR
When more than one target is amplified by PCR, the pro-
cess is called “multiplex.” Multiplexing can save reagents
and sample and is often used when a more complete an-
swer can be obtained by including additional targets. Mul-
tiplexing is analyzed by separating products by size on a
gel, by spatial separation on a surface or beads, or by probe
color in real-time PCR. Real-time PCR is typically limited

FIGURE 3 Cleavase invader signal amplification. Reprinted with permission from reference 70.

TABLE 1 Typical reactant amounts in PCR (10-ml reaction mixture)

Reactant Type No. of copies/10 ml

Template DNA 50 ng of human DNA
50 pg of bacterial DNA (3 Mb)
0.17 pg of viral DNA (10 kb)

1.6 · 104

Polymerase 0.4 U of Taq 8.8 · 109

Primers 0.5 mM (each) 3.0 · 1012 (each)
Deoxynucleoside triphosphates 0.2 mM (each) 4.8 · 1015 (total)
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to two to six colors, but greater multiplicity is possible by
combining color with the melting temperatures of the
probes.

One example of multiplexed PCR with clinical utility is
for upper respiratory infection. Many viruses and bacteria
can cause flu-like illness, and a panel may provide a defini-
tive answer in one multiplexed test. The first multiplexed
respiratory panel was FDA-approved in 2008 with 10 viru-
ses (Luminex, Austin, TX). Additional PCR-based respira-
tory panels are now offered by many companies including
Cepheid, Sunnyvale, CA; GenMark Dx, Carlsbad, CA;
Nanosphere, Northbrook, IL; Gen-Probe/Hologic, San
Diego, CA; and BioFire/biomérieux. BioFire/biomérieux’s
nested multiplex respiratory panel is most inclusive, with
17 viruses and 3 bacteria (20).

Real-Time PCR
“Real time” implies that data collection and analysis occur
as a reaction proceeds. Required reagents for analysis, such
as DNA dyes or fluorescent probes, are added to the PCR
mixture before amplification. Data are collected during
amplification in the same tube and in the same instru-
ment. There are no sample transfers, reagent additions, or
gel separations. Real-time PCR is powerful, simple, and ra-
pid and is replacing many conventional techniques in the
microbiology laboratory.

Fluorescence is the indicator of choice for real-time
PCR. Dyes can be used to monitor double-stranded PCR
products, acquiring fluorescence once each cycle (22). If
target DNA is present, the fluorescence increases. How
soon this rise occurs depends on the initial amount of tar-
get DNA. The full power of real-time PCR goes beyond
monitoring only once each cycle (23). When fluorescence
is monitored as the temperature is changing, melting
curves can verify the product amplified and detect se-
quence variants down to a single base. An example of the
data generated from real-time PCR with melting analysis is
shown in Fig. 7.

dsDNA Binding Fluorescent Dyes
In research, most real-time PCR is performed with dyes
that fluoresce in the presence of double-stranded DNA be-
cause of their low cost and convenience (23). However,
FDA-approved assays typically use probes instead of dyes.
With dyes, any double-stranded product that is formed is
detected, including primer dimers and other unintended
products. Unless melting analysis of the product is per-
formed, false positives are common (24). Multiplexing is
possible by melting temperature discrimination rather than
color (25). The mechanism of dye fluorescence during
real-time PCR is compared to several probes in Fig. 8.

Hydrolysis (TaqMan) Probes
The most common probes used in FDA-approved real-time
PCR assays are hydrolysis probes. If a probe labeled with a

FIGURE 4 The PCR cycle. The initial template DNA is first
denatured by heat. The reaction is then cooled to anneal two oli-
gonucleotide primers to opposite strands with their 3¢ ends poin-
ted inward. A polymerase then extends each primed template to
double the amount of targeted DNA. The cycle is repeated 20 to
40 times through successive steps of denaturation, annealing, and ex-
tension, accumulating double-stranded PCR products. Reprinted
with permission from reference 16.

