Handbuch Umformtechnik

Eckart Doege[†] • Bernd-Arno Behrens

Handbuch Umformtechnik

Grundlagen, Technologien, Maschinen

2., bearbeitete Auflage

Professor Dr.-Ing. Eckart Doege†
Professor Dr.-Ing. Bernd-Arno Behrens
Leibniz Universität Hannover
Institut für Umformtechnik und Umformmaschinen
An der Universität 2
30823 Garbsen
behrens@ifum.uni-hannover.de

ISBN 978-3-642-04248-5 e-ISBN 978-3-642-04249-2 DOI 10.1007/978-3-642-04249-2 Springer Heidelberg Dordrecht London New York

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer-Verlag Berlin Heidelberg 2007, 2010

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Einbandentwurf: WMXDesign GmbH, Heidelberg

Gedruckt auf säurefreiem Papier

Springer ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Vorwort

Das vorliegende "Handbuch Umformtechnik" versucht, eine inhaltliche Verbindung zwischen den theoretischen Grundlagen und dem praktischen Einsatz der Umformtechnik herzustellen. Es wurde von meinem Vorgänger als Leiter des Instituts für Umformtechnik und Umformmaschinen der Universität Hannover, Prof. Dr.-Ing. Eckart Doege†, konzipiert, der im April 2004 verstarb.

Das Buch soll für Studierende ein Hilfsmittel sein, das in den Vorlesungen vermittelte Wissen zu vertiefen und zu festigen. Darüber hinaus kann es Ingenieuren und Technikern im praktischen Alltag als übersichtliches Nachschlagewerk dienen. Ziel war es, die komplexen Vorgänge und Prozesse der Umformtechnik möglichst anschaulich und nachvollziehbar darzustellen.

Nach einer ausführlichen Darstellung der theoretischen Grundlagen widmen sich drei eigenständige Kapitel der Blechumformung, der Massivumformung sowie den Maschinen der Umformtechnik. Der inhaltliche Schwerpunkt liegt dabei in Themen, die in den letzten Jahrzehnten am Institut für Umformtechnik und Umformmaschinen in Hannover bearbeitet wurden.

Ein großer Dank gilt all denjenigen Mitarbeitern meines Instituts, die einen erheblichen Teil ihrer Zeit geopfert haben, um dieses Buch zusammenzustellen. Darüber hinaus bedanke ich mich bei meinen Kollegen aus der Arbeitsgemeinschaft Umformtechnik (AGU) sowie den Vertretern zahlreicher Firmen, die durch ihre gewissenhafte Durchsicht und ihre wertvollen Anregungen einen wichtigen Beitrag zum Gelingen geleistet haben.

Leider war es Prof. Doege† nicht mehr vergönnt, die Fertigstellung des Buches zu erleben. Sämtliche Beteiligten haben dennoch versucht, das "Handbuch Umformtechnik" in seinem Sinne zu vollenden.

Aufgrund einer positiven Resonanz und überaus erfreulichen Rückmeldungen seitens der Leserschaft haben wir uns entschlossen, eine zweite, neu bearbeitete Auflage dieses Handbuches herauszugeben.

In dieser Neuauflage wurde bei einer Aktualisierung des Inhalts die bewährte Gliederung der ersten Auflage beibehalten. Hierbei wurden die Bezeichnungen sowie Gleichungen vereinheitlicht dargestellt und die Qualität der Abbildungen erhöht.

In Kapitel 4 "Massivumformung" erfolgte die Ergänzung der Themenbereiche "Verschleiß von Schmiedegesenken" und "Thixoforming als Sonderverfahren der Massivumformung" um aktuelle Forschungserkenntnisse. Der Abschnitt "Pulverschmieden" wurde zur Verbesserung der Verständlichkeit inhaltlich neu aufbereitet.

Mitarbeiter

An der Entstehung des "Handbuchs Umformtechnik" waren die nachfolgenden aktuellen und ehemaligen Mitarbeiter des Instituts für Umformtechnik und Umformmaschinen beteiligt:

Kapitel Grundlagen der Umformtechnik:

Dr. Madjid Alasti, Dr. Jens Baumgarten, Dr. Anas Bouguecha, Helge Dähndel, Tomas Hagen, Dr. Björn Haller, Dr. Kamel Hanini, André Hundertmark, Dr. Matthias Kammler, Dr. Frank Meiners, Jens Poelmeyer, Olaf Pösse, Stefan Röhr, Amer Sabitovic, Bernd Sann, Falko Schäfer, Dr. Bianca Springub, Martin Stolorz, Dr. Christina Sunderkötter,

Kapitel Blechumformung:

Claus-Peter Eckold, Dr. Michael Gulde, Dr. Sven Hübner, Dr. Marcus Kamp, Jirko Kettner, Dr. Steffen Kulp, Dr. Gerrit Kurz, Dr. Martin Milch, Dr. Stefan Mütze, Dr. Cord Schäffner, Thorsten Suhrkamp, Dr. Christina Sunderkötter, Dr. Oliver Vogt, Dr. Jae-Woong Yun

Kapitel Massivumformung:

Dr. Lutz Barnert, Marcus Bistron, Helge Dähndel, Dr. Dirk Fischer, Edin Gastan, Dr. Michael Gulde, Dr. Björn Haller, Dr. Manfred Hoffmann, Dr. Aziz Huskić, Dr. Günter Klawitter, Julian Knigge, Fabian Lange, Ingo Lücken, Dr. Frank Meiners, Andreas Puchert, Insa Pfeiffer, Dirk Odening, Hagen Schmidt, Najmeh Vahed, Dr. Tobias Wesnigk

Kapitel Umformmaschinen:

Dr. Michael Ahrens, Jörg Brandt, Dr. Marc-Jean Derenthal, Mohsen Javadi, Dr. Marcus Kamp, Dr. Richard Krimm, Olaf Marthiens, Dr. Edzard Schaeper, Dr. Markus Schaprian, Michael Werbs

Inhalt

1	Ein	leitung.		1
	1.1	Entwic	klung und wirtschaftliche Bedeutung der Umformtechnik	1
		1.1.1	Historische Entwicklung der Umformtechnik	1
		1.1.2	Gründung umformtechnischer Institute in Deutschland	3
		1.1.3	Wirtschaftliche Bedeutung der Umformtechnik	5
			Definitionen der Umformtechnik	
	1.2		ung der Umformverfahren	
			Einteilung der Fertigungsverfahren nach DIN	
		1.2.2	Einteilung der Umformverfahren nach DIN 8582	11
	Lite	ratur zu	Kapitel 1	13
2	Cri	ındlaga	n der Umformtechnik	15
_			toffverhalten	
	2.1		Werkstoffkundliche Aspekte	
			Metallkundliche Grundlagen	
	2 2		ene und logarithmische Formänderung	
			mgeschwindigkeit	
	2.4		urven und Aufnahmeverfahren	
	2. 1		Klassischer Zugversuch	
			Zugversuch nach Siebel	
			Auswertung der Breiteneinschnürung bei einer Flachzugprobe .	
			Zugversuch nach Reihle	
			Zugversuch an vorgewalzten Blechproben	
			Hydraulische Tiefung	
			Zylinderstauchversuch	
			Kegelstauchversuch	
			Einfluss von Temperatur und Umformgeschwindigkeit auf die	
			Fließspannung	92
	2.5		rung in die Berechnung umformtechnischer Prozesse	
			Gemeinsame Grundlagen der Elastizitäts- und Plastizitätsrechn	
		2.5.2	Elastizitätsrechnung	
			Plastizitätsrechnung	
			Umformkraft und Umformarbeit	
		2.5.5	Berechnungsverfahren der Plastizitätsrechnung	187

