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Preface

With the current digital development in modern societies, hydroinformatics defined
as management of information related to the water sector using ICT tools is
becoming a large domain of engineering technology and sciences. Modelling and
simulation are historically the points of departure for hydroinformatics and are one
of the most important parts of it. Neither the SimHydro cycle of international
conferences since 2010 nor the present book has the purpose or ambition to cover
thematically the whole extent of the subjects. The main purpose is to concentrate on
a limited number of specific areas and subjects that are not usually considered as
such during most global international conferences or publications.

Modelling in fluid mechanics, hydraulics and hydrology, whether using digital
tools or scale models, has reached sufficient maturity to be in daily use by engineers
for analysis, design and for communication. Increasingly, complex cases can be
handled thanks to evermore sophisticated tools and increasingly abundant com-
puting power and data resources. The emerging environment populated with the
new generation of sensors, using cloud computing resources, producing big data, is
challenging the current practices of modelling and requests innovation in
methodology and concepts for real integration into the decision-making processes
that are more and more requested for crisis management. At the same time, the
request to integrate vulnerability and resilience dimension in various engineering
approaches is becoming more and more frequent especially for environments
directly exposed to major natural hazards like floods and inundations.

With respect to these issues, however, a number of questions still remain open:
coupling of models, data acquisition and management, uncertainties (both epistemic
and random) of results supplied by models, use of 3D CFD models for complex
phenomena and for large-scale problems. All these points are continuously explored
and investigated by researchers, scientists and engineers. Like in all scientific
domains, most recent and advanced developments have to be discussed and shared
regularly in a growing community that has to face every day more challenging and
complex situations. The SimHydro 2019 conference, following the four previous
editions, has contributed to this objective by providing a platform for exchanges
and discussions for the different actors in the water domain.
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SimHydro is a permanent cycle of conferences held every 2 years, hosted by
Polytech Nice Sophia and organised by the Société Hydrotechnique de France
(SHF) and its partners. It aims, as the subject, at recent advances in modelling and
hydroinformatics and at the participation and exchanges at European scale (it is
open to all other researchers and participants but the purpose is to maintain a
specific platform for the region that was a birthplace of both domains).

The latest SimHydro conference was held in Sophia Antipolis, France, from
12 to 14 June 2019. The conference was jointly organised by the Société
Hydrotechnique de France (SHF), the Association Française de Mécanique (AFM),
the University of Nice Sophia Antipolis/Polytech Nice Sophia and with the support
of the International Association for Hydro-Environment Engineering and Research
(IAHR), the Environmental and Water Resources Institute (EWRI) of the American
Society of Civil Engineers (ASCE) and the Canadian Society for Civil Engineering
(CSCE). Several sponsors also supported the conference: EDF, CNR, ARTELIA,
SETEC-HYDRATEC and ACRI Group. The conference attracted 166 delegates
from 41 countries who participated in 24 sessions where 136 papers were presented.
The programme was organised around twelve main themes:

1. Hydro-environmental issues and extreme situations
2. Models for extreme situations
3. Uncertainties and data assimilation
4. Extreme in hydraulics: how to deal with?
5. Crisis management and models
6. Decision support systems and models: concepts, design, challenges,

implementation and operation
7. Real-time management and models
8. Hydraulic structures and networks: real-time operation and crisis
9. Scale models in hydraulics and their place and complementarity in simulation

concepts
10. Modelling methods and tools for floods management
11. 3D multiphase flows (experiments and modelling)
12. Hydraulic machineries

Within these general themes, topics like coupling of models, data assimilation and
uncertainties, urban flooding, data and uncertainties in hydraulic modelling, model
efficiency and real situations, new methods for numerical models, hydraulic
machinery, 3D flows in the near field of structure and models for complex phe-
nomena have been covered. The conference, by attracting researchers, engineers
and decision-makers, has promoted and facilitated the dialogue between various
communities especially with a special session dedicated to catastrophe models. The
purpose of catastrophe modelling is to help communities and companies anticipate
the likelihood and severity of potential future catastrophes before they occur so that
they can adequately prepare for their financial impact. Insurances and reinsurance
companies at the worldwide scale currently develop these approaches. Catastrophe
modelling combines the four components—hazard, inventory, vulnerability and
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loss—to aid insurers in making their decisions on what type of protection they can
offer against a particular risk. Integration of hydroinformatics methods and tools in
these approaches is a real challenge. Representatives from insurance and reinsur-
ance companies have presented their approaches of extreme events and their
operational implementation through international examples. Exchanges with par-
ticipants have been very fruitful on crucial questions related to the crisis manage-
ment during extreme flood events, the needs for operational forecasting systems, the
state of the art in research and development in the domain of numerical fluid
mechanics, the stakeholder’s capacity to understand results, the means for dialogue
directly or indirectly between the stakeholders and the model developers and the
information’s exchange between stakeholders and developers.