FIGURE 5 Visualization of PCR kinetics. The three phases of PCR (denaturation, annealing, and ex-
tension) occur as the temperature is continuously changing (A). Toward the end of PCR the reaction
contains single- and double-stranded PCR products. When different points of the cycle are sampled (by
snap-cooling the mixture in ice water) (B) and analyzed, the transition from denatured single-stranded
DNA to double-stranded DNA is revealed as a continuum (C). Progression of the extension reaction
can be followed by additional bands appearing between the single- and double-stranded DNA (time
points 5 to 7). Modified with permission from reference 71.
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fluorophore and a quencher is hydrolyzed during PCR and
the labels are separated, fluorescence will increase. The
most frequent implementation uses the 5¢-exonuclease ac-
tivity of a DNA polymerase to hydrolyze the probe and
dissociate the labels (26). Another interesting way to hy-
drolyze fluorescent probes is to produce a DNAzyme during
PCR (27). The fluorescence generated by hydrolysis probes
is irreversible, and melting analysis is typically not useful.
Hydrolysis probes are diagrammed in Fig. 8B.

Dual Hybridization Probes
Hybridization probes change fluorescence on hybridization,
usually by fluorescence resonance energy transfer. Two in-
teracting fluorophores are typically placed on adjacent
probes (23) so that when they both hybridize, the fluor-
ophores are brought together and energy transfer occurs,
changing the color of the emitted fluorescence. Dual hy-
bridization probes were used in the first FDA-approved ge-
netic tests and, along with hydrolysis probes and molecular
beacons, are found in many laboratory-developed micro-
biology tests (28). They are also used in the Roche
(Indianapolis, IN) FDA-approved methicillin-resistant Staph-
ylococcus aureus (MRSA) test. In contrast to hydrolysis
probes, the fluorescence change of hybridization probes is

reversible, and melting analysis can be very informative for
strain typing and/or antibiotic resistance. Dual hybridiza-
tion probes are shown in Fig. 8C.

Molecular Beacons
Molecular beacons (hairpin probes) fluoresce when they
hybridize to a target (29). A fluorophore and a quencher
are present on opposite strands of the stem, typically at the
3¢ and 5¢ ends of the probe. When the loop hybridizes to
the target of interest, the fluorophore and quencher are
separated, enhancing fluorescence. Molecular beacons of
different colors can be combined with melting temperature
for highly multiplexed assays (30). Molecular beacons are
used in FDA-approved assays for M. tuberculosis and
MRSA (Cepheid) and are shown in Fig. 8D.

Scorpion Probes
The fluorescence generated during PCR from self-probing
amplicons (31) also depends on separating a fluorophore
and a quencher on opposite ends of a hairpin stem. With
scorpions, the primer is modified at its 5¢ end to include a
labeled hairpin similar to a molecular beacon. A blocker
prevents copying of the hairpin region during PCR. The
hairpin loop is complementary to the primer’s extension
product, so intramolecular hybridization occurs, replacing
one hairpin with another that has a longer stem and is
more stable. This separates the fluorophore from the
quencher, and fluorescence is increased (Fig. 8E). Scorpion
probes are used in FDA-approved assays for group B Strep-
tococcus (BD Diagnostics, Franklin Lakes, NJ), Clostridium
difficile (Focus Diagnostics, Cypress, CA), and some molec-
ular oncology assays.

Dark Quencher Probes
Dark quencher (Pleiades) probes have a minor-groove
binder and fluorophore at their 5¢ end with a 3¢ nonfluo-
rescent quencher. Background fluorescence is very low be-
cause hydrophobic attraction between the quencher and
minor groove binder ensures efficient quenching, further
augmented by the minor groove binder (Fig. 8F). When
bound to a target, the fluorophore and quencher are sepa-
rated, similar to molecular beacons or scorpion primers.
The minor groove binder also increases probe stability,
making shorter probes possible. Short probes can be an ad-
vantage when sequence variation is high. Dark quencher
probes are not degraded during PCR and can generate
melting curves. Dark quencher probes (ELITech Group,
Princeton, NJ) are available as analyte-specific reagents for
cytomegalovirus, Epstein-Barr virus, and BK polyomavirus.