	2.6	Einfluss der Reibung auf den Umformprozess.	223
		2.6.1 Reibungszustände	
		2.6.2 Oberflächenkenngrößen für Werkzeuge	
		2.6.3 Mathematische Beschreibung der Reibung	
		2.6.4 Experimentelle Ermittlung des Reibwerts	
	Lite	ratur zu Kapitel 2	
		1	
3	Blec	chumformung	259
	3.1	Verfahren der Blechumformung	259
	3.2	Tiefziehen im Anschlag	
		3.2.1 Spannungen beim Tiefziehen	
		3.2.2 Formänderungen im Flanschbereich	267
		3.2.3 Kräfte beim Tiefziehen	270
		3.2.4 Krafteinleitung beim Tiefziehen	
		3.2.5 Verlauf der örtlichen Formänderungen	287
		3.2.6 Berücksichtigung des Anstiegs der Kaltverfestigung im	
		Ziehteilflansch	288
		3.2.7 Einfluss Fließkurvenlage auf das Grenzziehverhältnis	290
		3.2.8 Versagensarten	292
		3.2.9 Einflussgrößen auf das Tiefziehergebnis	
		3.2.10 Ermittlung des Arbeitsbereichs (Gutteilfenster)	293
	3.3	Tiefziehen im Weiterschlag	296
	3.4	Blechprüfverfahren	
		3.4.1 Näpfchenprüfung nach Swift	
		3.4.2 Ermittlung des Grenzziehverhältnisses nach Schmidt	
		3.4.3 Ziehverhältnis nach Dutschke für nichtrotatorische Geometrien	
		3.4.4 Erichsen-Prüfung nach ISO20482	
		3.4.5 Engelhardt-Test.	300
		3.4.6 Zugversuch nach EN10002 und EN10130	
		3.4.7 Kreuzzugversuch	308
		3.4.8 Ermittlung von Grenzformänderungskurven	311
	3.5	Ermittlung von lokalen Formänderungen	316
	3.6	Werkzeugtechnik für das Tiefziehen	
		3.6.1 Aufbau von Tiefziehwerkzeugen	322
		3.6.2 Betätigungsarten des Niederhalters	
		3.6.3 Niederhaltersysteme.	
	3.7	Wirkmedienbasierte Umformung.	
		3.7.1 Hydromechanisches Tiefziehen	
		3.7.2 Beheiztes hydromechanisches Tiefziehen	
		3.7.3 Hochdruckblechumformung (HBU)	
		3.7.4 Fluidzell-Umformung	
		3.7.5 Innenhochdruck-Umformung (IHU)	
	3.8	Tiefziehen unter Temperatureinfluss	
		3.8.1 Tiefziehen bei erhöhten Temperaturen	
		3.8.2 Warmumformung - Presshärten	365

	3.9	Sonderverfahren der Blechumformung	366
) Scherschneiden	
	3.11	Biegen	376
		3.11.1 Biegeverfahren	
		3.11.2 Richten durch Biegen	
	3.12	2 Fügen	384
		3.12.1 Bördeln	
		3.12.2 Falzen	394
		3.12.3 Clinchen	
		3.12.4 Stanznieten	
	3.13	3 Werkzeugverschleiß beim Umformen	
		3.13.1 Verschleißmechanismen	
		3.13.2 Maßnahmen zur Verschleißreduktion	
		3.13.3 Weitere Maßnahmen zur Verschleißreduktion	
	3.14	4 Blechwerkstoffe	
		3.14.1 Stähle	
		3.14.2 Aluminiumlegierungen	
		3.14.3 Magnesiumlegierungen	
		3.14.4 Reintitanwerkstoffe.	450
		3.14.5 Beschichtete Bleche	
	Lite	eratur zu Kapitel 3	
		1	
4	Mas	ssivumformung	469
4	Ma : 4.1	ssivumformung Einteilung der Verfahren	
4			469
4	4.1	Einteilung der Verfahren	469 472 472
4	4.1	Einteilung der Verfahren	469 472 472
4	4.1	Einteilung der Verfahren	469 472 472 474
4	4.1	Einteilung der Verfahren. Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen	469 472 472 474 483
4	4.1	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch	469 472 474 483 485 489
4	4.1	Einteilung der Verfahren. Stauchen. 4.2.1 Kenngrößen beim Stauchen. 4.2.2 Spannungsverhältnisse beim Stauchen. 4.2.3 Umformarbeit. 4.2.4 Verfahrensgrenzen beim Stauchen.	469 472 474 483 485 489
4	4.1 4.2	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch	469 472 474 483 485 489
4	4.1 4.2	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden	469 472 474 483 485 489 490 493
4	4.1 4.2	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens	469 472 474 483 485 490 493 493
4	4.1 4.2	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden	469 472 474 483 485 490 493 493 494
4	4.1 4.2 4.3	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden 4.4.1 Grundlagen des Gesenkschmiedens	469 472 474 483 485 490 493 493 494 496
4	4.1 4.2 4.3	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden	469 472 474 483 485 490 493 493 494 496
4	4.1 4.2 4.3	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden 4.4.1 Grundlagen des Gesenkschmiedens	
4	4.1 4.2 4.3	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden 4.4.1 Grundlagen des Gesenkschmiedens 4.4.2 Verfahrensablauf 4.4.3 Werkzeugtechnik 4.4.4 Verschleiß von Schmiedegesenken	
4	4.1 4.2 4.3	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden 4.4.1 Grundlagen des Gesenkschmiedens 4.4.2 Verfahrensablauf 4.4.3 Werkzeugtechnik	
4	4.1 4.2 4.3	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden 4.4.1 Grundlagen des Gesenkschmiedens 4.4.2 Verfahrensablauf 4.4.3 Werkzeugtechnik 4.4.4 Verschleiß von Schmiedegesenken 4.4.5 Warmarbeitsstähle für den Gesenkbau 4.4.6 Schmiedestähle	
4	4.1 4.2 4.3	Einteilung der Verfahren Stauchen 4.2.1 Kenngrößen beim Stauchen 4.2.2 Spannungsverhältnisse beim Stauchen 4.2.3 Umformarbeit 4.2.4 Verfahrensgrenzen beim Stauchen 4.2.5 Reibungseinfluss beim Stauchversuch Freiformschmieden 4.3.1 Sattelformen 4.3.2 Bauteilformen 4.3.3 Vor- und Nachteile des Freiformschmiedens Gesenkschmieden 4.4.1 Grundlagen des Gesenkschmiedens 4.4.2 Verfahrensablauf 4.4.3 Werkzeugtechnik 4.4.4 Verschleiß von Schmiedegesenken 4.4.5 Warmarbeitsstähle für den Gesenkbau	