In order to contribute to this dialogue and to provide useful references, following
the successful experiences of 2012, 2014 and 2017, the organisers of SimHydro
2019 have decided to elaborate this book. This volume gathers a selection of the
most significant contributions received and presented during the conference. The
objective is to provide the reader with an overview of the on-going developments
and the state of the art taking place in four major themes that are as follows:

• Decision support systems and crisis management,
• Flood forecasting,
• Methods and models for hydrology and climate change,
• High performance computing and complex hydraulics applications.

Obviously, all dimensions of these themes cannot be covered in a single book.
However, the editors are convinced that the contents may contribute to provide to
the reader essential references for understanding the actual challenges and devel-
opments in these areas of the hydroinformatics field.

This volume represents the sum of the efforts invested by the authors, members
of the scientific committee and members of the organising committee. The editors
are also grateful for the dedicated assistance of the reviewers who worked tirelessly
behind the scene to ensure the quality of the papers. We hope this book will serve as
a reference source on hydroinformatics for researchers, scientists, engineers and
managers alike.

Nice, France Philippe Gourbesville
Paris, France
August 2019

Guy Caignaert
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Part I
Decision Support Systems and Crisis

Management

Over the last 20 years, several new paradigms emerged for water resources planning
and management. Integrated Water Resources Management (IWRM) has been
recognized as an important guideline for effective and sustainable water resources
management. According to UNESCO (2009), IWRM can be defined as “a
step-by-step process of managing water resources in a harmonious and environ-
mentally sustainable way by gradually uniting stakeholders and involving them in
planning and decision-making processes, while accounting for evolving social
demands due to such changes as population growth, rising demand for environ-
mental conservation, changes in perspectives of the cultural and economic value of
water, and climate change”. Although the concept of IWRM was already discussed
in the past decades, it is not yet established how to implement IWRM concepts in
water management practice. The needs for a holistic approach for water resources
management were also highlighted by many actors and were expressed in the
European Union Water Framework Directive (WFD) that came into force in 2000.

Despite this effort, water environmental management often falls into an
unstructured problem where various stakeholders are involved and multiple criteria
have to be evaluated. The decision process for planning or management of water
environment therefore tends to become a very complex process. Decision Support
Systems (DSS) have been conceptualized and developed to support this unstruc-
tured decision making process. Considering the rapid advancement of technologies
related to DSSs, the current developments are recently regarded as an iterative
process rather than a single procedure. This iterative development with active
participation of stakeholders is also considered to make the DSS more sustainable,
because the system can be gradually improved by incorporating feedbacks from the
stakeholders and end-users. This approach is seen in many recent DSS projects for
water resources planning and management. A DSS therefore tends to include a
combination of simple and universal models with different functions for sustainable
maintenance rather than a single sophisticated model in recent years. On the other
hand, advents in computer science and information technology have increased the
capability of real-time water resources management. More and more data can



potentially be used for real-time water resources management. They include
real-time observation data of the target water system, real-time water demand data
and real-time meteorological and hydrological forecast data. Although these data
can be considered to be very useful in real-time water resources management, it
became very challenging task to handle a huge amount of data in real-time. New
approaches focused on data management and data technics represent today a major
axis for DSSs development. Several papers gathered within this section are
addressing the concepts and the operational implementation of DSSs in various
environments.