Partially Double-Stranded Probes
Partially double-stranded linear probes consist of two com-
plementary oligonucleotides of different length (32). The
longer target-specific strand has a 5¢ fluorescent label that
is effectively quenched by a 3¢ quencher on the shorter
negative strand (Fig. 8G). When a target is present the
longer strand preferentially binds to the target, the shorter
strand is displaced, and fluorescence is enhanced. These
probes are tolerant to mismatches and are used in FDA-
approved assays for HIV-1 and HCV (Abbott Molecular,
Des Plaines, IL).

Melting Curve Analysis
Continuous monitoring of PCR (Fig. 9) suggests that hy-
bridization can be followed during temperature cycling

FIGURE 6 Model exponential and logistic curves for bacterial
growth and PCR. Doubling times of 20 min and 30 s are assumed
for bacteria and PCR, respectively. That is, given the equation Nt
= N0e

rt, r is 0.0347 min–1 for bacteria and 1.386 min–1 for PCR.
The carrying capacity for bacteria was set at 109/ml. Assuming that
PCR is primer limited at one-third the primer concentration (Ta-
ble 1), a carrying capacity of 1012 copies of PCR product/10 ml was
used. The shapes of the curves for bacteria and DNA are identical,
with only the axis scales specific to each method. Starting with a
single bacterium, growth plateaus after 11 to 12 h, while PCR takes
only 23 min (46 cycles) to amplify a single copy to saturation.
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with dyes and most probes. Hydrolysis probes are the ex-
ception because they are destroyed during signal genera-
tion. Instead of monitoring hybridization throughout PCR,
a single melting analysis after PCR is typically performed
(Fig. 7). The midpoint of melting, called the melting tem-
perature, or TM, is determined mainly by the GC content
and size of the duplex region. DNA melting curve analysis
takes advantage of the fluorimeters and temperature con-
trol of real-time PCR instruments (17, 23, 24).

Product melting with dyes is useful to confirm PCR
specificity by TM and curve shape. Both TM and curve
shape can be predicted (33). PCR products of >200 bp of-
ten have multiple melting domains, and heterozygous
products create heteroduplexes, both affecting curve shape.
High-resolution melting analysis uses subtle differences in
TM and curve shape for genotyping and mutation scanning
(34). Although usually a research technique, high-resolu-
tion melting is used in FDA-approved nested, multiplex
assays for upper respiratory, blood culture, and gastrointes-
tinal microbes (BioFire/bioMérieux).

Probe melting distinguishes variants only under the
probe as opposed to the entire PCR product. For example,
single nucleotide variants can be genotyped with hybrid-
ization probes because different sequences are revealed by
different TMs. Irrelevant sequence variants under the probe
can be masked by a deletion, mismatch, or universal base

(35). Labeled hybridization probes include the dual hybrid-
ization probes of Fig. 8C and several single hybridization
probes including molecular beacons (Fig. 8D), scorpion
primers (Fig. 8E), dark quenchers (Fig. 8F), and partially
double-stranded probes (Fig. 8G). Genotyping with la-
beled hybridization probes is shown in Fig. 10A and B. In
parallel to labeled probes, melting and genotyping can also
be performed with simple dyes rather than covalent labels.
Examples include unlabeled probes (Fig. 10C) and snap-
back primers (Fig. 10D).

Unlabeled probes have no fluorescent labels but are 3¢
blocked with a phosphate or other blocker (36). Un-
labeled probes have been used for herpes simplex virus de-
tection and typing (37) and in model studies have
distinguished up to 10 variants (34). Similar to scorpion
primers, “snapback primers” (Fig. 10D) generate a self-
probing amplicon that forms a hairpin (38). Snapback
primers achieve probe specificity with only two primers,
one of which has a simple 5¢ extension without any cova-
lently attached fluorophores. Only amplicon melting is
conceptually simpler (Fig. 10E), but the smaller differences
between variants usually require high-resolution melting.
Melting curves of unlabeled probe and snapback primers
show both product and probe melting transitions, pro-
viding synergistic information for PCR variant identi-
fication (39).