	4.5	Fließp	pressen	623
		4.5.1	Verfahren mit Beispielbauteilen	623
			Voll-Vorwärts-Fließpressen	
			Hohl-Vorwärts-Fließpressen	
		4.5.4	Napf-Rückwärts-Fließpressen	644
		4.5.5	Verfahrensablauf beim Fließpressen	649
			Verfahrenstypische Eigenschaften des Kaltfließpressens	
	4.6	Strang	gpressen	659
		4.6.1	Strangpressprofile – Auswahl herstellbarer Formen	
	4.7	Massi	vumformung von Leichtmetallen	662
		4.7.1	Schmieden von Aluminiumlegierungen	662
		4.7.2	Schmieden von Magnesiumlegierungen	675
	4.8	Thixo	schmieden als Sonderverfahren der Massivumformung	680
		4.8.1	Unterteilung der Umformverfahren im thixotropen Zustand	681
		4.8.2	Definition Thixotropie (rheologische Grundlagen)	683
		4.8.3	Besondere Anforderungen an den Werkstoff	684
			Verfahrensanforderungen	
			Mögliche Bauteilfehler	
		4.8.6	Vorteile des Thixoschmiedens	694
	4.9		rschmieden	
		4.9.1		
		4.9.2	Verfahrensablauf beim Pulverschmieden	
	Lite	ratur zı	u Kapitel 4	702
_				
5			naschinen	
		Eintei	lung der Umformmaschinen	713
	5.2		tsgebundene Umformmaschinen	
		5.2.1		
		5.2.2	Spindelpressen	
	5.3		ebundene Umformmaschinen	
			Funktionsprinzip weggebundener Umformmaschinen	
			Bauarten weggebundener Umformmaschinen	
			Baugruppen von weggebundenen Pressen	
		5.3.4	Arbeitsvermögen der weggebundenen Umformmaschine	
	5.4		gebundene Umformmaschinen (Hydraulische Pressen)	
			Funktionsprinzip kraftgebundener Umformmaschinen	
			Baugruppen von kraftgebundenen Umformmaschinen	
		5.4.3	Bewertung von kraftgebundenen Pressen	
	5.5		trieller Einsatz von Umformmaschinen	
			Pressensysteme in der Karosseriefertigung	
		5.5.2	Schnellläuferpressen/Stanzautomaten	850
			Weggebundene Schmiedepressen	
			Pressen für die Kaltumformung	
		5.5.5	Einarbeitungspressen	871

5.6 Ge	nauigkeitskenngrößen von Umformmaschinen	875
5.6	6.1 Geometrische Genauigkeit der unbelasteten Maschine	875
5.6	5.2 Elastische Nachgiebigkeiten der belasteten Maschine	876
5.6	6.3 Messaufbau zur Bestimmung der Genauigkeit unter Last	887
5.6	6.4 Anteile der Baugruppen an der Maschinengenauigkeit	892
5.6	6.5 Auswirkung der Maschinen- und Werkzeugsteifigkeit	894
5.6	5.6 Verlagerungsverläufe (Beispiele)	898
Literatu	ır zu Kapitel 5	903
	•	
Sachverze	eichnis	907

1 Einleitung

1.1 Entwicklung und wirtschaftliche Bedeutung der Umformtechnik

1.1.1 Historische Entwicklung der Umformtechnik

Die Anfänge der Umformtechnik liegen in prähistorischer Zeit. Anhand archäologischer Funde, wie dem Inhalt von Grabkammern oder schriftlicher Überlieferungen, kann die technologische Entwicklung in den geschichtlichen Epochen rekonstruiert werden. Nach heutigen Erkenntnissen beginnt die Geschichte der Metallverarbeitung Ende des 5. Jahrtausends v. Chr. im Mittelmeerraum mit der Bearbeitung von Gold, Silber und Kupfer. Im Norden Europas, von den Alpen bis nach Skandinavien, hatte anfangs die Gießereitechnik einen größeren Stellenwert als die Umformtechnik. Letztere wurde allein für die Herstellung kleiner Teile angewendet, die nur schwierig zu gießen waren, wie z.B. Nadeln und einfache Schmuckprofile. Im Folgenden wird eine Auswahl wichtiger Meilensteine in der Geschichte der Umformtechnik vorgestellt.

Ab 4000 v. Chr.: Kupferzeit

- Schmelzen und Gießen von Gold, Silber, Kupfer
- Luxusware: Schmuck, Waffen, Gefäße
- Umformung: Treiben von Hand mit Steinwerkzeugen

Ab 2800 v. Chr.: Bronzezeit

Im Mittelmeerraum:

- Herstellung von Kupferlegierungen → Bronze
- Erfindung von Pressblechgesenken für Gold- und Silberbleche

In Nordeuropa:

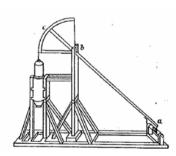
- Herstellung von Verzierungen mittels Punzen (Schlagstempel)
- Produkte: Nadeln, profilierte Drähte und Schmuckprofile

Ab 900 v. Chr.: Beginn der Eisenzeit

- Einführung des Stielhammers
- Bronze löst Holz und Stein als Werkzeug ab
- Konturierte Stempel f
 ür die Blechumformung
- Einführung von Eisen (trotz schlechter mechanischer Eigenschaften)

links: Griechische Bronzehohlform für die Blechumformung (ca. 700 v. Chr.). rechts: Römische Schmiede. Abbild auf einer Vase

Vom Römischen Reich bis ins 13. Jahrhundert


- Umformtechnik wird verbreitet, keine wesentliche Weiterentwicklung
- Grundausrüstung einer römischen Schmiede (siehe Abb. 1.1), einer Schmiede im Jahr 1000 n. Chr. (Fund in Jütland) und eines handwerklichen Schmiedebetriebes heute ist sehr ähnlich

14. bis Ende 18. Jahrhundert

- Die Eisenverarbeitung gewinnt deutlich an Bedeutung
- 15. Jahrhundert: Entwicklung von wasserkraftgetriebenen Stielhämmern
- Blechumformung (Dengeln/Freiformen)
- Einführung der Spindelpresse
- Konkurrenzkampf zwischen Schmiede- und Gusserzeugnissen beginnt
- Die Pfahlramme wird als Umformmaschine eingesetzt

Ende 18. bis Ende 19. Jahrhundert

- James Watt baut den ersten Dampfhammer (England, 1784)
- Erste hydraulische Presse in Betrieb (England, 1798)
- Massivumformung:
 - Gesenkschmieden zur Herstellung von Massengütern
- Blechumformung:
 - Walzen von Blechen für Beschläge wird verbessert

links: Pfahlramme, Entwurf von da Vinci; rechts: Dampfhammer "Fritz", Alfred Krupp, Essen 1861, Fallgewicht 50 t

20. Jahrhundert

- Umformtechnik ist Forschungsgegenstand an Hochschulen
- Durch umformende Verfahren werden hoch belastbare, sicherheitsrelevante Bauteile hergestellt (Automobilindustrie, Luft- und Raumfahrt)
- Leichtbau durch Umformtechnik (Einsatz von Aluminium, Magnesium, Titan)

Gegen Ende des 19. Jahrhunderts beginnt eine Industrialisierung der handwerklich geprägten Umformtechnik. Um das Potential dieser Technologie weiter ausschöpfen zu können, entstehen die ersten Forschungseinrichtungen auf dem Fachgebiet der Umformtechnik /Ids03, Joc94b, Joc94c, Joh53, Küh66, Müh00, Spu91, Wed58, Wit43, Zip67/.

1.1.2 Gründung umformtechnischer Institute in Deutschland

Abb. 1.3 Standorte und Gründungsjahre umformtechnischer Institute in Deutschland

1.1.2.1 Erste Verarbeitungsstufe (Herstellung des Halbzeugs)

Zu Beginn der universitären Forschung wurde im Wesentlichen die Herstellung und Bereitstellung des Halbzeugs (z.B. Bleche, Rohre, Profile, Drähte) untersucht. Die zu diesem Zweck gegründeten umformtechnischen Institute sind in Tabelle 1.1 dargestellt (vgl. Abb. 1.3).

