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Preface of the Author

As an author I was very glad that the German edition of this book which
was first published in 2011 was very well received. Indeed, a second edition
with corrections and additions was published in 2016. After the English
translation The History of the Priority Dispute between Newton and Leibniz
of my book Die Geschichte des Prioritätsstreits zwischen Leibniz und Newton
was published by Birkhauser in 2018 and my revered ‘language editor’ Pat
Morton did not want to retire but was keen to start on another translation I
began translating the second edition of 3000 Jahre Analysis. Here it is.

The German edition of this book has some precursors in a series of books on
the history of mathematics: ‘6000 Jahre Mathematik’, ‘5000 Jahre Geometrie’,
‘4000 Jahre Algebra’, of which only the volume on geometry has been
translated into English up to now. It seemed logical to add a volume on the
history of analysis to this series and thereby making the history of analysis
available to interested non-specialists and a broader audience.

The current volume stands out in the series for the following reason. All books
in the series were designed to present scientifically reliable facts in a readable
form to convey the delight of mathematics and its historical development.
But while a cultural history of mathematics can be presented without much
mathematical details, while geometry can be described in the history of its
constructions in beautiful drawings, and while the history of algebra, at least
until the 19th century, can be developed from quite elementary mathematical
reflections, this concept naturally has to fail in the case of analysis. In essence
analysis is the science of the infinite; namely the infinitely large as well as
the infinitely small. Its roots lie already in the fragments of the Pre-Socratic
philosophers and their considerations of the ‘continuum’, as well as in the
burning question of whether space and time are made ‘continuously’ or made
of ‘atoms’. Thin threads of the roots of analysis reach even back to the realms
of the Pharaohs and the Babylonians from which the Greek received some
of their knowledge. But not later than with Archimedes (about 287–212 BC)
analysis reached a maturity which asks for the active involvement of my
readership. Not by any stretch of imagination can one grasp the meaning
of the Archimedean analysis withouth studying some examples thoroughly
and to comprehend the mathematics behind them with pencil and paper.
Although after Archimedes this knowledge was buried in the dark again it
came back to life at latest with the Renaissance where analysis progressed
in giant steps; and again this science calls for the attention of the reader!
To put it somehow poetically: Analysis turns out to be a demanding beloved
and one has to succumb to her in order to gain some understanding.