A major application field for DSSs is currently the crisis management. During
water related crisis, stakeholders and first responders are looking for tools able to
provide an accurate overview of the current situation and also to formulate rea-
sonable forecasts in order to optimize actions and responses. In such context, hydro
informatics tools represent some of the key components of the DSSs to develop and
to implement in order to answer the crisis challenges. In addition to the classical
hydrological and hydraulic models, catastrophe models can be implemented within
those environments. The purpose of catastrophe modelling is to help communities
and companies anticipate the likelihood and severity of potential future catastrophes
before they occur so that they can adequately prepare for their financial impact.
Insurances and reinsurance companies at the worldwide scale currently develop
these approaches. Catastrophe modelling combines the four components - hazard,
inventory, vulnerability, and loss - to aid insurers in making their decisions on what
type of protection they can offer against a particular risk. Integration of hydro
informatics methods and tools in these approaches is a real challenge is discussed in
several contributions of this section.

Sophia Antipolis Philippe Gourbesville
August 2019 Guy Caignaert
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Chapter 1
Which Models for Decision Support
Systems? Proposal for a Methodology

Philippe Gourbesville

Abstract Management of water uses requests to harmonize demands and needs
which are getting more and more complex and sophisticated especially with the
growing urbanization. Modern cities request a larger number of services for their
inhabitants and expect, at the same time, to limit investments in order to constrain
the tax pressure. The need of optimization appears at various levels and request the
wide spread of monitoring strategies. At the same time, urban growth mobilizes
last available spaces that are frequently under the thread of natural hazards like
inundations or landslides. The current situation, characterized by the fast increase
of monitoring devices mainly in the urban environments, requests an integration
of the modeling tools into the Information Systems (IS) that are now dedicated
to the global management of urban environments and related services. Decisions
Supports Systems (DSSs) that may integrated various components both for real-time
monitoring and forecast through model, appear as one of the most relevant answer
to the urban environment management’s expectations. The models integration is a
challenging task that requests to build a global vision that ensures both technical
feasibility and sustainability. As demonstrated with the AquaVar approach, several
models can be orchestrated within a single environment that can address the diversity
of the water related issues handled by local technical services. The models selection
has to integrate the evolution of the tools and the possibility to integrate gradually new
approaches and methods that are more data oriented and using the results produced
from the implemented deterministic tools.
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1.1 Introduction

Management of water uses requests to harmonize demands and needs which are get-
ting more and more complex and sophisticated especially with the growing urban-
ization. Modern cities request a larger number of services for their inhabitants and
expect, at the same time, to limit investments in order to constrain the tax pressure.
The need of optimization appears at various levels and request the wide spread of
monitoring strategies. At the same time, urban growthmobilizes last available spaces
that are frequently under the thread of natural hazards like inundations or landslides.

New urban developments appear more vulnerable and request a higher effort for
risk management based on systems able to anticipate and analyze situations. The
current situation, characterized by the fast increase of monitoring devices mainly in
the urban environments, requests an integration of the modeling tools into the Infor-
mation Systems (IS) that are now dedicated to the global management of urban envi-
ronments and related services. Energy distribution, water distribution, solid wastes
collection, traffic optimization are today major issues for cities that are looking
for functional Decisions Supports Systems (DSSs) that may integrated the various
components and operate in a sustainable perspective.

The current demand is targeting classical monitoring outputs such as the real
time monitoring and request forecasts based on models (analytics) and providing
sufficient information for an efficient management. In addition to the analysis of the
current situation by visualizing the various information sources, a frequent request
is on evolution of the monitored processes in time in order to anticipate reaction and
ensure an efficient management. In order to provide a real support to the decision
process, several tools dedicated to the data analysis and to the simulation can be
interfaced within the core part of the platform. The models used in this analytics
domain start with basic statistical tools and go to complex determinist models such
as those commonly used in hydroinformatics. This architecture concept for the urban
information system is today commonly shared and appears as a consensus solution.