Besondere Bedeutung bei den Verfahren der ersten Verarbeitungsstufe haben das Walzen und das Freiformschmieden. Beim Übergang vom flüssigen in den festen Zustand entsteht bei Stahlwerkstoffen eine Schrumpfung von ca. 2 %. Die hierdurch im Gusswerkstoff zurückbleibenden Poren werden durch anschließendes Walzen oder Freiformschmieden geschlossen. So entsteht ein dichtes Gefüge, wie es für hochbeanspruchte "Leichtbauteile" benötigt wird.

Tabelle 1.1 Gründungsjahre der sich mit der ersten Verarbeitungsstufe befassenden umformtechnischen Institute in Deutschland

Ort	Düsseldorf	Clausthal	Freiberg	Aachen	Berlin
Gründungs- jahr	1917	1928	1928	1937	1940

1.1.2.2 Zweite Verarbeitungsstufe (Verarbeitung des Halbzeugs)

Nachdem die Erforschung der Herstellung von Halbzeugen bereits einen hohen wissenschaftlichen Stand erreicht hatte, gewann in den 50/60er Jahren des 20. Jh. die zweite Verarbeitungsstufe an Bedeutung.

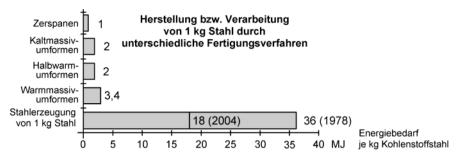
Verfahren der zweiten Verarbeitungsstufe sind z.B.

- Blechumformung,
- Gesenkschmieden bzw. Warmumformung sowie
- Kaltumformung und Halbwarmumformung.

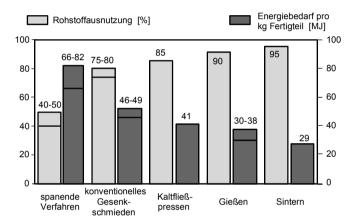
Um die einzelnen Verfahren bezüglich ihrer wirtschaftlichen Bedeutung gewichten zu können, zeigt Tabelle 1.2 eine grob geschätzte Übersicht. Im Zuge dieser Entwicklung wurden universitäre Institute gegründet, die sich mit der zweiten Verarbeitungsstufe befassten (Tabelle 1.3; vgl. Abb. 1.3, hell hinterlegt).

Verfahren	Blech-	Warm-	Kalt-	Halbwarm-
	umformung	umformung	umformung	umformung
Verhältnis der	100	10	1	0,2-0,3
verarbeiteten				
Mengen				
Temperatur	kalt	warm	kalt	warm
_	RT = 20 °C	1000–1250 °C	RT = 20 °C	650–900 °C
Beispiel-			H	4
bauteile		7	1	1 34
		A.	m He - m	E YA
	Tiefgezogene	Geschmiedetes	Getriebeteile m.	Mittenwelle
	Türverstärkung	Schwenklager	einbaufertigen	
			Verzahnungen	

Tabelle 1.2 Verarbeitungstemperaturen und geschätztes Mengenverhältnis der Verfahren der zweiten Verarbeitungsstufe (nach /Ids03/; Bilder nach /Hir01/)


Tabelle 1.3 Gründungsjahre der sich mit der zweiten Verarbeitungsstufe befassenden umformtechnischen Institute in Deutschland

Ort	Aachen	Hannover	Magdeburg	Chemnitz	Stuttgart	Dresden	München	Dortmund	Darmstadt	Hamburg	Paderborn	Nürnberg- Erlangen	Kassel
Grün- dungs jahr	1937	1954	1954	1956 1992	1958	1968	1968	1971	1976	1978 1983	1979	1982	1993


1.1.3 Wirtschaftliche Bedeutung der Umformtechnik

In Zeiten der Energie- und Rohstoffverknappung zeigen die umformenden Fertigungsverfahren aufgrund einer im Vergleich zu spanenden Fertigungstechniken höheren Werkstoffausnutzung wesentliche Vorteile. Die in Abb. 1.4 aufgeführten Umformverfahren (Kalt-, Halbwarm- und Warmmassivumformung) erfordern zwar einen höheren spezifischen Energiebedarf bei der Werkstückherstellung, jedoch muss dieser stets in Relation zum Energiebedarf für die Rohteilherstellung gesehen werden /Her89/.

Aufgrund der hohen Materialausnutzung bei den umformtechnischen Fertigungsverfahren fallen bei einer Berechnung der Fertigteilkosten die Kosten für die Rohteilherstellung deutlich weniger ins Gewicht als bei den spanenden Verfahren. Daher ist der in Abb. 1.5 dargestellte relative Energiebedarf bezogen auf 1 kg Fertigteil für konventionelles Gesenkschmieden (Gesenkschmieden mit Grat) deutlich geringer als bei spanenden Verfahren.

Abb. 1.4 Energiebedarf zur Werkstückherstellung durch verschiedene Fertigungsverfahren (nach /Lan78, Lün05/)

Abb. 1.5 Relativer Energiebedarf und Rohstoffausnutzung verschiedener Herstellungsverfahren einschließlich Aufwand für Stahlherstellung und Energiegehalt des Abfalls (nach /Her89/)

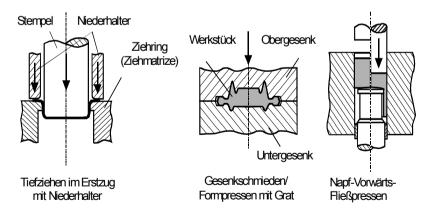
Das Kaltfließpressen erfordert einen noch geringeren relativen Energiebedarf als das Gesenkschmieden bei weiter gesteigerter Werkstoffausnutzung, jedoch ist bei diesem Verfahren das maximale Formänderungsvermögen des Werkstoffes begrenzt.

Das Gießen bietet eine hervorragende Werkstoffausnutzung und einen geringen Energiebedarf bei der Herstellung von Bauteilen, jedoch ist aufgrund von Poren, die infolge der Abkühlung durch Schrumpfung entstehen, die Festigkeit von Gussteilen gegenüber vergleichbaren Schmiedeteilen reduziert.

Bezüglich der Werkstoffausnutzung und des Energiebedarfs schneiden pulvermetallurgische Verfahren wie das Sintern sehr gut ab. Allerdings sind diese Verfahren mit einem vergleichbar großen Aufwand für Werkzeuge und Maschinen und dadurch mit hohen Prozesskosten verbunden. Aus diesem Grund werden pulvermetallurgische Verfahren nur bei sehr großen Stückzahlen eingesetzt oder wenn besondere Anforderungen an die Bauteile gestellt werden (z.B. große Wandstärkenänderungen) /Her89, Lan78/.

Insbesondere durch neue Entwicklungen im Bereich Schmieden, wie Präzisionsschmieden oder Thixoschmieden, kann die Werkstoffausnutzung schmiedetechnischer Verfahren nachhaltig verbessert und dem Trend zur endkonturnahen Fertigung entgegen gekommen werden (siehe Kap. 4).

1.1.4 Definitionen der Umformtechnik


Nach DIN 8580 ist das Umformen definiert als Fertigen durch bildsames oder plastisches Ändern der Form eines festen Körpers. Dabei werden sowohl die Masse als auch der Stoffzusammenhalt beibehalten.