But have no fear! My remarks are not meant to discourage you; on the
contrary: they are meant to increase the excitement concerning the contents
of this book. You are required to think from time to time, but then deep and
satisfying insights into one of the most important disciplines of mathematics
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wait as a reward. Without analysis the Technical Revolution and the develop-
ments of our highly engineered world relating thereto would have been
unthinkable.
There are several books on the history of analysis on the market and the
reader deserves a few remarks concerning the position of this book in relation
to others. I do not claim to publish the latest and hitherto unknown research
results. However, the present book differs significantly from others. First of
all historical developments in the settings are given much attention as is
usual for books in our German book series. Furthermore I have put weight
on the Pre-Socratic philosophers and the Christian middle ages in which
the discussion of the nature of the continuum had been decisive. Finally
the common clamp encompassing all areas described in this book is the
infinite. This clamp allows me not to surrender to the unbelievable breadth of
developments in the 20th century; functional analysis, measure theory, theory
of integration, and so on, but rather to end in the nonstandard analysis
in which we again find infinitely small and large quantities and in which
the continuum of the Pre-Socratic philosophers is honoured again. In this
sense we come to full circle which connects Zeno of Elea (about 490–about
430 BC), Thomas Bradwardine (about 1290–1349), Isaac Newton (1643–
1727), Gottfried Wilhelm Leibniz (1646–1716), Leonhard Euler (1707–1783),
Karl Weierstraß(1815–1897), Augustin Louis Cauchy (1789–1857), and finally
Abraham Robinson (1918–1974) and Detlef Laugwitz (1932–2000).
It is also due to this encompassing clamp that I have included the development
of set theory in the history of analysis which is unusual. In the light of the
history of the handling of infinity set theory certainly belongs here.
This book has been made possible by the project group ‘History of Mathe-
matics’ of the University of Hildesheim, Germany, which I want to thank
with gratitude. In particular I have to thank the late Heinz-Wilhelm Alten,
my friend Klaus-Jürgen Förster, and Karl-Heinz Schlote for their confidence
in me. Heiko Wesemüller-Kock has taken care of the design of this book in
his usual, professional manner. One can only sense the enormity of his task if
one has drawn pictures and sketches, modified or corrected existing diagrams,
and designed hundreds of legends of pictures by oneself. The results of his
extensive work can be seen in this book and in all other books in our series.
Without the publisher, who encouraged this translation, the book would not
have come to life. I have to thank Mrs. Sarah Annette Goob and Mrs. Sabrina
Hoecklin of Birkhauser Publishers in particular.
However, I am not a trained historian. My continuing and long-standing
interest in history has helped a lot, of course, but reliable books like the
‘Der große Ploetz’ [Ploetz 2008] or the wonderful little volumes of Reclam
Publishers starting their titles with ‘Kleine Geschichte ...’ or ‘Kleine ...
Geschichte’ [Maurer 2002], [Altgeld 2001], [Dirlmeier et al. 2007], [Haupt
et al. 2008] were indispensable. In case of doubts however, only an informed
historian is of real help and I am very lucky that my friend and colleague
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Gerd Biegel of the ‘Institut für Braunschweigische Regionalgeschichte’ was
at my side although permantly suffering from an overload of work. While we
smoked many a cigar and drank innumerable cups of espressos he provided
insights into many historical contexts.

Although in the meantime he finished his studies and is currently working
on his PhD thesis my LATEX-wizard Jakob Schönborn, who already cared
for the second German edition of this book, the first German edition of Die
Geschichte des Prioritätsstreits zwischen Leibniz und Newton, and its English
version The History of the Priority Dispute between Newton and Leibniz stood
at my side to also supervise the LATEXnical side of this book. I can only thank
him wholeheartedly for his commitment to this book project!

I am particularly grateful to Prof. Dr. Eberhard Knobloch, not only for his
precious time he sacrified while proofreading the German edition but also
for numerous constructive criticism and hints concerning correct translations
from ancient Greek and Latin. Since he is a true role model not only for me
but for a whole generation of scientists this book is dedicated to him.

I am most grateful to the wonderful Patricia (Pat) Morton who offered again
to turn my ‘Germanic English’ into her lovely Oxford English. Without her
encouragement to continue our work on book projects I would have dared to
even start working on this book.

A book like this costs time; much time! My decision to write this book
therefore had serious consequences in particular for my wife Anke. I had
to spend a lot of time in my study and in libraries while life went on without
me. A lot of money was spend to buy new and second-hand books to enrich
my private library on the history of analysis. All this as well as the now
meter deep piles of books and manuscripts in our living room, on couches
and chairs and on the floor my beloved wife Anke has put up with and she
has reacted with humour and only with a few biting remarks. After the two
volumes ‘6000 Jahre Mathematik’ by Hans Wußing had been published and
were presented to the public during a small ceremony at the town hall of
Hildesheim, my wife got to the heart of it: ‘My husband has a mistress who
is 6000 years old, and he loves her dearly!’ For this and since she bears with
me and my old mistress I thank her with all my heart.

Thomas Sonar
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Preface of the Editors

With great pride we can present here the English translation of the second
edition of the German book ‘3000 Jahre Analysis’ for which our author
deserves gratitude and appreciation.

Concerning the contents of this books it has to be noted that it is not
just a translation of the German book. Again some sections have been
reworked and some new material has been carefully added. We have to thank
again Heiko Wesemüller-Kock and Anne Gottwald for their ernormous work
concerning the pictures and the gathering of publication rights at different
license suppliers. Their work ensures that the illustrations appearing in this
book share the same high quality as in all other books in our series.