FIGURE 7 Real-time PCR with melting analysis. Detection and quantification are enabled by moni-
toring fluorescence once each cycle at the end of extension (solid squares). Amplification is immedi-
ately followed by melting-curve acquisition. Melting-curve analysis identifies PCR products, microbial
strains and sequence alterations by melting temperature. The original melting-curve data (solid line)
can also be plotted as a derivative melting curve (dotted line). Reprinted from reference 72 with per-
mission from the American Society of Investigative Pathology and the Association for Molecular
Pathology.

1. Nucleic Acid Amplification Methods Overview - 9



Digital PCR
The sensitivity of real-time PCR, defined as a 95% detec-
tion rate, cannot be better than three copies per reaction
because of variable partitioning of templates into any par-
ticular reaction (18). Digital PCR, however, uses partition-
ing to its advantage by running many PCRs with an
average copy number typically between 0 and 1 (40). Each
reaction is either positive or negative. Digital PCR can
precisely determine the number of copies of a template
(or variant) present at less than one copy per reaction if
enough reactions are performed. Instruments that divide
microliter PCR volumes into hundreds or millions of na-
noliter to picoliter partitions on microfluidic chips or drop-
lets are now available, promising highly sensitive and

precise quantification. Digital MIQE guidelines defining
the minimal information for publication of quantitative
digital PCR experiments emphasize the unique require-
ments of digital PCR (41). The main uses of digital PCR
in microbiology are (i) absolute quantification of reference
materials, (ii) quantification of rare variants, for example,
the emergence of a drug-resistant variant, and (iii) viral
load testing.

Because digital PCR does not depend on a standard
curve for absolute quantification, it is an ideal method to
establish quantitative reference materials. For example, the
U.S. National Institute of Standards and Technology pro-
duced a standard reference material for cytomegalovirus
quantification by digital PCR (42), and many more are

FIGURE 8 Common probes and dyes for real-time PCR. The green lightning bolt is the excitation
light. The green circles are fluorophores, the dark red circles are quenchers, and the black circles are
dark quenchers. The large hungry gray circle is a polymerase with 5¢ to 3¢ exonuclease activity. The thin
black ovals are blockers, and the orange sausages are minor groove binders. (A) Double-stranded DNA
dyes show a significant increase in fluorescence when bound to DNA. (B) Hydrolysis probes are cleaved
between a fluorescent reporter and a quencher, resulting in increased fluorescence. (C) Dual hybridiza-
tion probes change color by resonance energy transfer when hybridized. (D) The molecular beacon hair-
pin quenches fluorescence until target binding that separates the quencher from the flourophore. (E)
Scorpion primers are quenched in the native conformation but increase in fluorescence when the origi-
nal hairpin loop is hybridized to its extension product. (F) Dark quencher probes are initially quenched
by a minor groove binder and the dark quencher. Hybridization to the target releases the fluorescence.
(G) The short strand of partially double-stranded probes is displaced in the presence of target, releasing
fluorescence from quenching.
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likely to follow. Please see the chapter on digital PCR in
this book for more details on the methods and clinical ap-
plications.

Detecting a small percentage of drug-resistant microbes
in a population, or heteroresistance, is challenging by con-
ventional methods. Digital PCR was successfully applied
to heteroresistance in M. tuberculosis, targeting variants in
four genes associated with isoniazid, rifampin, fluoroqui-
nolone, and aminoglycoside resistance (43). Variants were
detected at 0.01%, much more sensitive than real-time
PCR or sequencing. Similar studies in HIV-1, HCV, and
other viruses and bacteria are sure to follow.

Digital PCR for viral load testing has been compared to
real-time PCR in several studies. In addition to the more
common chip and droplet systems, novel rotational sys-
tems provide greater dynamic range, as demonstrated for
HIV-1 and HCV (44). The proportion of chromosomally
integrated human herpesvirus type 6 (HHV-6) to genomic
DNA was precisely determined by digital PCR to prevent
misdiagnosis and unnecessary treatment of active HHV-6
(45). Two studies comparing digital to real-time PCR for
viral load testing of cytomegalovirus concluded that al-
though there are theoretical advantages to digital PCR,
practically clinical results are similar (46, 47).