Abhängig von der Beherrschung der Geometrie wird unterschieden zwischen:

- *Umformen*: Ändern einer Form mit Beherrschung der Geometrie ("um" entspricht einer gewollten Veränderung wie Umbauen oder Umschmelzen), Verfahren sind z.B.: Tiefziehen, Gesenkschmieden, Fließpressen (Abb. 1.6).
- *Verformen*: Ändern einer Form ohne Beherrschung der Geometrie, wie z.B. beim Schmieden von Hand mit Hammer und Amboss.

Abhängig vom eingesetzten Halbzeug (Blech, Stab oder Block) erfolgt eine Unterteilung in Blechumformung oder Massivumformung:

- *Blechumformung* (bis ca. 10 mm Blechdicke): Die Dicke des Blechs bleibt bis auf Änderungen zweiter Ordnung erhalten (s. Kap. 3).
- Massivumformung: Ein Körper wird in allen drei Koordinatenrichtungen verändert.

Abb. 1.6 Beispiele für Umformverfahren (nach /Lan88/)

Eine Einteilung der Umformverfahren kann auch hinsichtlich der Temperatur erfolgen (vgl. Tabelle 1.2). Dabei wird unterschieden zwischen:

- Kaltumformung (DIN 8582): Umformen ohne Anwärmen, d.h. bei einer Rohteiltemperatur von ca. 20 °C. Aufgrund des begrenzten Formänderungsvermögens sind hohe Umformkräfte erforderlich. Es ist eine hohe Maßgenauigkeit erreichbar.
- Halbwarmumformung-: Umformen nach Anwärmen, Rohteiltemperatur bei Stahl von 650 °C bis 900 °C. Durch eine Reduzierung der Zunderbildung und des Verzugs kann eine im Vergleich zur Warmumformung verbesserte Maßgenauigkeit erreicht werden. Verglichen mit der Kaltumformung sind geringere Umformkräfte erforderlich, gegenüber der Warmumformung ergeben sich jedoch etwa um den Faktor 2 bis 3 größere Kräfte /Ids03/.
- Warmumformung- (DIN 8582): Umformen nach Anwärmen, Rohteiltemperatur bei Stahl von 1000 °C bis 1250 °C. Hierdurch ist die Kraft zur Umformung 8 bis 10 mal geringer als bei der Kaltumformung. Es sind sehr große Formänderungen erreichbar (Rohteiltemperatur > Rekristallisationstemperatur), allerdings reduziert sich die Maßgenauigkeit aufgrund von Schrumpfung, Verzug und Zunderbildung.

Kennzeichnend für alle Umformverfahren ist, dass Teile in der Regel nicht in einem, sondern in mehreren Arbeitsgängen hergestellt werden. Die Folge der einzelnen Arbeitsgänge wird als "Stadienfolge" bezeichnet: Daraus resultiert, dass die Herstellung von Werkstücken insbesondere durch Kaltumformung erst bei relativ großen Stückzahlen wirtschaftlich ist, da zur Fertigung eines Bauteils mehrere Werkzeugstufen notwendig sind.

1.2 Einteilung der Umformverfahren

1.2.1 Einteilung der Fertigungsverfahren nach DIN

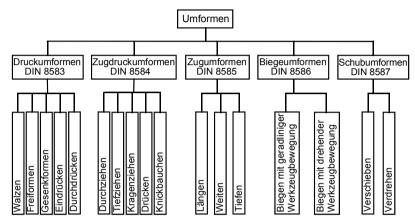
Fertigungsverfahren werden nach DIN 8580 eingeteilt (Tabelle 1.4). Die Gliederung der sechs oben genannten Hauptgruppen ist in Tabelle 1.5 zu finden.

- Urformen ist Fertigen eines festen Körpers aus formlosem Stoff durch Schaffen eines Zusammenhaltes. Hierbei treten die Stoffeigenschaften bestimmbar in Erscheinung. Verfahren sind z.B. Gießen und Sintern.
- Umformen ist Fertigen durch bildsames (plastisches) Ändern der Form eines festen Körpers. Dabei werden sowohl die Masse als auch der Zusammenhalt beibehalten. Verfahren sind z.B. Blech- und Massivumformung.
- Trennen ist Fertigen durch Ändern der Form eines festen Körpers, wobei der Zusammenhalt örtlich vollständig aufgehoben wird. Dabei ist die Endform in der Ausgangsform enthalten. Auch das Zerlegen zusammengesetzter Körper wird dem Trennen zugeordnet. Verfahren sind z.B. das Drehen, Fräsen, Schleifen oder Bohren

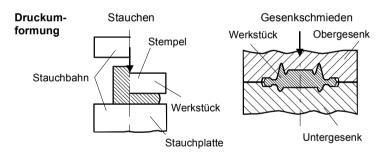
- Fügen ist das Zusammenbringen zweier oder mehrerer Werkstücke geometrisch bestimmter fester Form mit formlosem Stoff. Dabei wird der Zusammenhalt örtlich geschaffen oder im Ganzen vermehrt. Durch Kraft-, Stoff- oder Formschluss werden Einzelteile zu größeren Einheiten. Kraftschlüssige Verbindungen wie Schrauben sind lösbar, unlösbar sind formschlüssige Verbindungen wie Nieten oder Clinchen bzw. stoffschlüssige Verbindungen wie Schweißen und Löten.
- Beschichten ist das Aufbringen einer fest haftenden Schicht aus formlosem Stoff auf ein Werkstück. Verfahren sind z.B. Grundieren, Lackieren, Anstreichen, Emaillieren, Phosphatieren, Verzinken sowie das Aufbringen von keramischen Beschichtungen (vgl. Kap. 3.13). Es wird hauptsächlich zur Vorbereitung von Werkstücken für die Weiterverarbeitung, zur Verschleißreduzierung, zum Korrosionsschutz oder aus optischen Gründen durchgeführt.
- Stoffeigenschaften ändern ist das Fertigen eines festen Körpers durch Umlagern, Aussondern oder Einbringen von Stoffteilchen, wobei eine etwaige unwillkürliche Formänderung nicht zum Wesen des Verfahrens gehört. Beispielsweise werden durch gezieltes Ändern des Gefügezustands eines Werkstoffes wie Härten oder Vergüten die Gebrauchseigenschaften eines Werkstücks hinsichtlich der Belastung im Einsatz nachträglich verbessert.

 Tabelle 1.4 Einteilung der Fertigungsverfahren (nach DIN 8580)

		Zusammen-	Zusammen-	Zusammen-	Zusammenhalt	:
		halt schaffen	halt bei-	halt ver-	vermehren	
			behalten	mindern		
	Form	Haupt-	Haupt-	Haupt-	Haupt-	Haupt-
		gruppe 1	gruppe 2	gruppe 3	gruppe 4	gruppe 5
der			Umformen	Trennen	Fügen	
Änderung	Stoff-	Urformen		Hauptgruppe 6		Beschichten
ıdeı	eigen-	• \	Stoffeigenschaft ändern durch			
Ä	schaft	schaffen)	Umlagern	Aussondern	Einbringen	
			von Stoff-	von Stoff-	von Stoff-	
			teilchen	teilchen	teilchen	


 Tabelle 1.5
 Gliederung der sechs Hauptgruppen der Fertigungsverfahren nach DIN 8580