We are also greatful to Birkhauser Publishers and in particular to our partner
Sarah Annette Goob who supported us actively. My gratitude also extends
to further persons which Thomas Sonar has already mentioned in his preface.

After ‘5000 Years of Geometry’ and ‘The History of the Priority Dispute
between Newton and Leibniz’ the ‘3000 Years of Analysis’ is the third book
of our German book series appearing in the English language. We wish this
book to also become a real success enjoying a wide distribution. May this
book find many readers and may it convey an impression of the beauty and
meaning of mathematics in our culture. It may perhaps even arouse their
interest in mathematics.

Hildesheim, July 2020, for the editors

Karl-Heinz Schlote Klaus-Jürgen Förster

Project group ’History of Mathematics’
at the University of Hildesheim
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Advice to the reader

Parentheses contain additional insertions, biographical details, or references
to figures.

Squared brackets contain

• omissions and insertions in quotations

• references to the literature within the text

• references to sources in legends of figures

In the figure legends squared brackets mark the author/creator of the
particular work. Further specifications appear in common paranthesis.

Figures are numbered following chapters and sections, e.g. Fig. 10.1.4 means
the fourth figure in section 10.1 of chapter 10.

The original titles of books and journals appear in italic type, likewise
quotations. Further reading or explanations of only shortly described circum-
stances are marked by references like ‘(cp. more detailed in. . . )’.

Literally or textually quoted literature as well as further reading can be found
in the bibliography.

XIII



Contents

1 Prologue: 3000 Years of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 What is ‘Analysis’? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Precursors of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The π of the Bible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Volume of a Frustum of a Pyramid . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Babylonian Approximation of
√
2 . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The Continuum in Greek-Hellenistic Antiquity . . . . . . . . . . . 17

2.1 The Greeks Shape Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 The Very Beginning: Thales of Miletus and his Pupils . 21

2.1.2 The Pythagoreans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 The Proportion Theory of Eudoxus in Euclid’s Elements 30

2.1.4 The Method of Exhaustion – Integration in the Greek
Fashion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.5 The Problem of Horn Angles . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.6 The Three Classical Problems of Antiquity . . . . . . . . . . 41

2.2 Continuum versus Atoms – Infinitesimals versus Indivisibles . 50

2.2.1 The Eleatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.2 Atomism and the Theory of the Continuum. . . . . . . . . . 51

2.2.3 Indivisibles and Infinitesimals . . . . . . . . . . . . . . . . . . . . . . 54

2.2.4 The Paradoxes of Zeno . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Archimedes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1 Life, Death, and Anecdotes . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.2 The Fate of Archimedes’s Writings . . . . . . . . . . . . . . . . . 69

2.3.3 The Method: Access with Regard to Mechanical
Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3.4 The Quadrature of the Parabola by means of
Exhaustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3.5 On Spirals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3.6 Archimedes traps π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.4 The Contributions of the Romans . . . . . . . . . . . . . . . . . . . . . . . . 88

XV



XVI Contents

3 How Knowledge Migrates – From Orient to Occident . . . . . 91

3.1 The Decline of Mathematics and the Rescue by the Arabs . . . 92

3.2 The Contributions of the Arabs Concerning Analysis . . . . . . . . 98
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2 1 Prologue: 3000 Years of Analysis

since 3000 BC Nomads from the north immigrate to southern
Mesopotamia. Sumerian city states emerge and the
cuneiform writing on clay tablets. The realms at the Nile
unite. Emergence of hieroglyphs

about 2707–2170 Old Kingdom in Egypt. Emergence of pyramids; the step
pyramid at Saqqara, the bent pyramid at Dahshur, the
great pyramids of Khufu, Chefren and Mykerinos