Transcription-Based Amplification Methods
Nucleic acid sequence-based amplification (NASBA) and
transcription-mediated amplification (TMA) are both iso-
thermal RNA amplification methods modeled after retro-
viral replication (48–50). These methods are similar in
that the RNA target is reverse transcribed into cDNA and
then RNA copies are synthesized with an RNA polymer-
ase. NASBA uses avian myeloblastosis virus RT, RNase H,
and T7 bacteriophage RNA polymerase, whereas TMA

uses an RT enzyme with endogenous RNase H activity and
T7 RNA polymerase.

Amplification involves the synthesis of cDNA from the
RNA target with a primer containing the T7 RNA poly-
merase promoter sequence (Fig. 11). The RNase H then
degrades the initial strand of target RNA in the RNA-
cDNA hybrid. The second primer then binds to the cDNA
and is extended by the DNA polymerase activity of the RT,
resulting in the formation of double-stranded DNA con-
taining the T7 RNA polymerase promoter. The RNA poly-
merase then generates multiple copies of single-stranded,
antisense RNA. These RNA product molecules reenter the
cycle, with subsequent formation of more double-stranded
cDNA molecules that can serve as templates for more RNA
synthesis. A 109-fold amplification of the target RNA can
be achieved in less than 2 h by this method.

The single-stranded RNA products of TMA in the Ho-
logic/Gen-Probe tests are detected by the hybridization
protection assay. Oligonucleotide probes are labeled with
modified acridinium esters with either fast or slow chemi-
luminescence kinetics so that signals from two hybridiza-
tion reactions can be analyzed simultaneously in the same
tube. The probes are added after amplification and hybrid-
ize to the amplicons. A selection reagent is then added
which differentiates between hydridized and unhybridized
probes by inactivating the label on the unhybridized
probes. The NASBA products in the bioMérieux tests are
detected by hybridization with probes that are added after
amplification, labeled with tris (2,2¢-bispyridine)ruthenium
and detected by electrochemiluminescence. NASBA has
also been used with molecular beacons to create a homoge-
neous, kinetic amplification system similar to real-time
PCR (51).

Transcription-based amplification systems have several
strengths, including no requirement for a thermal cycler,

FIGURE 9 Typical real-time PCR amplifications monitored with SYBR Green I, hydrolysis probes, and hybridization probes. Both
once-per-cycle and continuously monitored displays are shown. Note the hybridization information inherent in reactions monitored with
SYBR Green I and hybridization probes.
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FIGURE 10 Variant typing by melting analysis. Primer and probe designs are shown on the left with
typical data on the right. Dual (A) and single (B) hybridization probes use covalent fluorescent labels
(asterisks), and typing is solely derived from the probe signal. Single hybridization probes discussed here
include molecular beacons, scorpion primers, dark quencher probes, and partially double-stranded
probes. Unlabeled probes (C) and snapback primers (D) require no covalent labels because fluorescence
is provided by a dye that binds to dsDNA. With unlabeled probes and snapback primers, both probe
and PCR product melting transitions are observed and can contribute to typing. Any free 3¢ ends on the
probes are terminated with a phosphate (Pi) or other blocker to prevent probe extension by the poly-
merase. The snapback primer (D) incorporates an unlabeled probe into the 5¢ end of one primer, gener-
ating a self-probing amplicon that forms a hairpin. In panel E, no probe is present, but typing of the
PCR product is still possible by high-resolution melting. High-resolution melting identifies heterozygotes
by a change in curve shape and distinguishes homozygotes by Tm.
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rapid kinetics, and a single-stranded RNA product that
does not require denaturation prior to detection. Also,
single-tube clinical assays and a labile RNA product may
help minimize contamination risks. Limitations include the
poor performance with DNA targets and concerns about
the stability of complex multienzyme systems. Hologic/
Gen-Probe has developed FDA-cleared, TMA-based assays
for detection of M. tuberculosis, C. trachomatis, N. gonor-
rhoeae, human papillomavirus, and Trichomonas vaginalis.
NASBA-based kits (bioMérieux) for the detection and
quantification of HIV-1 RNA and detection of enterovirus
and MRSA were developed but are no longer commer-
cially available. A basic NASBA kit is also available for
the development of other applications defined by the user.
In its latest iteration, NucliSens EasyQ, NASBA is cou-
pled with molecular beacons for real-time amplification
and detection of target nucleic acids (52).