If the concept of DSS is clearly understood, the integration of models is still an
important issue that’s not addressed by the modelers’ community. Up to now few
operational implementations have been achieved at the international scale and pro-
totypes are just emerging. The availability of computational resources allows today
looking at the deterministic models for hydrological and hydraulic issues. Obviously
those tools may easily produce massive data that could be used afterward by data
mining technics and stochastic models associated to AI protocols. This target archi-
tecture requests a specific methodology that describes the various steps to achieve
for a successful DSS design and implementation.
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1.2 Context, Needs and Methodology

1.2.1 Towards Smart Cities and Smart Water

Several projections confirm that 70% of the world’s population will live in a city
by 2050. Currently, around half of all urban dwellers live in cities with populations
between 100,000 and 500,000 people, and almost 10% of urban dwellers live in
megacities, which are defined by UN HABITAT as a city with a population of more
than 10 million. As cities around the world experience this massive growth, the
need to ensure sustainable expansion, efficient operation and development of high
quality of life for residents becomes even greater than it is today. Within this context,
the smart city concept has emerged. The term “smart cities” is trending amongst
governments, urban planners and even the private sector to address the projected
demands of cities in the future. Making cities smarter to support growth is emerging
as a key area of focus for governments and the private sector alike. Up to 2030,
cities around the world will invest US$ 108 billion in smart city infrastructure, such
as smart meters and grids, energy-efficient buildings and data analytics, according
to Navigant Research (https://www.navigantresearch.com/news-and-views/global-
revenue-from-smart-water-networks-projected-to-reach-72-billion-in-2025).

Smart cities encompass six important sectors that need towork in unison to achieve
a common goal of making a city more livable, sustainable and efficient for its resi-
dents. These sectors are smart energy, smart integration, smart public services, smart
mobility, smart buildings, and smart water. Building smart cities upon the six sectors
is crucial for sustainable global growth, but the financial, logistical and political chal-
lenges are enormous. The conversations about growth of smart cities have historically
been dominated by large IT companies that focus on analyzing “big data” taking a
top-down, software-centric approach. However, when it comes to the moderniza-
tion of hundred-year-old systems like water distribution or the power grid, advanced
software and networking capabilities are rarely broad enough in scope to make the
necessary impact. Conversely, a bottom-up approach to smart city development is
based on the belief that the rapid migration to cities will tax municipal infrastruc-
tures beyond their breaking points. The cities that succeed in transitioning to “smart”
operations will be those that improve their critical systems and infrastructure at a
fundamental level as well as integrate their systems through advanced technology.
Lastly, smart cities will apply advanced monitoring and analytics to continuously
measure and improve performance.

One of a city’s most important pieces of critical infrastructure is its water system
[1]. With populations in cities growing, it is inevitable that water consumption will
grow as well even if the individual use will decrease. The term “smart water” points
to water and wastewater infrastructure that ensures this essential resource—and the
energy used to transport it—ismanaged effectively. A smart water system is designed
to gather meaningful and actionable data about the flow, pressure and distribution
of a city’s water. Further, it is critical that the consumption and forecasting of water
use is accurate. A city’s water distribution and management system must be sound

https://www.navigantresearch.com/news-and-views/global-revenue-from-smart-water-networks-projected-to-reach-72-billion-in-2025
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and viable in the long term to maintain its growth and should be equipped with the
capacity to be monitored and networked with other critical systems to obtain more
sophisticated and granular information on how they are performing and affecting
each other. Additional efficiencies are gained when departments are able to share
relevant, actionable information. One example is that the watershed management
team can automatically share storm water modeling information that indicates prob-
able flooding zones and times based on predictive precipitation intelligence. The
transportation department can then reroute traffic accordingly and pre-emptively
alert the population using mass notification.

Water systems are often overlooked yet as critical components of energy man-
agement in smart cities, typically comprising 50% of a city’s total energy spends.
Energy is the largest controllable cost in water/wastewater operations; yet optimiz-
ing treatment plants and distribution networks has often been overlooked as a source
of freeing up operating funds by cash-strapped municipalities. Once facilities are
optimized and designed to gather meaningful and actionable data, municipal leaders
can make better and faster decisions about their operations, which can result in up
to 30% energy savings and up to 15% reduction of water losses. Water loss man-
agement is becoming increasingly important as supplies are stressed by population
growth or water scarcity. Many regions are experiencing record droughts, and others
are depleting aquifers faster than they are being replenished. Incorporating smart
water technologies allows water providers to minimize non-revenue water (NRW)
by finding leaks quickly and even predicatively using real-time SCADA data and
comparing that to model network simulations. Reducing NRW also allows munici-
palities to recover costs incurred in treatment and pumping. The reduction of NRW
is a priority for cities in both developed and developing countries in order to ensure
efficient service to population and sustainable use of water resources.