Haupt	Haupt	Haupt	Haupt	Haupt	Haupt
gruppe 1 <i>Urformen</i>	gruppe 2 Umformen DIN 8582	gruppe 3 Trennen	gruppe 4 Fügen	gruppe 5 Beschichten	gruppe 6 Stoffeigen- schaften
Gruppe 1.1	Gruppe 2.1	Gruppe 3.1	Gruppe 4.1	Gruppe 5.1	Gruppe 6.1
aus dem gas-	Druckum-	Zerteilen	Zusammen-	aus dem gas-	durch Um-
oder dampf- förmigen	formen DIN 8583		legen DIN 8593	oder dampf- förmigen	lagern von Stoffteilchen
Zustand Gruppe 1.2	Gruppe 2.2	Commo 2 2	Cmmno 4.2	Zustand Gruppe 5.2	Cmmno 6.2
aus dem flüs-	Zugdruck-	Gruppe 3.2 Spanen mit	Gruppe 4.2 Füllen	aus dem flüs-	Gruppe 6.2
sigen, brei-	umformen	geometrisch	DIN 8593	sigen, brei-	sondern von
igen oder	DIN 8584	bestimmten		igen oder	Stoffteilchen
pastenförmi-		Schneiden DIN 8589		pastenförmi-	
gen Zustand Gruppe 1.3	Gruppe 2.3	Gruppe 3.3	Gruppe 4.3	gen Zustand Gruppe 5.3	Gruppe 6.3
aus dem ioni-	Zugumfor-	Spanen mit	An- und	aus dem ioni-	durch Ein-
sierten Zu-	men	geometrisch	Einpressen	sierten Zu-	bringen von
stand durch	DIN 8585	unbestimm-	DIN 8593	stand durch	Stoffteilchen
elektrolyt. Abscheiden		ten Schnei- den		elektrolyt. o.	
Abscheiden		DIN 8589		scheiden	
Gruppe 1.4	Gruppe 2.4	Gruppe 3.4	Gruppe 4.4	Gruppe 5.4	
aus dem fes-	Biegeum-	Abtragen	Fügen durch	aus dem fes-	
ten (körnigen	formen	DIN 8590	Urformen	ten (körnigen	
o. pulveri- gen) Zustand	DIN 8586		DIN 8593	o. pulveri- gen) Zustand	
gen) Zustand	Gruppe 2.5	Gruppe 3.5	Gruppe 4.5	gen) Zustanu	
	Schubum-	Zerlegen	Fügen durch		
	formen		Umformen		
	DIN 8587		DIN 8593		
		Gruppe 3.6 Reinigen	Gruppe 4.6 Stoffver-		
		Keinigen	binden		
			DIN 8593		
		Gruppe 3.7			
		Evakuieren			


Verfahrenskombinationen liegen dann vor, wenn jedes Verfahren für sich allein eine Bearbeitung des Werkstückes bewirkt.

1.2.2 Einteilung der Umformverfahren nach DIN 8582

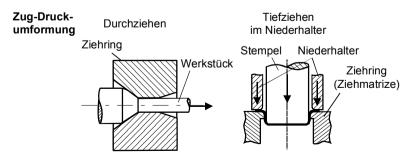

Umformverfahren der Hauptgruppe 2 aus DIN 8580 werden nach DIN 8582 weiter spezifiziert und nach dem herrschenden Spannungszustand eingeteilt (Abb. 1.7). Im Folgenden werden einige Beispiele für Umformverfahren zu den jeweiligen Spannungszuständen vorgestellt (Abb. 1.8 bis Abb. 1.12 nach /Lan88/).

Abb. 1.7 Gliederung der 6 Hauptgruppen der Fertigungsverfahren (nach DIN 8582)

Abb. 1.8 Fertigungsverfahren Druckumformung (DIN 8583)

Abb. 1.9 Fertigungsverfahren Zugdruckumformung (DIN 8584)

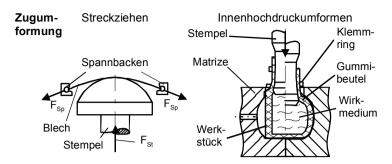


Abb. 1.10 Fertigungsverfahren Zugumformung (DIN 8585)

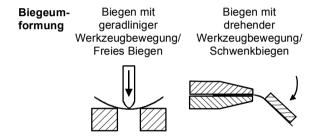


Abb. 1.11 Fertigungsverfahren Biegeumformung (DIN 8586)

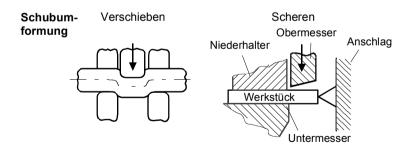


Abb. 1.12 Fertigungsverfahren Schubumformung (DIN 8587)

Literatur zu Kapitel 1

/Ane99/	Anemüller UT (1999) Metallkundliche Untersuchungen an Bronzebeilen –
	ein Beitrag zur Technologie der Bronzezeit. Dissertation, Fortschritt-
	Berichte VDI, VDI Verlag GmbH, Düsseldorf
/Her89/	Herlan T (1989) Optimaler Energieeinsatz bei der Fertigung durch Massiv-
	umformung. Dissertation Universität Stuttgart, Springer-Verlag, Berlin
	Heidelberg New York London Paris Tokyo
/Hir01/	Hirschvogel M (2001) Massivumformtechniken für die Fahrzeugindustrie.
	Verlag Moderne Industrie, Landsberg/Lech
/Ids03/	www.ids.wsu.de (Stand 27.05.2003)
/Joc94a/	Jockenhövel H (1994) Raum und Zeit – Gliederung der Bronzezeit. Bron-
	zezeit in Deutschland, Konrad Theiss Verlag GmbH & Co., Stuttgart: 9–14
/Joc94b/	Jockenhövel H (1994) Arbeiten an Ofen und Tiegel – Frühe Metallurgen
	und Künstler. Bronzezeit in Deutschland, Konrad Theiss Verlag
	GmbH & Co., Stuttgart: 36–40
/Joc94c/	Jockenhövel H (1994) Geschlagen aus Blech – Frühe Bronzezeitgefäße.
	Bronzezeit in Deutschland, Konrad Theiss Verlag GmbH & Co., Stuttgart:
	81–83
/Joh53/	Johannsen O (1953) Geschichte des Eisens. Verlag Stahleisen mbH,
/TT1	Düsseldorf
/Küh66/	Kühn H (1966) Vorgeschichte der Menschheit – Dritter Band – Bronzezeit
/T 70/	und Eisenzeit. Verlag M. DuMont, Schauenberg Köln
/Lan78/	Lange K (1978) Energieeinsparung und Fertigungstechnik. WT-Werkstatts-
/T 00/	technik, Springer-Verlag, Band 68, Nr. 9: 535–537
/Lan88/	Lange K (Hrsg.) (1988) Umformtechnik – Handbuch für Industrie und Wis-
	senschaft, Bd. 1: Grundlagen. Springer-Verlag, Berlin Heidelberg New
/T 0.5 /	York London Paris Tokyo
/Lün05/	Lüngen HB (2005) Technische Entwicklungen in der Stahlindustrie
	verringern CO2-Emissionen. Fachkonferenz, Rheinklima – die Zukunfts-
	fähigkeit europäischen Wirtschaftsraums im Wandel des Klimas, Bundes-
/Mon06/	ministerium für Bildung und Forschung, Bonn, 15.04.2005 Montelius O (1906) Kulturgeschichte Schwedens. Verlag von E. A.
/101100/	Seemann, Leipzig
/Müh00/	Mühldorfer B, Zeitler JP (2000) Mykene Nürnberg Stonehenge. Naturhisto-
/ IVIUIIOO/	rische Gesellschaft Nürnberg e.V., Band 43
/Spu91/	Spur G (1991) Vom Wandel der industriellen Welt durch Werkzeugma-
/Spu31/	schinen. Carl Hanser Verlag, München Wien
/Wed58/	v. Wedel E (1958) Die geschichtliche Entwicklung des Umformens in
/ W EU 3 6/	Gesenken. Dissertation, TH Hannover
/Wit43/	Witter W (1943) Über den Stand der Metallforschung (Kupfer und Bronze)
/ vv 11+3/	im Dienst der Vorgeschichtswissenschaft. Nova Acta Leopoldina, Band 12,
	Nummer 82, Halle (Saale)
/Zip67/	Zippe FXM (1967) Geschichte der Metalle. Dr. Martin Sändig oHG,
/21po//	Wiesbaden
	11 1030uuoii

2 Grundlagen der Umformtechnik

2.1 Werkstoffverhalten

Zum Verständnis der Vorgänge und Effekte bei der Umformung metallischer Werkstoffe durch die unterschiedlichsten Verfahren ist die grundlegende Kenntnis des Werkstoffverhaltens unumgänglich.