2170–2020 First interim period in Egypt
about 2235–2094 Realm of Akkad in Mesopotamia founded by Sargon of

Akkad
about 2137–1781 Middle Kingdom in Egypt. Mathematical papyri
1850 Presumable time of origin of the Moscow Papyrus
1793–1550 Second interim period in Egypt
1650 Ahmes writes the Rhind Mathematical Papyrus
2000–1595 Ancient Babylonic period in Mesopotamia. Emergence

of the first legislative texts of mankind under King
Hammurabi (about 1700)

1675 In Mesopotamia a clay tablet is inscribed with the length
of the diagonal in a square

about 1550–1070 New Kingdom in Egypt. Temple of Hatshepsut and
royal tombs in Thebes. Temple of Amun in Karnak. Sun
worship of Akhenaten in Amarna

1279–1213 Ramsses II, Temple of Abu Simbel
1070–525 Third interim period and late period in Egypt
about 1700–609 Assyrian realm. Mathematical cuneiform texts;

zikkurates
about 750–620 Neo-Assyrian realm, the first great empire in the history

of the world; residences in Nimrud and Nineveh
625–539 Neo-Babylonian realm, heyday of astrology and

astronomy
539 Cyrus the Great conquers Babylon
525 Persians conquer Egypt
332 Alexander the Great conquers Egypt

Remark: There are differing chronologies in the literature
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Fig. 1.0.2. Egypt and Mesopotamia in the pre-Christian era

1.1 What is ‘Analysis’?

Three thousand years of analysis? Did analysis not emerge in the 17th century
by Newton and Leibniz?
To answer this question satisfactorily we should look at a definition of
‘analysis’ first. On the internet the following definition1 can be found:

‘Mathematical analysis formally developed in the 17th century ...’

There you go! According to this definition analysis would be approximately
400 years old, but beware: The definition goes on:
1 https://en.wikipedia.org/wiki/Mathematical analysis

https://en.wikipedia.org/wiki/Mathematic_alanalysis
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‘... but many of its ideas can be traced back to earlier mathematicians.’

But how far do we have to ‘trace back’?
Good old reliable Encyclopaedia Britannica defines ‘Analysis (mathematics)’
as

‘a branch of mathematics that deals with continuous change and with
certain general types of processes that have emerged from the study
of continuous change, such as limits, differentiation, and integration.
Since the discovery of the differential and integral calculus by Isaac
Newton and Gottfried Wilhelm Leibniz at the end of the 17th century,
analysis has grown into an enormous and central field of mathematical
research, with applications throughout the sciences and in areas such
as finance, economics, and sociology.’

I do not have any problems whatsoever to follow this definition! Analysis is
concerned with the mathematics of continuous changes from which problems
of tangents, quadrature problems (i.e. the computation of areas below crooked
curves), and eventually the actual differential and integral calculus of Newton
and Leibniz developed.
In a narrower sense analysis is but the mathematical branch of infinite
processes and of ‘infinitely small quantities’ and this sense should be the
ribbon accompanying us on our journey through history as a kind of Ariadne’s
thread. However, this is not possible consistently. The notion of ‘function’ is
certainly central to analysis but for a start has nothing to do with infinitely
small quantities. Nevertheless a discussion of the concept of functions certainly
belongs to the history of analysis.
How come the 3000 years? Well, special numbers like π or

√
2 play a certain

role and such numbers (or the approximations thereof) can in fact be found
in ancient Egypt and in the cultural region of Mesopotamia.