On the wastewater side, there is a move by many water utilities—public and
private—to transform wastewater treatment plants into resource recovery facilities,
which includes energy. There are several examples of facilities that now produce
more energy than required for their operations and sell the excess energy back to the
grid. While this is not practical for all treatment plants, it is a worthy ambition for
most of the major treatment sites and should be included within the implementation
roadmaps or master plans at the national level. However, implementation requests to
improve financial capacity of municipalities in order to implement the smart water
approach and to contribute to the water security in a global way. One of the biggest
obstacles to any capital-intensive project is access to funding. As cities and munic-
ipalities look to achieve smarter water, there are a number of options available to
help them get started. One very effective path is through leveraging energy-saving
performance contracts (ESPCs). ESPCs are a form of a public-private partnership
(PPP), a financial model that capitalizes on the flexibility and resources of the private
sector to pay for energy-saving capital upgrades using future energy savings. The
private financial community provides the initial investment, and services are deliv-
ered by Energy Service COmpanies (ESCOs). The financier is paid from the accrued
energy savings, with the ESCO guaranteeing the savings amount. An ESPC starts
with an energy audit. After identifying opportunities and quantifying the potential
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savings, the ESCO recommends any number of energy conservation measures, such
as equipment retrofits, pumping optimization, demandmonitoring and control (DSSs
can be created and developed), and/or load-shedding and cogeneration which will
save energy through more efficient operations.

1.2.2 Towards the Water Information System

In the coming years the new technologies from the IT sector will affect the full water
cycle and the management of the water related services. However, the impact of
these new technologies—from sensors to Decision Support Systems (DSSs)—could
be stronger and really significant if priorities are properly defined and implemented
within the R&D and deployment strategies. The main driver of the strategy has to be
to achieve a comprehensive architecture of an Information System (IS) dedicated to
water uses and connected to others systems involved in human activities. This is the
operational formulation of the smart water concept.

By definition, Information Systems are implemented within an organization for
the purpose of improving the effectiveness and efficiency of that organization [2].
Capabilities of the IS and characteristics of the organization, its work systems, its
people, and its development and implementation methodologies together determine
the extent to which that purpose is achieved. The IS is associated to an architecture
which provides a formal definition of the business processes and rules, systems struc-
ture, technical framework, and product technologies for a business or organizational
information system.

In order to elaborate a specific IS for themanagement of thewater cycle, amethod-
ology is needed for identifying priorities and strategic investments to do in the ICT
domain. The requested approach has to investigate all domains and provide a map
of the various process taking places in the different domains of the water uses cycle.
This formalization exercise, using mainly concepts and processes, is requested in
order to ensure the coherence of technical choices in a holistic approach.

Most of municipalities are currently engaged to this approach in an explicit or
implicit way: monitoring activities are gradually introduced and allow improving
the efficiency of water management, from resources to treatment operations and
environment quality monitoring [3–5]. The availability of the real time monitoring
systems provides a significant improvement within the management of water related
services. One of the key challenges is to ensure that each specific monitoring system
can integrate a wider system covering all the urban management actions. This step
is highly challenging as it requests to address the legacy of each system within the
target one. High financial investments can be requested and efficiency may suggest
completely forgetting an existing technical solution in order to move to a more open
and interoperable approach.

In addition to the development of real time monitoring systems (dashboards),
the need for forecasts is the following step and requests to implement modeling
tools that can operate in real time too and produce realistic forecasts on the various
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processes that have to bemanaged:water consumption, pressure, flood and associated
inundation [6], urban runoff, accidental pollutant behavior, etc. The models integrate
an analytics domain that is added to the classical dashboard and provide the added
value to the stakeholders. The shared information helps to consolidate a common
approach especially for the crisis management and the optimization of the mitigation
actions.

1.2.3 Methodology for Models Selection

At first, the main target should be the creation and the development of a Water
Information System (IS) [3] that provides the relevant resources for the services
managers. The global architecture for this IS has to become explicit and a roadmap
for the urbanization of this IS has to be produced by the relevant entity (most of time
Municipalities and associated technical services). In most of the cases, the definition
of the target IS—at the city scale—integrates existing monitoring systems in order to
consolidate the current architecture and to address the legacy issues.When the global
roadmap is defined and covering the forecast objectives/expectations, the design of
the specific water IS can be addressed and the selection of required models can be
initiated.