Im folgenden Kapitel wird daher ein Überblick über die werkstoff- und metallkundlichen Phänomene bei der Umformung gegeben. Für eine detailliertere Beschreibung dieser Themen wird auf die entsprechende Fachliteratur verwiesen.

2.1.1 Werkstoffkundliche Aspekte

2.1.1.1 Elastizität – Plastizität

Grundsätzlich unterscheidet man zwei Arten der Verformung /Bar88/:

- reversible/elastische Verformung und
- irreversible/plastische Verformung.

Das Spannungs-Dehnungs-Diagramm (Abb. 2.1) stellt das mechanische Verhalten eines Werkstoffs unter homogenen einachsigen Zugspannungen dar.

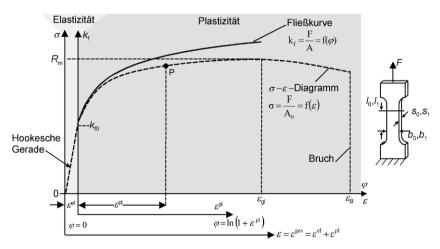


Abb. 2.1 Spannungs-Dehnungs-Diagramm sowie Fließkurve aus dem Flachzugversuch

Im Folgenden sind die charakteristischen Bereiche und Kennwerte des Spannungs-Dehnungs-Diagramms beschrieben.

- Die *Hookesche Gerade* (Abschnitt 0–1) gibt den Spannungsbereich an, den ein Werkstoff ertragen kann, ohne sich plastisch zu verformen. In diesem Bereich erfolgt lediglich eine elastische Dehnung des Werkstoffs.
- Das Ende der Hookeschen Geraden wird als *Streckgrenze R*_e bezeichnet.
- Die meisten reinen Metalle z.B. Al, Cu weisen jedoch keine ausgeprägte Streckgrenze auf, so dass hier die 0,2% plastische *Dehngrenze* $R_{p0,2}$ definiert wird (die elastische Dehnung $\Delta \varepsilon^{el}$ ergibt sich hierbei aus der Gesamtdehnung bei $R_{p0,2}$ abzüglich 0,2% plastischer Dehnung: $\Delta \varepsilon^{el} = \varepsilon_{Rp0,2} 0,2\%$.).
- Die Beanspruchung der Bauteile darf im Bereich der Elastizitätsrechnung die Streck-/Dehngrenze (Punkt 1), um einen Sicherheitsfaktor reduziert, nicht überschreiten.
- Bis zum Erreichen der *Zugfestigkeit* $R_{\rm m}$ (Höchstwert der Prüfkraft, Abschnitt 1–2), wird die Probe über die gesamte Länge ohne Einschnürung zusätzlich plastisch verformt. Dieser Bereich erstreckt sich bis zur *Gleichmaßdehnung* $\varepsilon_{\rm gl}$.
- Danach beginnt die Probe, sich an einer Stelle einzuschnüren.
- Die weitere plastische Dehnung bis zum Bruch (Abschnitt 2–3) vollzieht sich dann nur noch im Bereich der Einschnürstelle. Hier wird von der *Bruchdehnung A* (Abschnitt 1–3) gesprochen.

Kennwerte für DC04:

```
\begin{array}{lll} R_{\rm p0,2} &= 210 \ \rm N/mm^2 \ (Dehngrenze) & \varepsilon_{\rm gl} &= A_{\rm g} = 24,7\% = 0,247 \ (Gleichmaßdehnung) \\ R_{\rm m} &= 320 \ \rm N/mm^2 \ (Zugfestigkeit) & r &= 1,5303 \ (senkr. \ Anisotropie, \ Kap. \ 3.4) \\ A &= 43,5\% \ (Bruchdehnung) & \Delta r &= 0,8705 \ (ebene \ Anisotropie, \ Kap. \ 3.4) \\ Z &= 64,3\% \ (Brucheinschnürung) & n &= 0,2242 \ (Verfestigungsexponent, \ Kap. \ 3.4) \\ \varepsilon^{\rm el} &= 0,001 \ (elastische \ Dehnung) & R_{\rm p0,2}/R_{\rm m} &= 0,56 \ (Streckgrenzenverhältnis) \end{array}
```

Tabelle 2.1 Elastische und plastische Kennwerte unterschiedlicher Werkstoffe

Werkstoff	E-Modul [N/mm ²]	$R_{\rm p0,2}$ [N/mm ²]	$\mathcal{E}_{\mathrm{gl}} = A_{\mathrm{g}}$
Magnesium (AZ31)	45000	180	0,085
X4CrNi18-10 (V2A)	200000	500	0,45
Nickel (Inconel 718)	212800	530	0,43
Aluminium (AA6016)	70000	110	0,22
Stahl H300X (DP500)	210000	300	0,16

(2.8)

$$\sigma = \frac{F}{A_0} \tag{2.1}$$

(2.1)
$$k_{\rm f} = \frac{F}{A}$$
 (2.5)

$$A_0 = b_0 \cdot s_0 \tag{2.2}$$

$$A = b \cdot s \tag{2.6}$$

$$\varepsilon_l = \int_{l_0}^{l} \left(\frac{1}{l_0}\right) dl = \frac{l - l_0}{l_0}$$
 (2.3)

(2.2)
$$\varphi_l = \int_{l_0}^{l} \left(\frac{1}{l}\right) dl = \ln l - \ln l_0$$
 (2.7)

$$\Rightarrow \boxed{\varepsilon_l = \frac{\Delta l}{l_0}} \qquad (2.4) \qquad \Rightarrow \boxed{\varphi_l = \ln \frac{l}{l_0}}$$

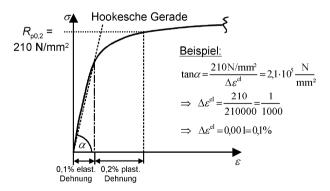
$$k_{\rm f}$$
 = Formänderungsfestigkeit [N/mm²]

 σ = Spannung [N/mm²]

F = Kraft[N]

F = Kraft[N]

 $A = \text{jeweiliger Querschnitt [mm}^2]$


 A_0 = Ausgangsquerschnitt [mm²] ε = Dehnung

 $\varphi = \text{logarithmische Formänderung}$

Die *elastische Dehnung* von z.B. DC04 beträgt ca. 0,1% (Abb. 2.2), $\varepsilon^{el} = 0,001$. Nach der Entlastung im elastischen Bereich nimmt die Probe wieder ihre ursprüngliche Form an.