1.2 Precursors of π

Already in the famous Papyrus Rhind2 an approximate computation of the
area of a circle can be found. Papyrus Rhind was written by a scribe named
Ahmes about the year 1650 BC who wrote that he only copied mathematical
problems which were at least 200 years older.
In Problem 48 of his papyrus Ahmes depicted a circle which is inscribed in a
square. We can infer from the calculations following that the square of edge
length of 9 units results in an area of 81 square units, and that the circle
with diameter 9 units has an area of 64 square units. In Problem 50 a precise
instruction to compute a circle area can be found [Gericke 2003, p. 55]:
2 Named after the Scotsman Alexander Henry Rhind who bought the papyrus in
1858 in Luxor.
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Fig. 1.2.1. The start of the Papyrus Rhind. The Papyrus is 5,5 m long and
has a height of 32 cm. It contains problems concerning mathematical themes
which nowadays would be called algebra, fractional arithmetic, geometry and
trigonometry. It is itself a copy of an original from the 12th dynasty (19th
century BC). Scribe Ahmes copied this original about 1650 BC in hieratic writing.
(Department of Ancient Egypt and Sudan, British Museum EA 10057, London

[Photo: Paul James Cowie])

‘Example of the computation of a circular field of (diameter) 9. What
is the amount of its area? Take 1/9 away from it (the diameter). The
remainder is 8. Multiply 8 by 8. It becomes 64.’

(Beispiel der Berechnung eines runden Feldes vom (Durchmesser)
9. Was ist der Betrag seiner Fläche? Nimm 1/9 von ihm (dem
Durchmesser) weg. Der Rest ist 8. Multipliziere 8 mal 8. Es wird
64.)

This calculation rule allows us to conclude that the Egyptians used πEgypt/4 =
(8/9)2 as the value for π/4. Since they did neither know the nature nor the
role of π we may ask ourselves how this value was achieved. One possibility
would be the use of a grid. Circumscribe a square with edge length d around
a circle with diameter d units and divide the square into 9 evenly spaced
subsquares as shown in figure 1.2.2 (left). The area of the square would grossly
overestimate the area of the circle, hence we divide the four subsquares in
the corners of the square into two triangles each and count only one each as
contributing to the area as in figure 1.2.2 (right). Therefore 5 subsquares and
4 triangles remain and the area of the circle is approximated by

Acircle ≈ 5 ·
(
d

3

)2

+ 4 · 1
2

(
d

3

)2

=
7

9
d2.
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Fig. 1.2.2. Approximation of the area of a circle from the outside

However, Ahmes gives the approximation

Acircle ≈
64

81
d2 =

(
8

9
d

)2

.

He apparently enlarged the (correct) approximation 7
9d

2 = 63
81d

2 by an area
of 1

81d
2 to finally arrive at square numbers in numerator and denominator!

But did he? Somewhat frustrated Otto Neugebauer (1899 – 1990) commented
[Neugebauer 1969a, p. 124]:

‘And it is not understandable how one comes from this term [ 79d
2 for

the area of the circle] to the Egyptian formula. Without new sources
it therefore makes little sense to express presumptions concerning this
formula since the obvious way obviously does not lead directly to the
desired result’

(Und es ist nicht einzusehen, wie man von diesem Ausdruck zu der
ägyptischen Formel hinüberkommen kann. Ohne neues Textmaterial
hat es also wenig Sinn, über die Entstehungsgeschichte dieser Formel
Vermutungen zu äußern, da der naheliegende Weg offenbar nicht
direkt zum Ziel führt.)

Since the true area of a circle is given by Acircle = πr2 = (π/4)d2 the ancient
Egyptians worked with the approximate value

πEgypt = 3.16049

which is by no means a bad approximation! At least the relative error is only

πEgypt − π
π

≈ 0.00601643,

hence about 0.6%!

�



1.2 Precursors of π 7

In the TV production ‘The Story of Maths’ [Du Sautoy 2008] which is well
worth watching, mathematician Marcus du Sautoy (b. 1965) gave another
explanation of how the Egyptians might have come up with their formula for
the area of a circle. Following his explanation the approximation πEgypt/4 =
(8/9)2 stems from an ancient Egyptian board game in which spheres filling
hemispherical depressions in a wooden board have to be moved around. Using
these spheres a circle can be formed having a diameter corresponding to 9
spheres. Redistributing the spheres so that they form a square then this
square happens to have an edge length of 8. If du Sautoy’s interpretation
is correct then we have here an early attempt to ‘square the circle’. This
problem, also called ‘quadrature of the circle’, will occupy us later on.