Obviously, the consolidation of the Water IS cannot be achieved at the initial
stage and it requests a continuous efforts. When the water IS roadmap is clarified
with relevant objectives, the selection of models can be done based on the requested
added value of the forecasts and the availability of data and computational resources.
In order tomaximize the efficiencyof theDSS, a common format/standard for the data
and for exchanges among the different tools is highly recommended and contribute
to the sustainability of the Water IS. The implementation of standardized workflows
ensures interoperability with the global IS that covers the various urban services.

The modeling tools have to be selected for their performance to provide in the
define timing the relevant forecasts: running a deterministic tool requesting a compu-
tational time larger that the process to forecast is obviously irrelevant. The modeler
task is then to assess both quality of delivered results and operational implementa-
tion within the management procedures. If data and real-time monitoring systems
are operating, and according to the processes to address, the key principle is to select
the model that is allowing to deliver the relevant answer in the minimum of time.
The deterministic models for both hydrological and hydraulic processes (surface and
underground) represents a meaningful approach as relevant results can be obtained
with limited data sets and assumptions that are based on physical laws. The use of
these models within the operational phase will generate results that could be used
afterwards as inputs data for stochastic models using AI technics such as ANN
or multi agents. This last step may contribute to reduce significantly the computa-
tional efforts and the simulation time. This new performance can be very helpful for
managing services (Fig. 1.1).
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Fig. 1.1 Methodology for models integration within City IS

1.3 Aquavar Approach

1.3.1 Nice and Var Catchment Context

The city of Nice is located on the French Riviera at the mouth of the Var catchment.
The recent urban development of the fifth largest French city is currently taking
place in the last available space along the Var low valley and over about 20 km of
floodplain. Due to the complexity of challenges—water supply security issues from
groundwater resources, inundation risk and water resources management under the
perspective of climate change—the need for a DSS has been identified since the
late 90’s. Unfortunately, at such time, both availability of data and technical tools
(from communication protocols to modeling tools) has not permitted to engage the
development of such system. However, during the last 15 years, systematic data
collection on topography, climate and hydrological variables has permitted to gather
a significant knowledge on themain hydrological processeswithin theVar catchment.
Since 2014, a new approach has been engaged with the AquaVar project dedicated to
the development and implementation of a first DSS able to address a wide diversity
of issues: from resources management to emergency situations management [5].
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Fig. 1.2 Global architecture for the Nice Metroplis IS and the integration of AquaVar DSS within
the Analytics domain [5]

1.3.2 Global Architecture

The selected architecture for the AquaVar DSS is based on a platform elaborated
over a service bus dedicated to collect and integrate field data that are related to
various processes including the water services and the natural hazards. Data are
formalizes through various tools such as Key Performance Indicators (KPIs), pre-
defined alerts and directives. The synthetic dashboard allows visualizing the current
situation. In addition, with the analytics components, the platform integrates deter-
ministic modeling solutions which allow to have a full simulation of the hydrolog-
ical cycle at the catchment scale, a 3D simulation of complex underground aquifer
and associated relationships with 2D/3D surface flow model including pollutants
exchanges. The modeling system integrated within the hypervision platform is based
on 3 deterministic modeling systems (Fig. 1.2).

1.3.3 Implementation of Models

For theVar low valley, the demands from the local government are targeting thewater
resources with the groundwater located within the low valley, the exchanges between
the surface flows and the groundwater especially in case of accidental pollution and
theflood events that could generate inundations and impacts onurban and commercial
areas. Themain requests are both for a real-time information on the current processes
and on the possibility to assess a future situation throughmodeling tools. The models
integrate the Analytics domain in the global Information System (IS) architecture
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and are connected through the Service Bus to the various data sources such as water
levels, discharges and water quality parameters. The hypervision interface allows to
display the measurements and to interact with the modeling tools that produce the
simulations.