Der plastische Bereich für den Werkstoff DC04 (St 1403) ist bis zur Gleichmaßdehnung $\varepsilon_{\rm gl}$ nahezu 2500-mal größer als die elastische Dehnung. Die eingebrachte Formänderung ist hier bleibend, d.h., nach der Entlastung nimmt die Probe nicht wieder ihre ursprüngliche Form an.

Die *Fließkurve* (Abb. 2.3) beginnt am Ende der Hookeschen Geraden (mit Einsetzen des plastischen Fließens).

Abb. 2.2 Elastische Dehnung von DC04

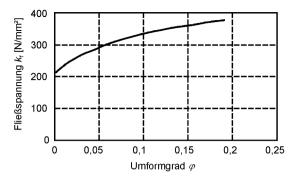
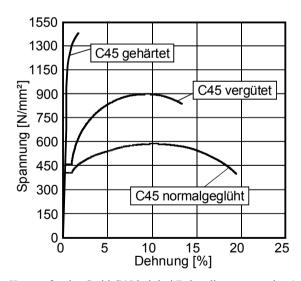
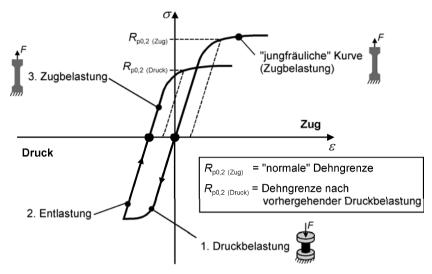



Abb. 2.3 Fließkurve für DC04 (St 1403) bei Raumtemperatur


2.1.1.2 Festigkeit – Duktilität

Ein aus umformtechnischer Sicht idealer Werkstoff sollte sich bis zu möglichst großen Formänderungen (*Duktilität*) mit geringen Kräften umformen lassen, ohne zu reißen, und dabei bestmögliche mechanische Eigenschaften besitzen (*Festigkeit*). Eine Steigerung der Festigkeit bedingt immer eine Reduktion der Duktilität (Gleichmaßdehnung $\varepsilon_{\rm gl} = A_{\rm g}$, Brucheinschnürung Z, Bruchdehnung A, Formänderungsvermögen $\varphi_{\rm max}$) (Abb. 2.4).

Eine hohe Festigkeit bei gleichzeitig hoher Duktilität ist daher nur schwer einstellbar. Ein Werkstoff mit geringer Duktilität lässt sich umformtechnisch schwer verarbeiten.

Abb. 2.4 σ-ε-Kurven für den Stahl C45 bei drei Behandlungszuständen (nach /Bar88/)

Abb. 2.5 Bauschinger-Effekt (nach /Bar88/)

Definition Bauschinger-Effekt

Eine vorangegangene Druckverformung führt bei anschließender Zugbeanspruchung zu einem früheren Beginn der plastischen Verformung einer Zugprobe (Abb. 2.5).

Ursache sind Eigenspannungen, die

- nach der Entlastung aufgrund ungleichmäßiger Verteilung der Werkstoffverformungen zurückbleiben und
- bei Umkehrung der Belastungsrichtung eine frühere Aktivierung von Versetzungsbewegungen bewirken.

Bei Zugbelastung einer zuvor druckbelasteten Probe ergibt sich eine Hysterese, die durch früheres Einsetzen der Krümmung der Spannungs-Dehnungs-Kurve abgebildet wird /Jän85/.

Definition Festigkeit

Festigkeit ist der Widerstand eines Körpers gegen Verformung und Bruch.

Bezogen auf die atomaren Bindungskräfte werden zwei theoretische Betrachtungen der Reaktion auf eine über die Elastizitätsgrenze hinaus gehende Belastung unterschieden (Abb. 2.6). Trennung ist das Reißen von überdehnten Bindungen zwischen Atomen des Gitters längs einer ganzen Gitterebene (theoretische Zugfestigkeit σ_{th}). Starres Abgleiten ist das Verschieben von Atomebenen gegeneinander (theoretische Scherfestigkeit τ_{th}). Im Folgenden werden die mathematischen Hintergründe der theoretischen Zug- und Scherfestigkeit erläutert.

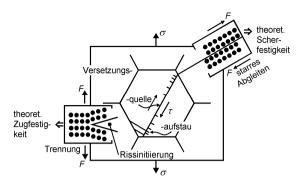


Abb. 2.6 Trennung und starres Abgleiten von Atomen

Theoretische Zugfestigkeit \sigma_{th}:

Die theoretische Zugfestigkeit σ_{th} ist die notwendige Spannung zur Trennung zweier Atomebenen entgegen ihrer Bindungskräfte, wobei alle Atome gleichzeitig senkrecht zur anliegenden Kraft F bzw. Spannung σ getrennt werden. Die Größe von σ_{th} folgt aus den Bindungsenergien im Kristallgitter. Der theoretische Wert liegt weit oberhalb des real auftretenden.

Die Spannungs-Abstandsbeziehung kann für kleine Auslenkungen durch eine lineare Funktion angenähert werden /Mül01/:

$$\sigma(x) = \sigma_{\text{th}} \cdot \sin\left(\frac{2\pi x}{\lambda}\right) \approx \sigma_{\text{th}} \frac{2\pi x}{\lambda}.$$
 (2.9)

Im linearen Bereich gilt aber auch das folgende Hookesche Gesetz:

 $\sigma(x) = E \cdot \varepsilon = E \frac{x}{d}$. (2.10)

Elastizitätsmodul

Wellenlänge

d: Gitterabstand E: €: Dehnung λ:

Auslenkung

Hieraus folgt:

$$\sigma_{\rm th} = \frac{E\lambda}{2\pi d}.\tag{2.11}$$

Es wird definiert, dass die zur Trennung der Atome notwendige Arbeit vollständig in Oberflächenenergie konvertiert wird. Also entspricht sie der spezifischen Oberflächenenergie γ_0 [J/m²] der beiden entstehenden Oberflächen.

Daraus ergibt sich:

$$2\gamma_0 = \sigma_{\text{th}} \frac{\lambda}{\pi}.$$
 (2.12)

Hieraus folgt:

$$\sigma_{\rm th} = \frac{E}{2\pi d} \frac{2\gamma_0 \pi}{\sigma_{\rm th}} \quad \Rightarrow \quad \sigma_{\rm th} = \sqrt{\frac{\gamma_0 \cdot E}{d}}.$$
 (2.13)

Die Berechnung von σ_{th} gestaltet sich schwierig, da das Messen der Oberflächenenergie 2 % Probleme bereitet. Daher erfolgt meist eine Abschätzung von σ_{th} mit Hilfe des E-Moduls.

Faustformel:

$$\frac{E}{5} > \sigma_{\text{th}} > \frac{E}{10} \tag{2.14}$$

Theoretische Scherfestigkeit/Schubspannung τ_{th} :

 τ_{th} folgt aus der Verschiebung zweier benachbarter Gitterebenen (durch die aufgebrachte Schubspannung τ) um den Weg x (Abb. 2.7). Infolge der Periodizität des Gitters ergibt sich in erster Näherung eine Sinusfunktion, d.h. die Schubspannung τ ändert sich sinusförmig.

$$\tau = \tau_{\rm th} \cdot \sin\left(2\pi \cdot \frac{x}{a}\right) \tag{2.15}$$

τ: Schubspannung a: Atomabstand

x: Weg der Abgleitung/Verschiebung

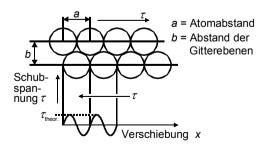


Abb. 2.7 Abgleiten von Atomschichten (idealer Kristall)