Fig. 1.2.3. Queen Neferarti (19th dynasty, wife of Ramesses II) playing the game
Senet. The rules of the game Senet could be roughly reconstructed. The rules of
other games like ‘Hounds and Jackals’ or the Snake Game are mostly unknown

(Wall painting in the burial chamber of Nefertari, West Thebes)
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1.3 The π of the Bible

The ancient Egyptian value for π was already much more accurate than the
‘biblical’ value. In the first Book of Kings, Chapter 7:23 we read

‘And he made a molten sea, ten cubits from the one brim to the other:
it was round all about, and its height was five cubits: and a line of
thirty cubits did compass it round about.’

And in the Second Book Chronicles, Chapter 4:2 we find

‘Also he made a molten sea of ten cubits from brim to brim, round in
compass, and five cubits the height thereof; and a line of thirty cubits
did compass it round about.’

Hence the form of the sea is indeed a circle with diameter d = 10 cubits and
circumference of U = 30 cubits. Since the relation between circumference and
diameter of every circle is U = πd we arrive at

πBible =
U

d
=

30

10
= 3.

This was the value which was also used by the Babylonians and Edwards (b.
1937) in [Edwards 1979, p. 4, Ex.5] gave an attempt to explain it which I
find appealing. Instead of approximating the area of a circle in the Egyptian
manner one could have come up with the idea of not only circumscribing
a square to the circle but also to inscribe another square as in figure 1.3.1.
Then the area of the circle should be approximated by the arithmetic mean of
the areas of the squares. The area of the circumscribed square apparently is
A1 := d2 = 4r2. According to Pythagoras’ theorem which was well known in
Mesopotamia it follows that the edge length of the inner square is

√
r2 + r2 =√

2r, hence the area of the inscribed square turns out to be A2 := 2r2. Since
the area of the circumscribed square overestimates the area of the circle
while the area of the inscribed square underestimates it one can hope that
the arithmetic mean might yield a useful approximation to the area of the
circle:

ACircle ≈
A1 +A2

2
= 3r2.

And in fact here the biblical value of π appears!

But that seems not to be the end of the story as far as the Babylonians are
concerned. According to Beckmann (1924 – 1993) [Beckmann 1971, p. 21 f.]
and Neugebauer [Neugebauer 1969b, p. 46 f.] clay tablets were excavated
in 1936 some 200 miles east of Babylon at Susa including computations
concerning some geometrical figures. One of the tablets was concerned with a
regular hexagon inscribed in a circle and stated that the ratio of the perimeter
of the hexagon to the circumference of the circumscribed circle would be
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Fig. 1.3.1. Approximating the area of the circle from within

57

60
+

36

602
.

The Babylonians knew that the perimeter of the hexagon is 6r if the radius
is denoted by r, see figure 1.3.2.

The ratio sought therefore is 6r/C if C denotes the circumference of the
circle. Since

π = C/2r

we conclude that
3

π
=

57

60
+

36

602

and hence π = 31/8 = 3.125.

This shows that also the Babylonians knew better approximations to π than
just 3.

r

C

r

r

Fig. 1.3.2. Approximating the area of the circle by means of a regular hexagon
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1.4 Volume of a Frustum of a Pyramid

In the so called Moscow Mathematical Papyrus located at the Pushkin
Museum in Moscow one finds Problem 14 which almost points to one of
the basic tasks of analysis. In this problem the volume of a frustum of a
pyramid is computed.