One of the key questions is obviously on the choice for the modeling tools to
be integrated within the Analytics domain. In order to provide the requested diag-
nostics and simulations, the following modeling systems have been chosen and
interconnected:

• The FEFLOWmodeling system, developed by DHI, for the 3D simulation of the
groundwater resources simulation. In order to represent the interactions between
the river and the groundwater table, the FEFLOW model is combined with a 2D
surface water model;

• The MIKE 21 system (DHI) is used as 2D surface water model and is con-
nectedwith FEFLOW for the surface/groundwater interaction simulation. In addi-
tion, the system is used for flood events simulation and for the modeling of the
morphological dynamic within the riverbed;

• The MIKE SHE system (DHI) produces the hydrological data to be used as
boundary conditions for FEFLOW and MIKE 21 systems (Fig. 1.3).

A 3D hydraulic model based on FEFLOWmodeling system has been set up over
the 22 km of the Var low valley. The detailed geological structure has been integrated
within the model in order to have an accurate representation of the processes [7–10].
The validation of the model has been achieved with a simulation from September
10th 2009 to February 26th 2013. Among the 24 piezometers with automatic recorder
which have been set up to monitor the daily groundwater level along the valley, 6 of
them have been chosen to validate the model thanks to their fully digital recording
during the simulation period. Their location enables a holistic view from the upstream
to the downstream (Fig. 1.4). The simulation results are shownwith themeasured data

Fig. 1.3 Extension of the MIKE SHE, MIKE 21 and FEFLOW models integrated within the
AquaVar DSS
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Fig. 1.4 Piezometers used for FEFLOW model validation

Fig. 1.5 Comparison between simulated (FEFLOW model) and recorded groundwater levels

in Fig. 1.5. The results demonstrate that themodel is able to represent the dynamics of
the groundwater flow by considering direct water recharge, river-aquifer exchange
as well as the groundwater extraction. Consequently, the model can be used as a
groundwater management tool and integrated within the hypervision platform.

A similar approach has been carried out with MIKE 21 FM regarding the free
surface flows simulation and the morphological dynamic. The simulation of the bed
evolution has been carried out with Sand Transport module in MIKE 21 FM that
calculates the sediment transport capacity, the initial rates of bed level changes and
the morphological changes for non-cohesive sediment due to currents. The sediment
transport computation is based on hydrodynamics conditions and sediment proper-
ties. In order to obtain an efficient MIKE 21 FM model, several meshes have been
created to simulate the same flood event (3rd October 2015 to 6th October 2015). The
built model with a 10 m resolution combining triangular and quadrangular elements
has demonstrated efficiency and well reproduced observed values. High-resolution
mesh has been implemented in order to represent properly the hydraulic structures
and their effects (Fig. 1.6).

For the hydrological modeling, a similar approach has been implemented with
MIKE SHE over the full catchment. The validation has been carried out over a
period of 3 years after the validation of the numerical grid to use for the surface runoff
estimation. Good results have been also obtained with this deterministic approach
that provides the input data for FEFLOW and MIKE 21 systems. The 3 modeling
systems are currently integrated within the AquaVar engine that is deployed with the
Information System operated by Nice Côte d’Azur Metropolis services.
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Fig. 1.6 Various mesh sizes tested within the 2D hydraulic model (MIKE 21)

1.3.4 AquaVar Orchestration

One selected approach for theAquaVarDSS is the use of commonmodeling software
as non-interactive services. Modeling systems like Mike SHE, Mike 21 or FEFLOW
are commonly used on the desktop computer as highly interactive applications where
the user can take advantage of the numerous visualization features available. Con-
versely, in the AquaVar DSS, these models are used in batch mode and are viewed
as modules managed by a program named the orchestrator. The AquaVar engine
(Fig. 1.7) automates the management of the modeling services by coordinating the
exchange of data through their interactions.

The engine consists in the following modules:

• Simulation engines: a simulation engine is a wrapper around specific simulation
software like Mike SHE, Mike 21 or FEFLOW. The wrapper makes it easy to add
a new simulation engine with no change in the architecture;

• Configurationmodules: each simulation engine relies on a corresponding configu-
rationmodule to automatically set up the simulation parameters. The configuration
module is also able to perform data format conversion when necessary;

• Scheduler: the scheduler allows running automatically the simulation engines in
the background at regular intervals. The scheduler uses a table similar to a Unix
crontab which can be set up by the user;