Strand Displacement Amplification
Strand displacement amplification (SDA) is an isothermal
template amplification technique that can be used to de-
tect trace amounts of DNA or RNA of a particular se-
quence. SDA, as it was first described, was a conceptually
straightforward amplification process with some technical
limitations (53). Since its initial description, however, it
has evolved into a highly versatile tool that is technically
simple to perform but conceptually complex. SDA is the
intellectual property of BD Diagnostics.

In its current iteration, SDA occurs in two discrete
phases: target generation and exponential target amplifica-
tion (54). Both are illustrated in Fig. 12. In the target gen-
eration phase, a double-stranded DNA target is denatured
and hybridized to two different primer pairs, designated as
bumper and amplification primers. The amplification prim-
ers include the single-stranded restriction endonuclease

FIGURE 11 Transcription-based target amplification. NASBA and TMA are examples of transcription-
based amplification systems. Reprinted with permission from reference 70.
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enzyme sequence for BsoB1 located at the 5¢ end of
the target binding sequence. The bumper primers are
shorter and anneal to the target DNA just upstream of
the region to be amplified. In the presence of BsoB1, an
exonuclease-free DNA polymerase, and a dNTP mixture
consisting of dUTP, dATP, dGTP, and thiolated dCTP
(Cs), simultaneous extension products of both the bum-
per and amplification primers are generated. This pro-
cess displaces the amplification primer products, which are
available for hybridization with the opposite-strand prod-
ucts with the opposite-strand bumper and amplification
primers.

The simultaneous extension of opposite-strand primers
produces strands complementary to the product formed by
extension of the first amplification primer with Cs incorpo-
rated into the BsoB1 cleavage site. This product enters the
exponential target amplification phase of the reaction. The
BsoB1 enzyme recognizes the double-stranded site, but be-
cause one strand contains Cs, it is nicked rather than
cleaved by the enzyme. The DNA polymerase then binds
to the nicked site and begins synthesis of a new strand
while simultaneously displacing the downstream strand.
This step re-creates the double-stranded species with the
hemimodified restriction endonuclease recognition se-
quence, and the iterative nicking and displacement process
repeats. The displaced strands are capable of binding to

opposite-strand primers, which produces exponential am-
plification of the target sequences.

These single-stranded products also bind to detector
probes for real-time detection. The detector probes are sin-
gle-stranded DNA molecules with fluorescein and rhoda-
mine labels. The region between the labels includes a
stem-loop structure. The loop contains the recognition site
for the BsoB1 enzyme. The target-specific sequences are lo-
cated 3¢ of the rhodamine label. In the absence of a spe-
cific target, the stem-loop structure is maintained with the
fluorescein and rhodamine labels in close proximity. The
net effect is that very little emission for the fluorescein is
detected after excitation. After SDA, the probe is con-
verted to a double-stranded species, which is cleaved by
BsoB1. The cleavage causes physical separation of the fluo-
rescein and rhodamine labels, which results in an increase
in emission from the fluorescein label.

SDA has a reported sensitivity high enough to detect as
few as 10 to 50 copies of a target molecule (53). By using a
primer set designed to amplify a repetitive sequence with
10 copies in the M. tuberculosis genome, the assay is sensi-
tive enough to detect 1 to 5 genome copies from the bac-
terium. SDA has also been adapted to quantify RNA by
adding an RT step (RT-SDA). In this case, a primer hy-
bridizes to the target RNA and an RT synthesizes a cDNA
molecule. This cDNA can then serve as a template for

FIGURE 12 Strand displacement target amplification. The process is shown for only one strand of a double-stranded DNA target, but
amplification occurs on both strands simultaneously. Reprinted with permission from reference 70.
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