Fig. 1.4.1. Computation of the volume of a frustum of a pyramid (Moscow
Mathematical Papyrus) in hieratic writing and in hieroglyphs

For the master builders of the pyramids this calculation must have been of
particular importance since the pyramids were built in layers. A pyramid is
therefore nothing more than the sum of frusta of pyramids with a pyramidal
part on top. We do not want to speculate here how the Egyptians arrived
at their (correct) formula of the volume of a frustum of a pyramid but
refer our readers to the corresponding sections in [Gillings 1982] (see also
[Scriba/Schreiber 2000, p. 14 ff.], [Wußing 2008, p. 99 f.]).

Although Problem 14 is only concerned with the computation using concrete
numbers the Egyptians must have been aware of the correct formula

Fig. 1.4.2. A symmetric and a right-angled pyramid with identical base areas and
identical heights share the same volume
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Fig. 1.4.3. Decomposition of a cube into six symmetric pyramids of half the height
with the tip points in the centre (left), and in three right-angled pyramids (right)

V =
h

3

(
a2 + ab+ b2

)
(1.1)

for the volume where a and b are the edge lengths of the two deck areas and
h denotes the height of the frustum. Neugebauer [Neugebauer 1969a, p. 126]
calls this a ‘gem’ (Glanzstück) of Egyptian mathematics.

Pointing towards mathematical analysis is the method with which the volume
of a pyramid was probably actually computed (in [Gillings 1982] yet another
method can be found). For this purpose the Egyptian scribes considered a
pyramid in which the top point is located exactly above one of the edge
points.

Three of those right-angled (or ‘oblique’) pyramids with identical height and
base edge together form a cube with identical height and base edge; i.e. the
volume of each of the pyramids is a third of the volume of the cube. One can
alternatively build a cube from 6 congruent symmetric pyramids with half the
height of their base edges. Place one of these pyramids top point to top point
above another and fill the free space with the remaining four pyramids as

Fig. 1.4.4. The calculation of a frustum of a pyramid can graphically be understood
by division into its geometric basic forms: 1 cuboid in the middle, 4 prisms at the
sides, and 4 right-angled pyramids at the edges; in case of the right-angled pyramid
the same cuboid but only 2 prisms of twice the volume at the sides and 1 right-
angled pyramid of fourfold volume at the edge, so that both frusta have the identical

volume of V = h
3
(a2 + ab+ b2)
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Fig. 1.4.5. Step Pyramid of Pharao Djoser in Saqqara (about 2600 BC)
[Photo: H.-W. Alten]

shown in figure 1.4.3 (left). Imagining now the right-angled pyramid in figure
1.4.2 cut into very many thin slices parallel to the base area and shifting
these slices then a symmetric pyramid of the same volume results where its
top point is now above the centre of the square base area. The same is valid
in case of the frusta of pyramids in figure 1.4.4, of course. Indeed pyramids
have emerged in ancient Egypt from many layers. Already the Mastabas of
the kings of the first two dynasties (about 3000 – 2700 BC) show these layers.

King Djoser, second king of the 3rd dynasty, ordered his original three-stage
Mastaba to be increased by three further stages where each of the stages
consists of many thin layers of stone cuboids. Hence emerged the famous
Step Pyramid of Djoser about 2680 BC in Saqqara. Under the rule of King
Sneferu of the 4th dynasty the transition from layers of frusta towards the
abstract geometrical form of the pyramid took place. That seems to have
been a kind of a great gamble since in the first phase of the building up to
a height of approximately 49 meters the construction by means of inwardly
inclined layers proved unstable. This was the result of a too steep slope angle
of approximately 58 degrees as well as the inclination of the layers. In the
second phase the base area was enlarged, the slope angle was decreased to 54
degrees, but the techniques of the inwardly inclined layers was kept. As this
also turned out to lead to instabilities the slope angle was further decreased
to 43 degrees in a third phase and horizontal layers were put on the present
frustum of a pyramid. Hence emerged the Bent Pyramid of Sneferu about


